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Abstract The interaction between microscopically rough
surfaces and hydrodynamic thin film lubrication is investi-
gated under the assumption of finite deformations. Within
a coupled micro–macro analysis setting, the influence of
roughness onto the macroscopic scale is determined using
F E2-type homogenization techniques to reduce the over-
all computational cost. Exact to within a separation of scales
assumption, a computationally efficient two-phase microme-
chanical test is proposed to identify the macroscopic inter-
face fluid flux from a lubrication analysis performed on the
deformed configuration of a representative surface element.
Parameter studies show a strong influence of both roughness
and surface deformation on the macroscopic response for
isotropic and anisotropic surfacial microstructures.
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Nomenclature
β Angle of orientation w.r.t. x-axis
•S Surface quantities
•+/m/− Quantities belonging to the upper-, middle-,

lower-surface of the fluid element, respectively
(m ← p, q)
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L, ∂L Fluid domain and its boundary in current
configuration

S, ∂S Solid domain and its boundary in current
configuration

εC Parameter to penalize the fluid pressure to pa

〈•〉 Surface averaged local quantities
• = 〈•〉 Macroscopic quantities
F/H Surface deformation/displacement gradient
n• Fluid normal vectors on surfaces +,m,-
q Fluid flux per density
qc Fluid flux Couette term
q p Fluid flux Poseuille term
a Deformed surface area
A0 Undeformed surface area
p Fluid pressure
pa Bearing surrounding ambient pressure
v̇ Fluid acceleration
α Pressure–viscosity coefficient
ηp, ηg/u Test function w.r.t. p, g or u
v Rel. surface velocity
μ0 Dynamic viscosity
ρ Density
b Body force
g Grad[p] pressure gradient
v Fluid velocity
h Gap height
lz Sample height z
lx,y Gap/sample length x, y
ν Poison’s ratio
	 Strain energy function
E Young’s modulus
G Shear modulus
K Bulk modulus
U Volumetric part of strain energy function

123



750 Comput Mech (2012) 49:749–767

1 Introduction

In many cases of engineering interest, two surfaces that
appear to be macroscopically in contact are separated by
a thin fluid film on the microscale. The presence of such
a film may be desirable or undesirable. The synovial fluid
is critical to the healthy functioning of human joints [21]
and lubricants are an integral design parameter in order to
maintain the operation standards in various machinery by
minimizing wear [38]. On the other hand, wet road surfaces
may lead to poor tire traction performance and eventually to
hydroplaning [19] while oil, a common lubricant, can also
lead to reduced performance in wheel-rail contact [31]. An
investigation of the tribological nature of such surfaces is an
interdisciplinary task that forms the basis of the lubrication
theory. See Hamrock et al. [22], Persson [36], Szeri [51] for
extensive overviews of the field.

A central ingredient of the lubrication theory is the
Reynolds equation [40] that is derived from the three-
dimensional Navier–Stokes equations in the thin film limit.
The Reynolds equation enables a predictive analysis of
lubricated interfaces over a broad range of macroscopic con-
tact situations and therefore plays a fundamentally practical
role in circumventing a direct solution of the computation-
ally more challenging Navier–Stokes equations. However,
in its original form, the Reynolds equation assumes micro-
scopically flat surfaces and employing a mean film thickness
together with the original equation is generally unable to
capture roughness effects accurately. Consequently, the con-
struction of robust techniques of incorporating the effects of
tribologically realistic surfaces that display roughness at var-
ious scales into the Reynolds equation has been of prime
interest, in particular for surface texture design applications
[52]. For the purposes of this work, attempts towards this
goal may be grouped into two major categories: (i) stochas-
tic approaches that augment the original Reynolds equation
and (ii) homogenization techniques. The widely employed
influential works of Patir and Cheng [34] and Patir and Cheng
[35] introducing the flow factor method belong to the former
category. Additional early works of historical interest include
Tripp [57] where anisotropic texture effects were accounted
for and Shukla [47] where an effective viscosity concept was
introduced. For recent references, the reader is referred to
Hamrock et al. [22] and Szeri [51].

Parallel to these efforts were perturbation techniques that
operated directly on the fine scale pressure oscillations—
see Tripp [57] for an early approach and Persson [37] for
a recent development. Among these, the small-parameter
expansion approach of Elrod [18] can be considered as a
precursor to modern homogenization techniques in lubrica-
tion and shows similarities with the asymptotic expansion
treatments that were first initiated in the context of heter-
ogeneous media [5,9,44]—see Fabricius [20] for a review.

For heterogeneous materials and interfaces, the homogeni-
zation approach based on the asymptotic expansion tech-
nique is exact in the sense that the macroscopic response
of the medium can be extracted based on a given micro-
structure and microscale constitutive models without further
simplification. Moreover, this inherently multiscale approach
lends itself to computational homogenization frameworks
(often referred to as F E2) which can operate in periodic
and random multiphysics settings, with discrete media or
under constraint conditions like contact and in particular at
finite deformations where analytical or closed-form math-
ematical approaches pose difficulties. While these advan-
tages are at the expense of significant computational cost,
their predictive potential complements and in some cases
supersedes the alternatives offered by approximate homog-
enization techniques, such as estimates and bounds, based
on simplified microstructures and constitutive relationships
which are usually necessary to enable an analytical treat-
ment of the multiscale problem. See Stupkiewicz [49],
Temizer [53], Temizer and Wriggers [55], Torquato [56],
Zohdi and Wriggers [61] for overviews with extensive refer-
ences on computational homogenization techniques and their
applications to finite deformation problems for materials and
interfaces.

Asymptotic expansion based approaches have been ana-
lyzed for the Reynolds equation with and without cavita-
tion, in the presence of compressibility effects as well as
a possibly non-Newtonian fluid in various works. Recent
examples include Almqvist and Dasht [1], Almqvist et al.
[2,3], Bayada et al. [7], Jai and Bou-Said [26], Kane and
Bou-Said [27,28]—see also references therein for further
remarks on the historical development of the approach. These
enable exact treatments of the multiscale problem and are
amenable to a computational implementation, thereby cir-
cumventing the demanding task of resolving microscopic
roughness directly in the solution of the macroscopic prob-
lem, cf. Fig. 1. Recently, analytical bounds for the macro-
scopic lubrication behavior have also been derived [4,32],
which are closely related to the bounds for heterogeneous
materials [56]. Such bounds deliver a solution space for the
performance of hydrodynamic lubrication as influenced by
real measured surface roughness. Recent comparisons of
homogenization and flow factor approaches may be found
in Sahlin et al. [41–43]. As for heterogenous media, abso-
lute length scale dependence is also of concern in lubrication
[24]. However, such effects are outside the scope of the pres-
ent study.

All of the investigations to be performed in this study
employ microstructures that may be classified as being in
the Reynolds roughness regime, together with gap heights
where roughness effects are significant. The roughness clas-
sification goes back to the work of Elrod [18] and verifies the
assumption regarding the validity of the Reynolds equation
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Fig. 1 The lubrication homogenization idea is summarized. The original non-smooth boundary topography of the deformable body is replaced
with a microscopically smooth one, leading to a homogenized problem with a lower discretization cost

on the microscale within the micromechanical analysis. The
investigations of Mitsuya and Fukui [33] indicate that, the
roughness wavelength to mean film thickness ratio should be
approximately five or larger if this assumtion to hold. Other-
wise, the Stokes roughness regime becomes dominant and a
direct solution of the Stokes equation is suggested, although
alternative limit equations have also been obtained in the
mathematical literature [6]. In the case of dynamic effects,
a reversion to the original Navier–Stokes equation may be
required within the homogenization framework, which may
also be necessary in the case of near-contact situations where
the gap height to combined roughness ratio is very small
[16]. In the other extreme of this ratio, roughness effects are
negligible. They become dominant in the vicinity of a gap
to combined roughness ratio of the order of ten and below
[34].

The major goal of this work is to introduce and inves-
tigate a computational homogenization framework for soft,
i.e. finite deformation, elastohydrodynamic lubrication. The
multiscale problem in the context of elastohydrodynam-
ic lubrication has been investigated in Bayada et al. [8],
Bohan et al. [10], Dowson [17] and explicit numerical

solution strategies for the coupled problems of elasticity and
lubrication have been proposed [29]. Although finite defor-
mation effects have also been investigated in Shi and Sa-
lant [45], Shinkarenko et al. [46], Stupkiewicz and Mac-
iniszyn [50], a sufficiently general computational homog-
enization framework that takes into surface texture evolu-
tion effects due to large macroscopic deformations of the
lubricated interface appears not to have been proposed.
With a view towards establishing such a framework, Sect. 2
introduces the macroscopic soft elastohydrodynamic lubri-
cation analysis framework in the context of the finite ele-
ment method. A sample problem is additionally analyzed
to motivate the multiscale computational homogenization
framework. Subsequently, Sect. 3 constructs the homoge-
nization methodology. In addition to a discussion of scale
transition procedures, thermodynamical consistency of the
proposed formulation is discussed by monitoring dissipa-
tion on micro- and macroscales. Finally, major aspects of
the proposed approach are demonstrated in Sect. 4 with
an emphasis on finite deformation effects and the associ-
ated macroscopically anisotropic interface flow consider-
ations.
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2 Lubrication problem

2.1 Reynolds equation

The starting point for interface flow considerations is the
mass balance together with the Navier–Stokes equations. The
former is taken into account by the continuity equation state-
ment [22,59]. The Navier–Stokes equations can be derived
from the differential volume element and capture fluid behav-
iour in general. The fluid flux of the steady state Reynolds
equation (2.21) is derived from the Navier–Stokes equa-
tions under certain assumptions:

(i) body forces and inertia effects are negligible,
(ii) thin channel fluid flow, bounded by two surfaces in

relative motion,
(iii) perfect stick of fluid molecules on solids,
(iv) no fluid flow (velocity) across the fluid channel,
(v) negligible pressure change across the fluid channel,

(vi) Newtonian fluid,
(vii) incompressible fluid.

Defining the fluid flux

q = − h3

12μ
g

︸ ︷︷ ︸

q p

+ hv

2
︸︷︷︸

qc

(2.1)

the Reynolds equation with boundary conditions can be
stated as (∂Lp ∪ ∂Lq = ∂L)

−ρdiv
[

q
] = 0 in L

subject to p = p̂ on ∂Lp

and −q · n := q̂n on ∂Lq (2.2)

Here, the constitutive dependence q = q (h, p, g, v) holds
where p is the fluid pressure and g = grad[p] its gradi-
ent, v is the relative tangential velocity between the adjacent
surfaces and h is the distance between those surfaces (see
also Fig. 5). Here the lower surface is stationary and the gap
height varies little along the x and y directions. For future
reference, the flux has also been additively decomposed as
q = q p + qc into the Poiseuille term q p which depends
nonlinearly on the pressure p and the linear Couette term
qc. Within the Poiseuille term, the nonlinearity arises from
μ (p) = μ0 ·eαp, namely Barus equation holds. The dynamic
viscosity μ0 has to be chosen for a reference temperature. For
water and low working pressures the pressure–viscosity coef-
ficientα remains zero [48, p. 21, Table 2.3]. It is remarked that
the derivation of the Reynolds equation was recently revis-
ited in Rajagopal and Szeri [39] with a pressure dependent
viscosity and an augmented formulation was obtained. Nev-
ertheless, the commonly accepted convention of employing

Barus viscosity in the classical equation is followed in the
present work.

2.2 Elastohydrodynamic framework

The contribution of the lubrication formulation to the weak
formulation of the coupled problem in an elastohydrodynam-
ic framework reads

Ilubr =

IF :=
︷ ︸︸ ︷

∫

Lp
q · ηg da +

∫

∂Lq
q̂n ���
0, on ∂Lp

ηp dl

−
IC :=

︷ ︸︸ ︷
∫

Lu−
pn− · ηu da −

∫

Lu+
pn+ · ηu da

+
ICav :=

︷ ︸︸ ︷
∫

Lp
ηp εC {p − pa} da (2.3)

where IF and IC denote the fluid (Reynolds equation 2.1)
and fluid-solid coupling terms, respectively, and εC is a suf-
ficiently large penalty parameter. Both terms are functions
of the surface displacements u and pressure p. Due to the
nonlinear dependence on pressure in Eq. (2.3) and a finite
deformation regime for the solids, the solution of the coupled
problem requires the linearization of both the fluid and the
contact contributions. Moreover, in order to take into account
the effect of cavitation, the fluid pressure may not drop below
the ambient pressure. Therefore, two conditions are distin-
guished, cf. Wriggers [60]:

1. no cavitation: p − pa ≥ 0 ⇒ εC = 0 ⇔ ICav is not
computed,

2. cavitation: p− pa < 0⇒ εC 	 0⇔ ICav must be
computed.

Fig. 2 Finite element with additional middlenodes
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Table 1 Material parameters
employed in Sect. 2 are
summarized

Sleeve (Neo Hook)

Young’s modulus (N/mm2) E 475.0

Poisson’s ratio ν 0.499

Cylinder dimensions (mm) ∅
o ×∅

i × width 490× 451× 375

Number of quadratic elements ∅
o ×∅

i × width 80× 24× 3

Journal

Young’s modulus (N/mm2) E 50000.0

Poisson’s ratio ν 0.3

Cylinder dimensions (mm) ∅
o ×∅

i × width 450× 240× 375

Number of quadratic elements ∅
o ×∅

i × width 80× 24× 2

y-displacement (mm) 0.63

Lubricant (Water)

Rel. vel. (journal–sleeve) (mm/s) v 2356.0

Viscosity (at 20 ◦C) (MPa s) μ 1.0× 10−9

Pressure–viscosity coefficient (Pa−1) α 0.0

Ambient-pressure (MPa) pa 0.1

Cavitation penalty parameter (MPa) εC 1.0e12

Number of quadratic elements ∅
o ×∅

i × width 80× 24× 1

Fig. 3 Journal bearing macroscopic pressure p and y-displacement
plot. left figure Side view on journal bearing. Journal displacement
in negative y-direction (blue colors) is shown. Sleeve (uniform green

colored) remains stationary. right figure Close up view on sleeve y-dis-
placement (foreground) scaled by a factor of ten, caused by pressure p.
This pressure distribution is shown in the background

Within a finite element framework which employs qua-
dratic elements at the interface [15,23], the displacement val-
ues are stored in the upper and lower plane nodes as depicted
in Fig. 2. Here, the three dimensional interface elements
represent the two dimensional curvilinear surfacial problem
of lubrication, cf. Wagner and Gruttmann [58, p. 153]. The
lubrication pressure is stored in the additional middle nodes
(Fig. 2). The coupling between the solid and the lubricant is
carried out via the normals on the surfaces, which prescribe
the direction in which the fluid pressure acts as a surface load.

The constitutive equation used for the incompressible rub-
ber material of the sleeve is derived from a Neo-Hookean
type strain energy function with the volumetric-deviatoric
decoupling

	 =
(

K − 2

3
G

)

U (J )+ 1

2
G (tr[C]− 3) ,

U (J ) = J 2 − 1− 2 ln[J ]

K = E

3 (1− 2ν)
, G = E

2 (1− ν)
, (2.4)
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Fig. 4 Micro–macro loop with parameter interface between macro-
scale to micromechanical test procedure

where J = det[F], with F as the deformation gradient,
C = FT F, K and G are the bulk and shear moduli, E is
the Young’s modulus and ν is the Poisson’s ratio. The corre-
sponding boundary value problem reads

div[σ ]+ b = 0 , in 


subject to u = ū , on �u

and t = σ · n = t̄ , on �σ . (2.5)

Here σ denotes the Cauchy stress, b is the body force, ū
represents the displacement on �u . Further t̄ prescribes trac-
tion on �σ and note that �σ includes the lubrication interface
where t̄ = σ ·n = −pn holds, see Eq. (2.3). In order to dem-
onstrate the framework, subject to input parameters in Table
1, a computational result is shown in Fig. 3.

3 Lubricant homogenization methodology

3.1 Interface testing procedure

Solving the Reynolds equation for a macroscale lubrication
problem while taking into effect surfacial microscopic rough-
ness that is several orders of length scales smaller demands
a very fine mesh resolution and hence prohibitive compu-
tational times. To reduce the workload, a homogenization
scheme is introduced. The basic idea is outlined in Fig. 4,
where a mass balance

− ρdiv
[

q
] = 0 (3.1)

has to be solved on the macroscale, but a constitutive equa-
tion q prescribing the flux over a rough surface is not rep-
resented by the classical Reynolds flux. Hence an explicit

constitutive equation q is not known. Rather, the homoge-
nized macroscopic flux q is extracted from a rough micro-
scale problem that is associated with the macroscale interface
at each numerically relevant point, e.g. the integration point.
This interface sample problem will be solved as follows:

1. compute macroscale variables from a flat surface macro-
scale problem, using the mass balance (regarding cavita-
tion in Eq. (2.3) but without substituting the Reynolds
flux form)

2. where cavitation does not occur, pass macroscale vari-
ables to the microscale and incorporate them as bound-
ary conditions on the test sample,

3. solve a rough surface microscale problem, using
Reynolds equation (Eq. (2.3) neglecting cavitation),
for the local flux q,

4. compute the macroscale flux q by surface averaging the
local flux and pass it to the macroscale,

5. solve the macroscale problem using the macroscale flux
q, which now transmits the effects of surface roughness
to the macroscale.

Steps 2-4 constitute the micromechanical test, see Sects. 3.2
and 3.3. To any position in the lubricant at the macroscopic
scale such a micromechanical test is attached. Within the
finite element framework, this is done naturally at the Gauss
points. Unlike the classical homogenization setting for the
Reynolds equation, however, it is not sufficient to solve
these attached problems only once in a pre-processing step.
Rather, they must be solved simultaneously throughout the
macroscopic deformations steps. This is the typical F E2

framework for the computational homogenization of hetero-
geneous media—see earlier cited references.

The validity of the proposed multiscale analysis frame-
work is assessed through the following conditions:

σ = O (

h
)� c

σ = O (h)� c (3.2)

c � c

Equations (3.2)1,2 ensure that a lubrication formulation holds
on the macroscale as well as on the microscale. Here σ and
σ denote the standard deviations of roughness whereas the
representative length of the flowpath is given via c and c
for the macroscopic and microscopic problems, respectively.
Finally, (3.2)3 is required to justify the separation of scales
that is essential for scale-independent homogenization [49,
pp. 9–14]. The separation of scales also justifies the split of
the micromechanical testing procedure, which is the subject
of the next section.
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(a)

(b)

Fig. 5 Micromechanical split: (a) mechanical phase, subject to x+ − x− = F
S (

X+ − X−
)

and (b) lubrication phase, subject to p+ − p− =
ĝ · (X+ − X−

)

3.2 Two-phase micromechanical test

The introduced micromechanical test can be split into a
(i) mechanical phase followed by a (ii) lubrication phase
and through which an efficient numerical treatment of the
homogenization problem can be achieved. This procedure
is visualised in Fig. 5 and flowchart Fig. 7, however impor-
tant information on setting up the procedure is contained
in this section. The split is exact to within a separation of
scales assumption [55, Sect. 3]. If not employed, the solu-
tion of the coupled problem, which is now numerically more
expensive, would additionally require an explicit satisfaction
of (3.2)3 by choosing the sample small in terms of absolute
length scale. When not appropriately chosen, the sample size
can influence the macroscopic flux for a given set of bound-
ary conditions. However, such a sample size dependence is
not allowed when a separation of scales is admitted. Conse-
quently, the split of the testing procedure ensures an auto-
matic satisfaction of this condition.

Within the mechanical phase a purely mechanical problem
undergoing finite deformations will be solved. The deforma-
tion is induced by:

• the macroscopic fluid pressure ( p̄ ≈ const) acting
as a follower load (subject to being linearised) on the
top surface Sl

0 of the Representative Surface Element
(RSE),

• the macroscale deformation F
S = 1 + H

S
(applied to

the side surfaces ∂S+/− of the RSE; see Sect. 3.3 and
Fig. 6 and Stupkiewicz [49], Temizer and Wriggers [54]),
and

• the chosen geometry (roughness) of top surface ∂Sl
0.

Outcome is a deformed surface Lu− . Employing a constant
pressure within the mechanical phase agrees with the asymp-
totic expansion analysis of Bayada et al. [8] and is consistent
with the separation of scales.

Subsequently, the lubrication phase can be constructed
using the deformed surface Lu− , see Fig. 5b. In order to
form a thin channel, a flat surface Lu+ is placed at a distance
h above the mean plane of the rough surface Lu− . For this
purpose, introducing

〈•〉 = 1

A0

∫

Lu−
• da −→ h = 〈h〉 , z = 〈z〉 , (3.3)
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(a)

(b)

Fig. 6 Notation of boundaries on (a) the mechanical phase and (b) the lubrication phase

at position z a flat surface Lhelp is placed with respect to
which the top surface Lu+ is at an average distance h with
respect to the rough surface Lu− .

Due to computational reasons (Sect. 2.2) an intermediate
surface Lp is introduced to compute and store the lubricant
local pressure p. The lubrication problem is subject to the
following restrictions:
• the top surface is forced to be under tangential motion v

but Lu− is fixed and
• the macroscopic pressure gradient g acts on Li , refer to

Sect. 3.3 and Fig. 6.
The former assumption is particularly convenient because
it allows a static analysis and is a common starting point
in many works [1,2,4,8,10,12,18,25,26,41]. In contrast to
this setting, two rough surfaces moving against another or
accounting for tangential contact demands a time dependent
analysis [30,33,35,50,57].

Since the pressure distribution is not constant throughout
the microscale for a rough surface, q is of “fast varying”
character. Hence it must be averaged before passing it to the
macroscale:

q = 〈q〉 (3.4)

3.3 Boundary conditions

At each Gauss point the global variables
(

h, p, g, v, F
S
,

geometr y
)

are passed to the micromechanical test proce-

dure, where they are incorporated as boundary conditions.
They satisfy the following aspects:

• the exact homogenized response is delivered from a unit-
cell analysis if the microstructure is periodic [53] (Fig.
9 and

• the macroscopic quantities that appear in the boundary
conditions are recovered by surface averaging [53] (Sect.
3.2, in particular g = 〈g〉.

In the mechanical phase, at the bottom layer ∂Sr
0 all nodal

movements are restricted in the z-direction. Additionally one
of these nodes x ∈ ∂Sr

0\∂Si
0 has to be fixed in all directions to

avoid rigid body motions. On the side surfaces ∂Si
0 periodic

boundary conditions are imposed to transfer global defor-
mations to the microscale (see Eq. (3.5) and Fig. 6a). On the
rough surface ∂Sl

0 traction boundary conditions are applied
as a non-conservative loading, cf. Eq. (3.6).

x+ − x− = F
S (

X+ − X−
)

, on ∂Si = ∂S−
⋃

∂S+(3.5)

t = −pn, on ∂Sl (3.6)

Within the lubrication phase periodic boundary condi-
tions are used to obtain the pressure distribution on the mid-
dle plane nodes. Therefore the side nodes of the middle plane
are restricted as follows:

p+ − p− = g · (X+ − X−
)

, on ∂Li = ∂Lp− ⋃

∂Lp+

(3.7)
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(a) (b)

Fig. 7 The Flowchart for the two-phase micromechanical test, see Sect. 3.2 (a) Mechanical phase (b) the Lubrication phase

A single node on δL \ ∂Li is restricted to zero pressure and
all nodes are restricted to zero displacement, see Fig. 6b.
Beforehand the lubrication channel is constructed by mak-
ing use of h, see Figs. 5b and 7b. The tangential relative
motion v between the upper and lower surfaces directly goes
into Eq. (2.1).

Analogous to Eq. (3.1), q satisfies−ρdiv
[

q
] = 0. In case

when there is a normal relative velocity between the surfaces
it is necessary to modify the macroscopic mass balance (Eq.
3.1) by introducing appropriate rate of normal separation on
the right hand side, see [22,51]. However no modification
is needed on the microscale: −ρdiv

[

q
] = 0 still holds. The

omittance of such dynamic terms from the microscale prob-
lem is standard, e.g. in elastodynamics the computation of
the effective elastic constants does not require the consid-
eration of acceleration on the microscale, see [61]. These
results are supported by asymptotic expansion approaches in
homogenization, see earlier cited references.

3.4 Identification of macroscopic quantities

From Sect. 3.2 it is known that surface averaging microscopic
local quantities gives us macroscopic values and hence the
macroscopic flux is identified as q = 〈q〉. To study whether a
macroscopic constitutive equation can be identified the flux
q is decomposed additively for observation purposes as is
used in Sect. 4

q = q p + qc,

{

q p = 〈q p (h, p, g)〉
qc = 〈qc (h, v)〉 (3.8)

To identify macroscopic quantities
(

h, p, μ, g
)

via surface
averaging to obtain a macroscopic constitutive equation, one
proceeds by

〈q〉 =
〈

− h3

12μ
g + hv

2

〉

,

{

μ = μ (p)

g = grad (p)

= − 1

12μ

〈

h3 g
〉

+ v

2
〈h〉
︸︷︷︸

≡h

= − 1

12μ

〈

h3 g
〉

+ hv

2

= q p + qc (

h, v
)

(3.9)

and hence a classical Couette term is obtained but the
Poiseuille term cannot be expressed as a function of mac-
roscopic quantities explicitly. It is this term that makes an
explicit homogenization analysis necessary, even when the
rough surface is rigid.

3.5 A micro–macro dissipation equality

In a full Navier–Stokes representation of the fluid, dissipa-
tion is induced by the viscous flow which causes temperature
rise in the fluid. A consideration of the dissipation effects has
been carried out by Cope [14] by simplifying the energy equa-
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tion under the Reynolds equation assumptions that lead to the
thin-film limit. The results obtained have subsequently been
verified by Charnes et al. [13] through an alternative deri-

vation where the energy-dissipation relationship was char-
acterized under the thin-film assumptions. Now, since no
energy is stored by an incompressible fluid under steady state

Table 2 Material parameters
employed in Sect. 4 are
summarized

Unless otherwise noted the
values in brackets [•] are used

Solid (Neo Hook)
Young’s modulus (N/mm2) E 475.0
Poisson’s ratio ν (0.0–[0.499]) Sect. 4.1
Block dimensions (mm) lx × ly × lz 0.2× 0.2× 0.4
Roughness amplitude (mm) ẑ 0.01
Number of quadratic elements x,y,z 8× 8× 16
Fluid pressure (MPa) p (0.0–[5.0]) Sect. 4.1
Surface geometry iso-/ anisotropic Sect. 4.2

Displacement gradient H
S

(-1.0,[0.0],1.0) Sect. 4.3
Lubricant (Water)

Velocity (mm/s) vβ 2356.0 (g = 0)
Pressure gradient (MPa/mm) gβ 0.1 (v = 0)
Angle of orientation w.r.t. x-axis (MPa/mm) β [0.0]–360.0
Gapheight (mm) h ([0.05]–0.1) Sect. 4.2
Viscosity (at 20 ◦C) (MPa s) μ 1.0 · 10−9

Pressure–viscosity coefficient (Pa−1) α 0.0
Number of quadratic elements x,y,z 8× 8× 1

(a)

(b)

(b)

(b)(b)

Fig. 8 Influence of Poisson’s ratio ν on: (a) surfacial z-displacements when an increasing pressure load p (Poisson’s ratio ν = 0.499 is additionally
plotted w.r.t. a different range to highlight small changes in the geometry) and (b) stress distribution to be subject of p = 5 MPa
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conditions, the local dissipation D on the microscale must
match the power input P . Therefore, in order to preserve
dissipation through the scale transition of homogenization,
the following equivalent conditions must be satisfied:

D = 〈D〉 ←→ P = 〈P〉 . (3.10)

In this work, the effect of the shear stresses are omitted. Con-
sequently, the power input is expressed only in terms of the
flow work P f [13]:

P ≡ P f = −q · g. (3.11)

The expression of the flow work is admitted to be of the same
form on the macroscale:

P ≡ P f = −q · g. (3.12)

Consequently, making use of the macroscopic identifications
for the flux (Sect. 3.2) and the pressure gradient (Sect. 3.3),
preservation of dissipation across the scales requires satisfy-
ing

D = 〈D〉 ←→ −〈q〉 · 〈g〉 = − 〈q · g〉 , (3.13)

which will be referred to as the micro–macro dissipation
equality. The satisfaction of this equality is guaranteed by
the periodic boundary conditions employed in this work
[55] and therefore the thermodynamical consistency of the
computational homogenization approach is guaranteed. It is
noted that a complete consideration of the dissipation effects
requires incorporating shear stress effects as well. However,
this requires imposing shear stresses on the rough surface
within the mechanical phase of the micromechanical test,
the study of which is planned as a future work.

4 Numerical investigations

In this section, major aspects of the proposed computational
homogenization framework are highlighted. In Sect. 4.1, pri-
marily the influence of the Poissons ratio ν and surface load
p is studied at the mechanical phase. Further investigations
refer to the lubricant response on changing macroscopic con-
trol parameters. For subsequent computations g, v have been
applied with constant magnitude but changing orientation.
Two different surface geometries are reviewed in Sect. 4.2
finding isotropic and anisotropic flux behaviours where the
importance of the gap height h̄ is additionally demonstrated.

The effect of the displacement gradient H
S

will be high-

lighted in Sect. 4.3. In all other investigations H
S

will be
set to zero. see Table 2 for the default simulation parameters
employed.

4.1 Effects of solid incompressibility

To investigate the influence of an incompressible solid onto
the surface deformation, a computational test was carried out
on six specimens with varying Poisson’s ratio ν (Fig. 8). The
specimens have been loaded with increasing pressures p act-
ing normal to the top surface ∂Sl

0 of each block, such that
the viewer observes decreasing displacement of the top sur-
faces as well decreasing stress variations from low to high
Poisson’s ratio ν = 0.0→ 0.499 (Fig. 8a,b). The degree of
variation in the asperity stress is observed to heavily depend
on ν.

Two important observations can be made regarding these
results. First, for incompressible hyperelastic materials, the
effect of the pressure on asperity deformation is negligible.
Consequently, the lubrication phase, which is governed pri-
marily by the surface microstructure, will not be influenced
significantly by the pressure within the micromechanical
testing procedure. However, on the macroscale the pressure

may induce surfacial stretches H
S
, in particular near free

edges, which will be observed to have a significant effect
on the lubrication response (Sect. 4.3). Similarly, for com-
pressible materials, it has been verified that although large
sample compressions are observed, the statistical character-
istics of the surface do not vary significantly in the range of
pressures investigated (not shown). On the other hand, such
large compressions are important because these change the
gap height on the macroscopic interface and consequently

Fig. 9 Isotropic and anisotropic surface. Amplitudes are scaled by a
factor of five: (a) isotropic (b) anisotropic
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Fig. 10 Influence of decreasing
gap height h on global flux
orientation and magnitude on
(a, b, c) isotropic surface and
(d, e, f) anisotropic surface.
For subfigure (c,f) v = 0 mm/s
and g = 0.1 MPa/mm were
applied. All other results have
been computed using
v = 2356 mm/s and
g = 0 MPa/mm

(a) (b)

(c) (d)

(f)(e)

123



Comput Mech (2012) 49:749–767 761

Fig. 11 Computational results of local flux, pressure distribution
(q, q p, qc, p) and total flux (q, q p, qc) on (a, b) isotropic surface and
(c, d) anisotropic surface, q.v. Fig. 9. Both input parameters v and g
are applied to (a, b) at an angle of β = 22.5◦ and to (c, d) at an
angle of β = 45◦ with respect to x-axis. The surface color shows the
local pressure distribution p in the lubricant flow. High pressures are

coloured white and low pressures are coloured black. Arrows repre-
sent the magnitude and orientation of input parameters v, g and output
variables q, q and its components. They are clearly allocated by the
legend. The input and macroscopic output quantities, and hence their
corresponding arrows are centered. Local fluxes are centered on their
corresponding elements

alter the flow characteristics in the macroscopic elastohydro-
dynamic lubrication problem, cf. Szeri [51, p. 410]. A fully
coupled micro–macro simulation strategy where the coupling
between microscopic and macroscopic mechanisms can be
clearly observed is planned for a future work.

4.2 Anisotropic/isotropic surfaces

Computing the global flux q can deliver information on
whether macroscopically isotropic or anisotropic flow con-
ditions are present and hence whether the surface is deemed
isotropic or anisotropic for the purposes of lubrication char-
acterization. Isotropy exists when the input parameter vβ or
gβ , only one of them being active for arbitrary angles β

(angle between the x-axis and flow direction, compare with
Fig. 11), cause a flux qβ such that
(

vβ or gβ

) ‖ q, and ‖q‖ = const ∀ β

⇒ Sl
0 isotropic (4.1)

holds. Anisotropy is characterized by

∃ β
(

vβ or gβ

)

∦ q, or ‖q‖ �= const ∀ β

⇒ Sl
0 anisotropic

(4.2)

Therefore parameter studies with changing orientation of
vβ and gβ have been carried out on two different surfaces
(Fig. 9), where β ∈ 0◦–360◦ was incremented in steps of
7.5◦.

Figure 10 illustrates the macroscopic flux response q for
these studies. Here figures (a,b,d,e) in the first and second col-
umn are subject to macroscopic velocity vβ and figures (c,f)
in the third column are subject to the macroscopic pressure
gradient gβ . The isotropic surface (Fig. 9a) was applied to
figures (a,b,c) in the first row whereas figures (d,e,f) in the
second row are subject to the anisotropic surface (Fig. 9b).
Each cross in the plots relates the flux q and its components
to an input parameter v or g. For the start angle of β = 0◦
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(a) (b)

Fig. 12 Mechanical phase undergoing (a) a stretch into hS
11 direction and (b) a shear into hS

12,21 direction and being subject to periodic boundary
conditions

the computed fluxes are in phase with v (Fig. 10a, b, d, e),
but phase-shifted by 180◦ for g (Fig. 10c, f). Moving inside
a plot in counterclockwise direction with increments of 7.5◦
one observes a circular flux response q and uniformly distrib-
uted crosses in Fig. 10a–c meaning that Eq. (4.1) is fulfilled,
hence the surface is isotropic. Note that for isotropy the flux
components q p and qc display the same characteristics as
q. Reviewing Fig. 10d–f an anisotropic response is observed
via Eq. (4.2). Here, the flux q has an elliptic form. Among
its components, q p is directed along the vertical direction
(but with varying magnitude) whereas qc remains isotropic
(circular). For Fig. 10f the Couette term qc vanishes such
that q = q p causes anisotropy. Reducing the gap height h
restricts the flow and hence leads to a decrease in the flux
magnitude for both isotropic and anisotropic surfaces, com-
pare Fig. 10a, b, d, e. Furthermore, an increase of ellipticity
and hence anisotropy for an anisotropic geometry can be
observed comparing Fig. 10d, e.

A discussion of the macroscopic flux components q p and
qc requires monitoring their microscopic counterparts q p

and qc. Figures 11a, c illustrate that the orientation of the

Couette flow on both scales (i.e. qc and qc) remain parallel
to the input velocity v at all times. Hence the Couette term
always causes an isotropic flux, which is clear from its con-
stitutive form. The local flux qc changes proportionally to the
local gap height h (Eq. 4.3) which can be identified in Eq.
(2.2), whereas its macroscopic equivalent remains constant
for all angles β.

‖qc‖ ∝ h , if v = const (4.3)

Due to the fact that v = 0 mm/s for plots in Fig. 11b, d the
Couette term vanishes (qc = qc = 0) such that

q = q p and qc = 0 , for g �= 0 and v = 0 and

q = q p and qc = 0 , for g �= 0 and v = 0, (4.4)

hold. Flow deflection is caused by the Poiseuille terms q p

and q p depending on the pressure gradient g as well the gap
height h and thus the surface microstructure. Arrows repre-
senting the Poiseuille fluxes q p and q p also help visualize
pressure gradients. They always point from high pressure
areas towards low pressure areas (Fig. 11).
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Fig. 13 Isotropic response of
an isotropic surface undergoing
uniform stretch into hS

11 and hS
22

direction: (a, b) v = 2356 mm/s,
g = 0 MPa/mm and
(c) g = 0.1 MPa/mm,
v = 0 mm/s

(a) (b)

(c)

4.3 Deformation gradient

The influence of the surfacial deformation gradient is inves-
tigated in this section. In matrix notation,

F
S = 1+ H

S
, [H S] =

[

hS
11 hS

12
hS

21 hS
22

]

(4.5)

where the entries on the main diagonal hS
ii stretch a surface,

and hence the remaining entries hS
i j , i �= j shear a surface,

cf. Fig. 12.
For hS

11 = hS
22 = (−0.2→ 0.2) isotropy is preserved

for velocity and pressure gradient driven computations (see
Fig. 13). As a consequence of surfacial stretch roughness is
flattened, and hence flux increases.

Solely varying the displacement component hS
11 =

(−0.2→ 0.2) gives an anisotropic response. It can be
observed for hS

11 = −0.2 in Fig. 14a that q p has an elliptical
shape. Its principal direction points towards 0◦ and causes

an elliptical flux q with principal direction pointing towards
90◦. Applying a positive displacement gradient hS

11 = 0.2
(Fig. 14b) orientation of both fluxes (q p, q) turns about 90◦.
Additionally, an increase of flux from negative to positive
displacement gradients can be seen due to an increasing sur-
face.

For a pressure gradient g = 0.1 MPa/mm driven com-
putation (Fig. 14c) the flux q keeps its principal directions
towards 0◦ (hS

11 = 0.2) and hence it follows q p according to
our observations in Sect. 4.2.

Finally, the effect of the shearing components are evalu-
ated. This effect is not as dominant compared to stretching.
Therefore, the values have been chosen larger, but remaining
in a realistic deformation range, to show its influence on the
anisotropic behaviour. Varying hS

12 = 0.3 → 0.9 causes an
increasing anisotropic flux response (Fig. 15a–c). Further on
the Couette flux qc principal direction moves from ≈ 30◦
towards ≈ −30◦ and hence the flux q is shifted by 90◦.
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Fig. 14 Anisotropic response
of an isotropic surface stretched
along the 0◦ axis: (a, b)
v = 2356 mm/s, g = 0 MPa/mm
and (c) g = 0.1 MPa/mm,
v = 0 mm/s. Only the
Poiseuille term q p contributes
to the total flux q and hence they
coincide

(a) (b)

(c)

Applying hS
12 = hS

21 = 0.1→ 0.7 causes a stronger surface
shrinking and also a strong elliptical response (Fig. 15d–
f). The principal direction of the flux q points towards 45◦.
Pressure gradient g induced fluxes are summarized in Fig.
16. Here, another data representation was chosen to elucidate
shearing influence. Again a shrinking surface can be observed
for solely varied parameters hS

i, j , i, j ∈ 1, 2∧ i �= j as well
a moderate anisotropy. A stronger response is observed for
shearing hS

12 = hS
21 at the same time.

5 Conclusion

Solving a macroscale lubrication problem making use of
Reynolds equation while taking into account surfacial
microscopic roughness that is several orders of length
scales smaller demands a very fine mesh resolution and
hence prohibitive computational times. In order to predict

the macroscopic response of microscopically rough lubri-
cated interfaces in the large deformation regime within
feasible computational times, a three-dimensional compu-
tational homogenization approach was presented, closely
following homogenization techniques for rigid and infin-
itesimally deforming surfaces. The approach is based on
proposing a lubrication formulation governed by the clas-
sical Reynolds equation on the microscale, in agreement
with earlier approaches, but extracting the macroscopic flux
within a micromechanical testing procedure. While the prob-
lem remains coupled on the macroscale, the macroscopic
flow control parameters are projected onto the microme-
chanical test sample as boundary conditions such that a two-
phase micromechanical test was induced. Herein, an effec-
tive numerical treatment of a mechanical phase followed by
a lubrication phase is achieved. This two-phase split is exact
to within a separation of scales assumption, as in multiphys-
ics homogenization strategies for heterogeneous media. The
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Fig. 15 Anisotropic flow
behavior for surfacial shearing
with v = 2356 mm/s,
g = 0 MPa/mm

(a) (b)

(d)(c)

(e) (f)

numerical results presented show that within the interface
the fluid flow is strongly influenced by the surface geometry
which was found to be significantly altered by the surfacial
deformation. The surfacial deformation, in turn, is signifi-
cantly influenced on the macroscale by the gap height and

the presssure. Qualitative observations could be made for
these parameters and have been found to be coherent with
practical experience.

In this paper, a two-phase decoupled framework was pro-
posed such that sample size independence is enforced explic-
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Fig. 16 Anisotropic flow behaviour for surfacial shearing with v = 0 mm/s, g = 0.1 MPa/mm. Quantities denoted by qa refer to the left axis and
qb refer to the right axis, respectively

itly. The sample size effect is the subject of investigation in
[11]. Here, the comparison of a fully coupled framework with
the decoupled setting reveals a significant deviation when
the length scale separation assumption is violated. The con-
sistent incorporation of the coupled framework into a mac-
roscopic lubrication formulation that can display such size
effects remains as a future investigation.

A validation with experimental results should be con-
ducted but would be premature due to several omitted
effects which should be explored for the finite deformation
regime. Throughout the interface effects like temperature
dependence, asperity deformation induced by surface shear-
ing and hence the lubricant tangential friction are present.
Furthermore, the Reynolds equation will be violated for
increasing amplitudes or little gap heights such that Stokes
equation needs to be solved. The contact of the adjacent
surfaces would complete the present investigations on sim-
ple surface geometries, but real roughness profiles also need
to be investigated. Due to the random characteristics of real
surfaces, sample size effects would play a role. Random-
ness effects can be alleviated by complementing surface
averaging with ensemble averaging combined with sample
enlargement, albeit at the expense of high computational cost.
However it is expected that optimal computational efficiency
will be retained due to the decoupled framework. Finally, a
key future investigation is the realization of the coupling to
the macroscale by means of numerical tangent computations
enabling the use of implicit solution schemes and hence a
reduction of computational cost.
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