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Pulse-Doppler radar has been successfully applied to surveillance and tracking of both moving and
stationary targets. For efficient processing of radar returns, delay–Doppler plane is discretized and FFT
techniques are employed to compute matched filter output on this discrete grid. However, for targets
whose delay–Doppler values do not coincide with the computation grid, the detection performance
degrades considerably. Especially for detecting strong and closely spaced targets this causes miss
detections and false alarms. This phenomena is known as the off-grid problem. Although compressive
sensing based techniques provide sparse and high resolution results at sub-Nyquist sampling rates,
straightforward application of these techniques is significantly more sensitive to the off-grid problem.
Here a novel parameter perturbation based sparse reconstruction technique is proposed for robust delay–
Doppler radar processing even under the off-grid case. Although the perturbation idea is general and can
be implemented in association with other greedy techniques, presently it is used within an orthogonal
matching pursuit (OMP) framework. In the proposed technique, the selected dictionary parameters are
perturbed towards directions to decrease the orthogonal residual norm. The obtained results show that
accurate and sparse reconstructions can be obtained for off-grid multi target cases. A new performance
metric based on Kullback–Leibler Divergence (KLD) is proposed to better characterize the error between
actual and reconstructed parameter spaces. Increased performance with lower reconstruction errors are
obtained for all the tested performance criteria for the proposed technique compared to conventional
OMP and �1 minimization techniques.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

In many engineering and science applications the objective is
to reconstruct an image or a map of the underlying sensed dis-
tribution from available set of measurements. Specifically in radar
imaging a spatial map of reflectivity is reconstructed from mea-
surements of scattered electric field. State of the art radar systems
operate with large bandwidths or high number of channels which
generate very large data sets for processing. On the other hand
in most of the radar applications the reflectivity scene consists of
small number of strong targets. In both cases, significant amount
of data is processed mainly to estimate delay and Doppler of rel-
atively few targets. This point raises the applicability of sparse
signal processing techniques for radar signal processing.

The emerging field of Compressive Sensing (CS) [1–3] is a re-
cently developed mathematical framework in which the primary
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interest is to invert or reconstruct a signal x from noisy linear mea-
surements y in the form y = Φx + n. The focus of CS is to solve
this linear problem in the underdetermined case where number
of measurements is less than the number of unknowns which is
very important in decreasing the required amount of data to toler-
able levels in radar applications. For a signal x of dimension N that
has a K -sparse representation in a transform domain Ψ , as x = Ψ s
and ‖s‖0 = K , CS techniques enable reliable reconstruction of the
sparse signal s, hence x from O (K log N) measurements by solving
a convex �1 optimization problem of the following form:

min‖s‖1, subject to ‖y − ΦΨ s‖2 < ε. (1)

CS theory provides strong results which guarantee stable so-
lution of the reconstructed sparse signal for a forward matrix
A = ΦΨ if it satisfies the restricted isometry property (RIP) [4–6].
It has also been shown that random measurement matrices Φ with
i.i.d. entries guarantees the RIP of A for known basis [7].

Due to these appealing properties of CS and its important ad-
vantages for radar, recently CS has received considerable attention
in the radar research community. In one of the earliest papers on
CS applied to radar, the possibility of sub-Nyquist sampling and
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elimination of match filtering has been discussed [8]. In [9,10], ex-
perimental radar imaging results for step frequency and impulse
ground penetrating radars have been provided and later extended
in [11,12]. To exploit sparsity in the time-frequency domain, high
resolution CS-radar has been proposed in [13]. CS based SAR im-
age reconstruction techniques have been proposed in [14]. A CS
based MIMO radar has been proposed in [15] for obtaining simul-
taneous angle and Doppler information. In [16], CS is investigated
in distributed radar sensor networks. Further information on the
CS based radar applications can be found in [17] and [18].

All the above mentioned sparse reconstruction techniques
mainly discretize a continuous parameter space such as range,
Doppler or angle and generate a number of grid points where
the targets are assumed to be positioned on the nodes of the
grid. Under this assumption, the sparsity requirement of CS the-
ory is satisfied and the CS techniques provide satisfactory results.
Unfortunately, no matter how fine the grid is, the targets are
typically located in off-grid positions. It has been discussed in lit-
erature that the off-grid targets creates an important degradation
in CS reconstruction performance [19–24]. Off-grid problem is not
only observed in CS based radar but many other application areas
such as target localization [25], beamforming [26] or shape de-
tection [27], where the sparsity of the signal is in a continuous
parameter space and the sparsity basis Ψ is constructed through
discretization or griding of this parameter space.

To reduce the sensitivity of the reconstruction to the off-grid
targets, denser grids can be used. However, decreasing grid dimen-
sions causes significant increase in the coherence of the compres-
sive sensing dictionary, beyond a certain limit which causes loss
of the RIP [7]. To avoid this problem of increased coherence be-
tween dictionary columns, in [28], the dictionary is extended to
several orthogonal dictionaries and not in a single dictionary, but
in a set of them by using a tree structure, assuming that the given
signal is sparse in at least one of them. However, this strategy
depend on several set of fixed dictionaries generated through dis-
crete parametrization and the main goal is to select the best set
of fixed atoms from all dictionaries rather than focusing on basis
mismatch. In the works [21–23] the effect of basis mismatch prob-
lem on the reconstruction performance of CS is analyzed and the
resultant performance degradation levels and analytical �2 norm
error bounds are given. However these works have not offered
a systematic approach for sparse reconstruction under parametric
perturbations.

There are several approaches in literature for the basis mis-
match problem. In Continuous Basis Pursuit approach [29], recov-
ery of sparse translation invariant signals is performed and per-
turbations are assumed to be continuously shifted features of the
functions on which sparse solution is searched for. A dictionary
that includes auxiliary interpolation functions that approximates
translates of features via adjustment of their parameters is gener-
ated and �1 based minimization is used on primary coefficients.
In [24], an algorithm based on the atomic norm minimization is
proposed and the solution is found with a semi-definite program-
ming. In [30], �1 minimization based algorithms are proposed for
linear structured perturbations on the sensing matrix where per-
turbation vectors are modeled as an unknown constant multiplied
by a known vector which specifically defines the direction which
is typically unknown in practice. Works based on total least square
(TLS) as [31,32] assume that general perturbations appear both on
the dictionary and measurements. In [31] for solving TLS prob-
lem an optimization over all signal x, perturbation matrix P and
error vector spaces is performed. To reduce complexity, subopti-
mal optimization techniques have also been proposed. In [32] a
constrained total least squares technique is introduced assuming
dictionary mismatches are constrained by errors of grid points and
a joint estimate of grid point errors and signal support is found by
general TLS techniques. In [33], non-parametric perturbations in a
bounded perturbation space is considered and some reconstruction
guarantees are provided.

This paper mainly focuses on reconstruction of sparse param-
eter scenes and proposes a novel parameter perturbation based
adaptive sparse reconstruction technique to provide robust recon-
structions in the off-grid case. The proposed technique is an itera-
tive algorithm that works with a selected set of dictionary vectors
that can be obtained via one of sparse greedy techniques such as
matching pursuit (MP) [34], orthogonal matching pursuit (OMP)
[35], iterative hard/soft thresholding (IHT) [36] or the compressive
sampling matching pursuit (CoSaMP) [37]. The parameters of the
selected dictionary atoms are iteratively adapted within their grids
towards directions that decreases the residual norm. The proposed
technique presently is used within the general OMP framework
hence named as parameter perturbed OMP (PPOMP). As demon-
strated in the reconstruction of sparse delay–Doppler radar scenes,
the proposed method is successful in recovering the targets with
arbitrary positions. Compared to conventional CS reconstruction
techniques like OMP or �1 minimization, proposed PPOMP tech-
nique has achieved lower reconstruction errors for a general delay–
Doppler scene in all the conducted performance tests. The general
idea of proposed parameter perturbation can also be applied to
other areas where discrete parameters are selected from continu-
ous parameter spaces such as frequency or angle of arrival estima-
tion problems.

The organization of the paper is as follows. Section 2 outlines
the delay and Doppler data model and formulates the sparse re-
construction problem in CS framework. The proposed parameter
perturbation technique and the PPOMP algorithm is detailed in
Section 3. Simulation results on variety of examples with perfor-
mance comparisons are given in Section 4. Section 5 covers con-
clusions, and direction of possible future work.

2. Delay–Doppler radar imaging: data model and formulation

Coherent radar systems transmit a sequence of pulses with
known phases and processes the received echoes to perform clut-
ter suppression and detection at each angle of interest. Excellent
references on the operation of radar receivers are available in
the literature [38,39]. In this paper we consider a classical pulse
Doppler radar with a co-located receiver and a transmitter. Al-
though it is not investigated in here, MIMO radar systems can
also be considered within CS framework [15,40]. Let radar trans-
mits s(t), a coherent train of Np pulses:

s(t) =
N p−1∑
i=0

p(t − iTPRI)e j2π fct, (2)

where, p(t) is the individual pulse waveform, TPRI is the uniform
pulse repetition interval and fc is the radar carrier frequency. As-
suming K dominant targets with delays of τTm and Doppler shifts
of νTm , 1 � m � K , the received signal following the baseband
down-conversion can be expressed as:

y(t) =
K∑

m=1

αms(t − τTm )e j2πνTm t + n(t), (3)

where αm is the complex reflectivity of the individual targets and
n(t) is the measurement noise. The above relation between the
received signal and target parameters are expressed in terms of
the measurable quantities of delay and Doppler. These parameters
are related to the range and radial velocity of the mth target as:

τTm = 2Rm
, νTm = 2 fc

vm, (4)

c c
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where Rm is the range and vm is the radial velocity of the mth
target. At this point, the common practice is to employ matched
filtering to individual uniformly spaced samples of pulse returns
and use FFT across the delay aligned matched filter outputs. This
way the returns are compressed in time and frequency sequen-
tially [39]. In compressive sensing (CS) formulation, a sampled
version of the measurement relation given in (3) is adapted to
a linear matrix–vector relationship in delay–Doppler domain. For
this purpose 2 dimensional delay–Doppler domain which lies in
the product space [τo, τ f ]×[νo, ν f ] must be discretized where ini-
tial and final values of τ0 and τ f are determined by the range
and ν0 and ν f are determined by the velocity of the potential
targets. Discretization generates a finite set of N target points
B = {θ1, θ2, . . . , θ N}, where each θ j representing a grid node of
(τ j, ν j). For each grid node θ j the data model can be calculated
from (3) as:

ψ j = s(t − τ j) ◦ e j2πν jt , (5)

where t ∈ �Nt×1 is the vector holding the time samples and op-
erator “◦” corresponds to Hadamard product. Nt is the number of
time samples.

Repeating (5) at each (τ j, ν j) generates the dictionary Ψ where
the jth column of Ψ is ψ j . The size of the dictionary Ψ becomes
Nt × N . If the true target parameters (τTm , νTm ) falls exactly on
the grid points (τ j, ν j) then a linear system of equations can be
formed as:

ys = Ψ x + n, (6)

where ys is the sampled measurement vector and x is a reflectiv-
ity vector defining the delay–Doppler space, i.e., if there is a target
at θ j , the value of the jth element of x should be α j , otherwise
zero. If there are K targets in the scene then the vector x should
be a K sparse vector, that is ‖x‖0 = K . Since actual target positions
deviate from the grid centers, (6) is an approximate relationship.
Nevertheless, CS framework uses this linear relationship hoping
that the noise term n compensates for any errors due to the dis-
cretization of the parameter space, modeling errors and the actual
noise of the measurements. In the CS formulation, a very small
fraction of the samples obtained at the Nyquist rate carry enough
information to represent a sparse signal. Thus a sub-Nyquist sam-
pling can be done and a random subset of M measurements at
random times ts can be measured in CS. In general these new mea-
surements can be represented as b = Φ ys where Φ is an M × Nt ,
M < Nt measurement matrix constructed by randomly selecting M
rows of an Nt × Nt identity matrix. The general linear relation is
then:

b = ΦΨ x + n = Ax + n. (7)

The reflectivity vector x estimated by the solution to the fol-
lowing constrained �1 minimization problem,

min
x

‖x‖1 s.t. ‖b − Ax‖2 � ε. (8)

To reduce the computational load, suboptimal greedy algo-
rithms such as MP [34], OMP [35], CoSaMP [37] or IHT [36] are
also used in many applications. In the following section, the pro-
posed parameter perturbation technique is introduced within the
OMP framework.

3. Parameter perturbation for delay–Doppler reconstruction

Sparse representation of a target scene in delay–Doppler do-
main requires identification of grid nodes at which the targets are
present. This is equivalent to the identification of the support set
of the target scene among the columns of A defined in (7). OMP
method starts with an empty support set and the measured radar
signal as the initial residual. Iteratively, the most correlated col-
umn of A with the current residual is added to the support list,
increasing the span of the current support at each iteration. Then,
projection of the measurements onto the current support is com-
puted to obtain an estimate at that iteration. This procedure is
repeated until the residual norm is less than a given tolerance level
of ε or a predetermined sparsity level is reached. Note that at the
kth iteration of the OMP algorithm, the measured signal can be
represented in a k-sparse manner as a linear combination of the k
support vectors as:

b = b⊥ +
k∑

i=1

αia(θ i), (9)

where b⊥ is the orthogonal residual of b within the span of the
k chosen support vectors a(θ i), i = 1, . . . ,k and a(θ i) is a column
of dictionary A with grid parameters θ i . Hence at each iteration of
OMP, the vectors in the support set, their coefficients αi , and the
orthogonal residual, b⊥ , are obtained.

In general, a target with parameters (τTi , νTi ) may not be lo-
cated at a grid node but is positioned within a grid area with an
unknown perturbation from the closest grid node as:

τTi = τi + δτi and νTi = νi + δνi, (10)

where (τi, νi) are the nearest grid node parameters, |δτi | < 	τ /2
and |δνi | < 	ν/2 with 	τ and 	ν defining the grid dimensions in
delay and Doppler, respectively. If there were no noise in (7), the
measurement vector b would be in the span of a(τTi , νTi ). Our goal
is to perturb the selected grid parameters, hence the correspond-
ing column vectors in A, so that a better fit to the measurements
can be accomplished. This goal can be formulated as the following
optimization problem:

arg min
αi ,δτi ,δνi

∥∥∥∥b −
k∑

i=1

αia(τi + δτi, νi + δνi)

∥∥∥∥
2

s.t. |δτi| < 	τ/2, |δνi| < 	ν/2. (11)

Solution of the problem in (11) provides the perturbation pa-
rameters δθ i = (δτi, δνi) and the representation coefficients αi for
the selected set of k column vectors.

Assume that there exist a solver for the problem, namely S(·),
which takes the measurement vector b and the initial grid points,
then returns the solution of the problem in (11). In an abstract
sense, this solver can be written as:(
α, [δθ1 . . . δθk]

) = S
(
b, [θ1 . . . θk]

)
. (12)

Note that solver S(·) is not dependent on the OMP technique it-
self. Therefore, it is possible to integrate S(·) into any algorithm
that provides a suitable estimation of the grid points. In this study
OMP is preferred due to its simplicity. When such a solver is uti-
lized within the OMP iterations, an “ideal” parameter perturbed
OMP (I-PPOMP) procedure, which is provided in Table 1, can be
implemented.

Since the optimization problem defined in (11) is non-convex,
it may not be possible to obtain an ideal solver as specified in
(12). Hence we propose to use a gradient descent optimization of
the cost function in (11). Therefore starting from the grid nodes,
selected parameters will be gradually perturbed until a conver-
gence criteria is met. To simplify the iterations further αi ’s and
δθ i = (δτi, δνi)’s will be sequentially updated in the following way:

First initialize θ i,1 = θ i = (τi, νi), i = 1, . . . ,k, to grid centers
and obtain an initial representation coefficient vector α1 as:
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Table 1
Ideal Parameter Perturbed-OMP (I-PPOMP) Algorithm.

Inputs: (A,b, ε)

Initialization: b⊥,0 = b, T 0 = {}, e = ‖b⊥,0‖2, k = 1

Keep iterating until e < ε

j∗ = arg max1� j�N |a(θ j)
H b⊥,k−1|

T k = T k−1
⋃{θ j∗ }

(α, [δθ1 . . . δθk]) = S(b, T k)

b⊥,k = b − ∑k
i=1 αia(θ i + δθ i)

e = ‖b⊥,k‖2

k = k + 1

Output: (α, [δθ1 . . . δθk], T k)

α1 = arg min
α

∥∥∥∥∥b −
k∑

i=1

αia(θ i,1)

∥∥∥∥∥
2

. (13)

Starting from l = 1, until convergence, perform updates:

θ i,l+1 = θ i,l + δθ i,l,

where l represents the perturbation index, i represents the target
index and

[δθ1,l . . . δθk,l]

= arg min
δτi :|δτi |�	τ /2
δνi :|δνi |�	ν/2

∥∥∥∥b −
k∑

i=1

αi,la(τi,l + δτi, νi,l + δνi)

∥∥∥∥
2
, (14a)

αl = arg min
α

∥∥∥∥b −
k∑

i=1

αia(θ i,l)

∥∥∥∥
2
. (14b)

The problem defined in (14b) is a standard least squares formu-
lation, however obtaining solution to the constrained nonlinear op-
timization problem in (14a) is not practical for radar applications.
Linearization of the cost function in (14a) around θ i,l = (τi,l, νi,l)

significantly reduces the complexity of the optimization. For this
purpose, a(τi,l + δτi, νi,l + δνi) can be approximated by using the
first order Taylor series as:

a(τi,l + δτi, νi,l + δνi) ≈ a(τi,l, νi,l) + ∂a

∂τi,l
δτi + ∂a

∂νi,l
δνi . (15)

By using (15), and ignoring the constraints on the perturbations,
problem in (14a) can be re-written as:

[δθ1,l . . . δθk,l] = arg min
u

‖rl − Blu‖2, (16)

where rl = b − ∑k
i=1 αi,la(θ i,l) is the orthogonal residual from

the least squares in (14b), Bl ∈ CM×2k is the matrix holding the
weighted partial derivatives at the linearization point and is de-
fined as:

Bl =
[
	τα1,l

∂a

∂τ1,l
, . . .	ταk,l

∂a

∂τk,l
,

	να1,l
∂a

∂ν1,l
, . . .	ναk,l

∂a

∂νk,l

]
, (17)

and u = [δτ1, . . . δτk, δν1, . . . δνk]T ∈ R2k×1 is the dummy vector
variable containing updates in the lth iteration on the correspond-
ing parameters. Each partial derivative in Bl is scaled by its corre-
sponding grid size so that corresponding updates become unitless.
Notice that Bl is different in each iteration since the linearization
points θ i,l are updated. A new linearization is made at each up-
dated parameter point.

Due to errors in linearization, direct solution of (16) will not
produce the desired parameter perturbations. Instead we adapt a
Table 2
Proposed Solver Ŝ(·).

Inputs: ({θ1, θ2, . . . , θk},b, μ)

Initialize: l = 0, θ i,0 = θ i for 1 � i � k

Until stopping condition met,
Al = [a(θ1,l)a(θ2,l) . . .a(θk,l)],
αl = A†

l b,
rl = b − Alαl ,
Bl = [	τ α1,l

∂a
∂τ1,l

, . . .	τ αk,l
∂a

∂τk,l
,	να1,l

∂a
∂ν1,l

, . . .	ναk,l
∂a

∂νk,l
],

gl = Re{B H
l rl},

For all i, 1 � i � k,
τi,l+1 = τi,l + 	τ μi,l gi,l ,
νi,l+1 = νi,l + 	νμi+k,l gi+k,l ,
Check if θ i,l+1 = (τi,l+1, νi,l+1) is within grid
δθ i = θ i,l+1 − θ i,0,

l = l + 1,

Output: (αl ,{δθ1, δθ2, . . . , δθk})

gradient descent type algorithm to solve (16) and take a small
step in the direction that decreases the norm the most, i.e., di-
rection of negative gradient. Then the new parameter point will
be used in the next iteration and so on until the convergence.
Let J (u) = ‖rl − Blu‖2

2 and negative of the gradient of J will be
−∇u J (u) = 2B H

l (rl − Blu). Since we have intention of taking a
small step from the linearization point, we need the gradient of
J (u) at u = 0. Therefore, −∇u J (u)|u=0 = 2B H

l rl . Remember that
both Bl and rl are complex valued whereas perturbations need to
be real. When solution is forced to be real, step direction is found
to be as Re{−∇u J (u)|u=0} = Re{2B H

l rl}. With this important modi-
fication, alternating gradient descend solution of the main problem
in (11) can be written as:

αl = [
a(θ1,l)a(θ2,l) . . .a(θk,l)

]†
b, (18a)

θ i,l+1 = θ i,l + μi,lRe
{

B H
l rl

}
, (18b)

where μi,l is the step size. To keep the updated points within the
grid, the algorithm will also check that the total perturbations will
not exceed the grid size. Eq. (18) defines the main update itera-
tions of the proposed gradient based perturbation solver (GS)–̂S(·)
for (11) which is summarized in Table 2. Notice that, when S(·)
in Table 1 is replaced with the Ŝ(·), proposed PPOMP algorithm is
obtained.

For the gradient based parameter perturbation solver in Table 2,
one could make several selections for the stopping criteria and the
step size μ. It is possible to monitor the residual, rl , during the
iterations, and terminate the solver in the lth iteration if the resid-
ual norm ‖rl‖2, or amount of decrease ‖rl‖2 − ‖rl−1‖2, or rate of
decrease ‖rl‖2/‖rl−1‖2 is below a certain threshold. It is also pos-
sible to observe the parameters θ i,l and terminate the iterations
when |θ i,l − θ i,l−1| is below a certain threshold. Also iterations can
be terminated, when norm of the gradient ‖B H

l rl‖2 is smaller than
a given threshold value or when a maximum iteration count is
reached. Several metrics can also be used in conjunction with the
stopping criteria. In the presented results, the iterations were ter-
minated when the rate of decrease of the residual is less than a
certain threshold.

For the selection of step size μ there are several possibilities. It
is possible to use a fixed step size μ, that is μi,l = μ. If μ is small
enough, after sufficient number of iterations convergence can be
achieved. A more efficient approach is to use step sizes with con-
stant rate of decrease, that is μi,l = γμi,l−1 where γ is fixed and
0 < γ < 1. If the gradient of a function is Lipschitz continuous with
a constant L, gradient descent steps converges to a local optima by
using constant step size that satisfies μ < 2/L [41,42]. In addition,
line search techniques can also be used to select locally optimal
step sizes that guarantees convergence with at least linear conver-
gence rates [41]. As shown in Appendix A, normalized form of the
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nonlinear objective function in (14a) is Lipschitz continuous with
L = 10π2, therefore gradient descent is guaranteed to converge to
a local minima.

In the presented results, step size is selected as μi,l = zγi,l ,
where z is a pre-selected value of z = 0.01. For the ith point, γi,l
is the ratio of the norm of the gradient in the lth iteration to the
maximum observed norm of the gradient through the perturba-
tion iterations. As a result, γi,l � 1 and decreases as the norm of
the gradient decreases. With this selection, smaller steps are taken
as the gradient decreases when approaching a local minima. No-
tice that μi,l � 0.01 < 2/L ≈ 0.02, thus our selection of the step
size is guaranteed to converge to a local minima.

The additional computational complexity of PPOMP algorithm
compared to OMP is the calculation of the gradient directions,
and this requires a matrix vector multiplication which can be
performed significantly faster than solving constrained nonlinear
problem in (14a). For the pulse-Doppler radar application, the re-
quired gradient computations simplify further as:

∂a

∂τ
= e j2πνt ◦ d

dτ
s(t − τ ) = −e j2πνt ◦ ds(t)

dt

∣∣∣∣
t=t−τ

,

∂a

∂ν
= j2πt ◦ a(t). (19)

Note that for pre-computed and stored ds(t)/dt values, calculation
of these partial derivatives require only component-wise multipli-
cation of vectors that has M multiplications each. Hence Bl can
be computed efficiently and the total computational complexity of
PPOMP will be in the same order as OMP algorithm due to mainly
solution of least squares in both techniques.

4. Simulation results

In this section, performance of the proposed PPOMP technique
is analyzed for sparse reconstruction of delay and Doppler radar
scenes in the case of targets that can be arbitrarily located within
the grid cells. In the simulations, a classical single receiver-single
transmitter pulsed-Doppler radar transmitting a linear chirp sig-
nal p(t) with bandwidth of B = 1.5 MHz and pulse width of
T p = 20 μs is considered. In the coherent processing, a pulse
train of Np = 8 pulses are used with TPRI = 50 μs. The delay and
Doppler space is chosen as the maximum unambiguous ranges of
[T p, TPRI − T p] in delay and [−1/(2TPRI),1/(2TPRI)] in Doppler. To
create the forward linear model the space is discretized to grids
with Rayleigh resolution spacing in both parameter axis which is
	ν = 1/(Np TPRI) in Doppler and 	τ = 1/(2B) in delay. For the
simulated case this discretization creates a total of N = 279 grid
nodes. Sparse target scene is modeled as K = 9 point reflectors
that are generated with delay and Doppler parameters randomly
selected from the defined continuous delay–Doppler space where
none of them exactly coincides with the chosen grid nodes. The
complex reflectivity of the parameters are selected randomly with
magnitudes selected from a normal distribution of N(5,1) and
phases selected uniformly from [0,2π ]. For M = 2N/3 = 186 ran-
domly spaced time samples in [0, Np TPRI], the received signal is
computed using (3). If the samples are taken at the Nyquist rate,
total number of samples is (Np TPRI)(2B) = 1200. Therefore M cor-
responds to only 15% of the Nyquist rate samples. Measurement
noise corresponding to an SNR of 27.3 dB is added to the com-
puted time samples. Here SNR is defined as 20 log10(‖b0‖2/‖σn‖2)

where σn is the noise component in the measurements.
The actual target reflectivity and its reconstruction by the pro-

posed PPOMP technique are shown in Fig. 1(a) and (b), respec-
tively. It can be seen that even for off-grid targets, PPOMP could
provide accurate reconstruction of the sparse target scene. Note
that PPOMP result is obtained in the absence of prior informa-
tion about the target sparsity level. OMP technique using the same
Fig. 1. (a) True delay–Doppler space reflectivity with K = 9 off the grid targets,
(b) PPOMP reconstruction result, (c) (OMP) reconstruction result.



28 O. Teke et al. / Digital Signal Processing 27 (2014) 23–32
measurements and the same termination criteria with PPOMP gen-
erated the result shown in Fig. 1(c). Due to presence of off grid
targets, OMP generates large number of significant peaks resulting
in excessively many false target detections even at high level of
detection threshold.

Fig. 2 shows the same simulation result as a 2D image with
underlying grids and their centers. It can be seen that PPOMP
could find all the target parameters very close to their actual val-
ues. Fig. 3(a) shows the gradient based steps taken for one of
the targets starting from the grid center. It can be seen that with
decreasing step sizes the algorithm converges to the actual tar-
get parameters. Similarly, Fig. 3(b) shows gradient steps taken for
two closely spaced targets. Note that the separation of these two
targets is closer than a grid size corresponding to the classical
Rayleigh resolution limit both in delay and Doppler axis. While
a matched filter won’t be able to resolve these two targets, the
proposed PPOMP technique could detect and identify their actual
parameters accurately. This shows the high resolution capability
of the proposed PPOMP technique, which is an attribute of other
sparse signal reconstruction techniques as well [13,43]. Here this
phenomenon is also observed for off-grid targets.

Fig. 2. Actual and reconstructed target positions in the delay–Doppler domain. Cir-
cles (◦) correspond to the actual target parameters where plus signs (+) correspond
to the reconstructed target parameters by the proposed PPOMP technique.
In this part of the simulations, the average performance and ro-
bustness of the proposed technique is investigated as a function of
sparsity, number of measurements and SNR levels. One of the im-
portant problems of standard CS based reconstruction techniques
is that in the presence of off-grid targets, they tend to generate
non-sparse reconstructions. In such a case, the reconstruction er-
ror should be carefully defined. One approach would be to match
the closest points in the correct scene and the reconstructed one,
then compute the parameter error between them. However, when
sparsity levels do not match, this error criterion is not appropriate.
Hence it is a necessity to find a suitable metric in order to compare
the parameter estimation performance of the sparse reconstruction
techniques. Here, we propose to use Kullback–Leibler Divergence
(KLD) between the actual and reconstructed target scenes, which
is defined as follows:

D(p ‖ q) �
∞∫

−∞
p(x) ln

(
p(x)

q(x)

)
dx, (20)

where p(x) and q(x) are probability density functions of the cor-
responding scenes. Even though a given target scene has no prob-
abilistic behavior, we can consider it as a 2-dimensional Gaussian
Mixture Model (GMM), where each mixture element has the fol-
lowing covariance matrix:

C =
(

	τ
2 0

0 	ν
2

)
, (21)

where 	τ and 	ν are the resolutions of delay–Doppler grid.
Hence, if a scene has K targets with parameters τTi and νTi ; re-
flection coefficients with αi for i = 1, . . . , K , then we define its
corresponding GMM as:

p(x) =
K∑

i=1

α′
i

2π |C | 1
2

exp

(
−1

2
(x − μi)

T C−1(x − μi)

)
, (22)

where α′
i are the normalized coefficients such that α′

i = |αi |/∑
j |α j | and μi are the corresponding delay–Doppler parameters

such that μi = [τTi νTi ]T . Using the definition as in (22), p(x) be-
comes a valid pdf, hence KLD defined in (20) can be used.

For a single Gaussian, a closed form of the KLD is available
in terms of defining parameters. However, for GMM, there is no
closed form solution of the integral in (20). An efficient approxi-
mation can be obtained by using Monte Carlo techniques since KLD
defined in (20) can also be considered as an integral to compute
the expectation of ln(

p(x)
q(x)

) under the distribution of p(x). There-
fore, it can be written as:
Fig. 3. Gradient based steps taken within the PPOMP algorithm at (a) one of the target grids, with (b) two targets grids where the two target parameters are closer than a
grid size in both τ and ν . Grid node corresponds to a discretized point as in (5) and target point corresponds to the actual off-grid target point.
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Fig. 4. Mean of the KLD metric for tested techniques in comparison with the oracle result at different (a) sparsity levels, (b) SNR levels.
D(p ‖ q) �
∞∫

−∞
p(x) ln

(
p(x)

q(x)

)
dx = E p(x)

[
ln

(
p(x)

q(x)

)]
. (23)

Sample mean can be used to approximate the actual value of
the expectation relying on the law of large numbers as:

D(p ‖ q) � 1

Z

Z∑
j=1

ln

(
p(x j)

q(x j)

)
, (24)

where each x j is drawn independently and identically from p(x)

as defined in (22). In the following simulations, each KLD is ap-
proximated by using Z = 106 samples.

First, we would like to define an oracle estimator that would be
the lower bound for the reconstruction performance of the tested
algorithms. We assume that oracle estimator exactly knows the
off-grid target parameters and hence the oracle estimation of the
coefficients is given as a Least-Squares (LS) solution as:

x̂ = [
a(τT1 , νT1)a(τT2 , νT2) . . .a(τT K , νT K )

]†
b. (25)

We also define a “grid-oracle” solution, which is the LS solution
not on the actual parameter points, but on the grid points closest
to the actual off-grid ones. This provides the lower bound for the
unperturbed techniques.

To illustrate the performance of the proposed GS algorithm de-
fined in Table 2, reconstructions are compared with the oracle
solution, grid-oracle solution and AA-P-BPDN algorithm proposed
in [30] while actual sparsity is changing from 1 to 10 at a fixed
SNR of 27.3 dB and measurement number of M = 186. In this
simulation all techniques are given the grid points closest to the
actual ones, basically to measure how well the proposed perturba-
tion technique and alternatives can estimate the actual parameters
given the correct grid points compared to oracle performances. For
a fair comparison, AA-P-BPDN is modified and �1 reconstruction in
the iterations is replaced with the LS solution on the given grid
location. Iterations in AA-P-BPDN is terminated when normalized
norm of the difference between the solutions in two consecutive
iterations are smaller than 10−2. It is expected that both algo-
rithms will be better than the grid-oracle due to their perturbation
mechanism, yet oracle solution will still be the lower bound.

For the error metric, KLD as defined in (24) is used. Since
KLD is not symmetric, we consider the difference between two
radar scenes, namely p and q, as d(p,q) = D(p ‖ q) + D(q ‖ p).
For the average reconstruction performance, simulations were re-
peated 300 times at each sparsity level with independent delay–
Doppler domain target scenes. The average of base-10 logarithm of
the d(p,q) distances is provided in Fig. 4(a). It can be observed
that as the sparsity level increases, reconstruction performance
decreases. However, performance of the proposed gradient solver
Fig. 5. Mean of the KLD metric for tested techniques in comparison with the oracle
result at varying sparsity levels.

follows the oracle performance closely with similar performance
gap for sparsity ranging from 3 to 10. AA-P-BPDN, on the other
hand, has a better performance than the grid-oracle solution but
significantly inferior than the proposed gradient solver and the or-
acle solution. This is partly because AA-P-BPDN linearizes the basis
functions only on the grid points and the accuracy of its approx-
imation decreases for larger perturbations. However, GS updates
its approximation at each iteration with a gradient descent update
which converges to a local minima.

To investigate the effect of noise level, different SNR levels in
the range of −15 dB to 50 dB are tested for a fixed sparsity level
of K = 5 and number of samples M = 186. Fig. 4(b) shows the
average KLD in the logarithmic scale for the tested algorithms. It
can be observed that oracle KLD decreases linearly with increas-
ing SNR. Proposed GS closely follows oracle performance with a
small performance gap until an SNR up to 35 dB and levels of af-
ter that due to termination of the iterations. Although AA-P-BPDN
has a better performance than grid oracle, it performs worse than
proposed GS for all SNR levels. Results presented in Fig. 4 show
that if the closest grid locations are given to the proposed pertur-
bation procedure, a close performance to the oracle solution can
be obtained. Now we would like to test the total PPOMP algorithm
when the perturbation is done on the grid locations selected by
OMP.

In the following simulations, performance of the proposed
PPOMP algorithm is compared to AA-P-BPDN, standard OMP, �1 re-
construction and the oracle solution for varying sparsity, measure-
ment number and SNR levels. At each test case 50 independent
random trails are performed. Noise fit level for all suitable tech-
niques is set to be ε = 1.3‖σn‖2/‖b‖2.

Fig. 5 shows the mean of logarithm base-10 of KLD metric for
varying sparsity levels. PPOMP is closer to the oracle performance,
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Fig. 6. Mean of the KLD metric for tested techniques in comparison with the oracle
result at varying number of measurements.

Fig. 7. Mean of the KLD metric for tested techniques in comparison with the oracle
result at varying SNR levels.

whereas other techniques are significantly inferior compared to the
proposed PPOMP technique. When compared to the small gap be-
tween the gradient solver and the oracle performance in Fig. 4,
gap between PPOMP and oracle solution in Fig. 5 is larger. This is
because OMP iterations within the PPOMP technique are not al-
ways able to provide correct grid points. This performance gap is
more apparent in the less sparse region since OMP iterations are
more prone to fail in that range. The same case is also valid for the
AA-P-BPDN; AA-P-BPDN is inferior to its oracle counter-part. It is
important to notice that since PPOMP and AA-P-BPDN have pertur-
bation mechanism, both are superior to the classical unperturbed
techniques.

Fig. 6 shows a similar comparison for a range of number of
measurements. It can be seen that after a minimum required num-
ber of measurements which seems to be around 100 for this case,
performance of PPOMP do not increase with the increase in num-
ber of measurements. Even if there is performance gap between
the PPOMP and the oracle solution, PPOMP is significantly supe-
rior to the other compared techniques.

Fig. 7 shows the mean of logarithm base-10 of KLD for a range
of SNR levels. While PPOMP performs closer to oracle for high SNR,
its performance degrades and becomes similar to OMP or �1 for
lower SNR regime. Even though the proposed GS is able to fol-
low the oracle performance for varying SNR as in Fig. 4(b), PPOMP
performs worse in low SNR regime since OMP is not able to pro-
vide the correct grid points to the gradient solver in that regime.
As a result, we observe a degraded performance in the overall
PPOMP algorithm. At lower SNR, impressions due to off-grid er-
ror are washed out by noise, hence results of all the investigated
techniques are at about the same level of performance. For the
investigated application whose results are shown in Fig. 7, the
benefit of using the proposed technique becomes noticeable be-
yond SNR of 10 dB, which is commonly encountered in practice.
Also notice that in the analysis, AA-P-BPDN performs better than
both OMP and �1 minimization due to its perturbation scheme.
However, the performance gap between AA-P-BPDN and PPOMP is
significant for high SNR.

In addition to the higher performance of PPOMP, it is also less
computationally complex compared to AA-P-BPDN. Since in each
iteration of AA-P-BPDN, one �1 optimization and one constraint
least-squares problems are solved, the computational complexity
is significantly higher than the proposed PPOMP technique. The
reported simulations performed on a workstation with Intel E5450
processor using CVX toolbox [41]. While AA-P-BPDN takes approx-
imately 360 seconds in average for a single reconstruction, PPOMP
converges in approximately 37 seconds in average for the same
test problem of K = 5, M = 186, SNR = 27.3 dB.

5. Conclusions

In this paper a novel compressive sensing technique is pro-
posed to alleviate the issues related with the reconstruction of
the radar targets whose positions do not coincide with the as-
sumed delay–Doppler grid. The proposed PPOMP technique adapts
the signal dictionary to the actual measurements by performing
perturbations of the parameters governing the signal dictionary. To
quantify the performance, Kullback–Leibler Divergence is proposed
as the error metric for off-grid target reconstruction performance.
Compared to the tested techniques, proposed method provides sig-
nificantly higher performance for a wide range of sparsity and SNR
levels. Furthermore, due to its significantly lower complexity of
implementation, PPOMP technique is more feasible in radar appli-
cations than the convex optimization based techniques.

Appendix A. Lipschitz continuity of the objective function

After the linearization of (14a), normalized cost function be-
comes J (u) = ‖rl − Blu‖2

2/‖b‖2
2 and its gradient is ∇ J (u) =

−(2/‖b‖2
2)B H

l (rl − Blu). Therefore,

‖∇ J (u1) − ∇ J (u2)‖2

‖u1 − u2‖2
� 2

‖b‖2
2

∥∥B H
l Bl

∥∥
2

� 2

‖b‖2
2

∥∥B H
l Bl

∥∥∗ = 2

‖b‖2
2

tr
(

B H
l Bl

)
, (A.1)

where ‖ · ‖2, ‖ · ‖∗ and tr(·) represents the spectral norm, nuclear
norm and the trace of the argument respectively. Furthermore, we
can expand the trace as:

tr
(

B H
l Bl

) =
k∑

i=1

∥∥∥∥	ταi,l
∂a

∂τi,l

∥∥∥∥2

2
+

k∑
i=1

∥∥∥∥	ναi,l
∂a

∂νi,l

∥∥∥∥2

2

=
k∑

i=1

|αi,l|2
(

	2
τ

∥∥∥∥ ∂a

∂τi,l

∥∥∥∥2

2
+ 	2

ν

∥∥∥∥ ∂a

∂νi,l

∥∥∥∥2

2

)
. (A.2)

Depending on the definition of the basis function in (5), the ith
index of a(τ , ν) is a(ti;τ , ν) = s(ti − τ )e j2πνti where ti is the
ith time sample and s(t) = e jf (t) is the radar waveform. Hence,
a(ti;τ , ν) = e j(2πνti+ f (ti−τ )) and norm of the partial derivative of
a(ti;τ , ν) with respect to τ can be written as:∣∣∣∣∂a(ti;τ ,ν)

∂τ

∣∣∣∣ = ∣∣− j f ′(ti − τ )e j(2πνti+ f (ti−τ ))
∣∣

= ∣∣ f ′(ti − τ )
∣∣. (A.3)

For linear chirp signals, f (t) = πβ(t − T p/2)2, and f ′(t) = 2πβ(t −
T p/2). Since pulse duration is 0 � t � T p , we have | f ′(t)| � πβT p .
Therefore, norm of the partial derivative can be bounded as:
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∣∣∣∣∂a(ti;τ ,ν)

∂τ

∣∣∣∣ = ∣∣ f ′(ti − τ )
∣∣ � πβT p. (A.4)

Using (A.4), ‖∂a/∂τ‖2
2 can be bounded as:

∥∥∥∥ ∂a

∂τ

∥∥∥∥2

2
=

M∑
i=1

∣∣∣∣∂a(ti;τ ,ν)

∂τ

∣∣∣∣2

� Mπ2β2T 2
p = Mπ2	−2

τ , (A.5)

where the last part follows with the selection of β = 2B/T p , and
	τ = 1/(2B) is the Rayleigh resolution spacing. Similarly, norm of
the partial derivative of a(ti;τ , ν) with respect to ν can be written
as:∣∣∣∣∂a(ti;τ ,ν)

∂ν

∣∣∣∣ = ∣∣− j2πtie
j(2πνti+ f (ti−τ ))

∣∣ = |2πti|. (A.6)

Since time samples are taken from [0, Np TPRI] range, we have
|2πti | � 2π Np TPRI . Norm of the partial derivative can be bounded
as:∣∣∣∣∂a(ti;τ ,ν)

∂ν

∣∣∣∣ = |2πti| � 2π Np TPRI. (A.7)

Using (A.7), ‖∂a/∂ν‖2
2 can be bounded as:

∥∥∥∥ ∂a

∂ν

∥∥∥∥2

2
=

M∑
i=1

∣∣∣∣∂a(ti;τ ,ν)

∂ν

∣∣∣∣2

� M4π2N2
p T 2

PRI = M4π2	−2
ν , (A.8)

where 	ν = 1/(Np TPRI) is the Rayleigh resolution spacing. Com-
bining (A.2), (A.5) and (A.8), tr(B H

l Bl) can be upper bounded as:

tr
(

B H
l Bl

)
�

k∑
i=1

|α1,l|2
(
Mπ2 + 4Mπ2) = 5π2M‖αl‖2

2. (A.9)

Notice that αl is the coefficients of the projection of b onto the
estimated parameters. Since ‖a(τ , ν)‖2

2 = M , we have M‖αl‖2
2 ≈

‖b‖2
2. Using (A.9), (A.1) can be upper bounded as:

‖∇ J (u1) − ∇ J (u2)‖2

‖u1 − u2‖2
� 10π2 = L. (A.10)
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