
TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

15

A Term-Based Inverted Index Partitioning Model
for Efficient Distributed Query Processing

B. BARLA CAMBAZOGLU, Yahoo! Research
ENVER KAYAASLAN and SIMON JONASSEN, Yahoo! Research Barcelona
CEVDET AYKANAT, Bilkent University

In a shared-nothing, distributed text retrieval system, queries are processed over an inverted index that is
partitioned among a number of index servers. In practice, the index is either document-based or term-based
partitioned. This choice is made depending on the properties of the underlying hardware infrastructure,
query traffic distribution, and some performance and availability constraints. In query processing on retrieval
systems that adopt a term-based index partitioning strategy, the high communication overhead due to the
transfer of large amounts of data from the index servers forms a major performance bottleneck, deteriorating
the scalability of the entire distributed retrieval system. In this work, to alleviate this problem, we propose
a novel inverted index partitioning model that relies on hypergraph partitioning. In the proposed model,
concurrently accessed index entries are assigned to the same index servers, based on the inverted index
access patterns extracted from the past query logs. The model aims to minimize the communication overhead
that will be incurred by future queries while maintaining the computational load balance among the index
servers. We evaluate the performance of the proposed model through extensive experiments using a real-life
text collection and a search query sample. Our results show that considerable performance gains can be
achieved relative to the term-based index partitioning strategies previously proposed in literature. In most
cases, however, the performance remains inferior to that attained by document-based partitioning.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Web search engine, term-based index partitioning, distributed query
processing, hypergraph partitioning

ACM Reference Format:
Cambazoglu, B. B., Kayaaslan, E., Jonassen, S., and Aykanat, C. 2013. A term-based inverted index parti-
tioning model for efficient distributed query processing. ACM Trans. Web 7, 3, Article 15 (September 2013),
23 pages.
DOI: http://dx.doi.org/10.1145/2516633.2516637

1. INTRODUCTION

The massive size of today’s document collections when coupled with the ever-growing
number of users querying these collections necessitates distributed data storage and

B. Barla Cambazoglu acknowledges support from the Torres Quevedo Program from the Spanish Ministry
of Science and Innovation, cofunded by the European Social Fund. S. Jonassen was supported by the iAD
Centre (http://iad-centre.no) funded by the Research Council of Norway and the Norwegian University of
Science and Technology. E. Kayaaslan is currently affiliated with Bilkent University; S. Jonassen is currently
affiliated with the Norwegian University of Science and Technology.
Authors’ addresses: B. B. Cambazoglu, Yahoo! Research; email: barla@yahoo-inc.com; E. Kayaaslan and
C. Aykanat, Computer Science Department, Bilkent University; S. Jonassen, Department of Computer and
Information Science, Norwegian University of Science and Technology.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1559-1131/2013/09-ART15 $15.00

DOI: http://dx.doi.org/10.1145/2516633.2516637

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

15:2 B. B. Cambazoglu et al.

query processing [Cambazoglu and Baeza-Yates 2011]. Large-scale search services
construct and maintain several search clusters composed of many compute nodes in
order to increase their query processing throughputs and maintain reasonable query
response times [Barroso et al. 2003]. Typically, the query processing throughput of the
system is increased by replicating search clusters to exploit interquery parallelism.
Queries are processed, in parallel, on the nodes of a selected search cluster. Query
processing times are mainly determined by the number of nodes in the search cluster
and the size of the document collection.

The most efficient way to process queries is to built an inverted index on the document
collection and to process queries over this index [Zobel and Moffat 2006]. An inverted
index maintains an inverted list for each term in the collection’s vocabulary. Each
inverted list keeps the ids of documents in which the lists’s respective term appears as
well as some auxiliary information (e.g., the within document frequencies of the term
and the positions at which the term occurs in the documents).

In distributed text retrieval systems, the inverted index is stored in a distributed
manner on the nodes of a search cluster. Each node runs an index server that facilitates
access to the index stored in the node. A distributed index can be created by partitioning
a full index based on the documents or terms.

In document-based index partitioning, each index server is assigned a nonoverlap-
ping subset of documents, on which a local inverted index is built. A query is evaluated,
in parallel, over all local indexes and a small number of best-matching results are re-
turned by the index servers to a central broker, which then merges them to create a final
answer set for the query. In general, query processing on document-based-partitioned
indexes yields good load balance, low query response times, and high fault tolerance.
However, the number of disk accesses incurred by a query grows linearly with the num-
ber of nodes in the search cluster. This may form a bottleneck for the query processing
throughput if the inverted index is mostly stored on the disk [Badue et al. 2007].

In term-based index partitioning, the terms in the collection vocabulary are par-
titioned into a number of non-overlapping subsets, and each index server becomes
responsible for a different subset of terms. The inverted index hosted by a server con-
sists of the inverted lists corresponding to the terms assigned to the server. A query is
processed only on the index servers that host at least one inverted list associated with
the query. Since queries are typically very short, only a few index servers are involved
in query processing. However, each index server needs to generate and transfer a poten-
tially long list of documents that match the query. This communication overhead forms
a performance bottleneck [Lucchese et al. 2007; Zhang and Suel 2007], together with
the high computational load imbalance among the index servers [Moffat et al. 2006].

The focus of this work is on efficient query processing on distributed text retrieval
systems where the index is partitioned based on terms. We propose a novel inverted in-
dex partitioning model that distributes inverted lists such that the lists that are likely
to be accessed together are assigned to the same index servers. The model represents
the access patterns to inverted lists by a hypergraph. We demonstrate that K-way par-
titioning of this hypergraph reduces the communication overhead incurred by queries
issued to a K-node distributed text retrieval system. The model also involves a load
imbalance constraint to maintain the computational load balance of the system during
query processing.

To verify the validity of the proposed partitioning model, we conduct experiments over
a Web document collection and a search query sample. According to our experimental
results, the proposed index partitioning model achieves a significant reduction in the
average number of index servers involved in processing of a query, relative to the term-
based index partitioning strategies previously proposed in literature. The experiments
also indicate considerable reduction in query response times and increase in query

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

A Term-Based Inverted Index Partitioning Model for Efficient Distributed Query Processing 15:3

processing throughput. Nevertheless, in most cases, the performance remains inferior
to that attained by document-based partitioning.

The rest of the article is organized as follows. Section 2 provides some background
on query processing over term-based-partitioned inverted indexes. Section 3 surveys
the term-based index partitioning techniques proposed in previous works. Section 4
motivates the term-based index partitioning problem considered in this work and pro-
vides a formal problem definition. The proposed index partitioning model is presented
in Section 5. The details of our experimental setup and dataset are given in Section 6.
The experimental results are presented in Section 7. Section 8 concludes the article.

2. PRELIMINARIES

2.1. Term-Based Index Partitioning

An inverted index L contains a set of (term, corresponding inverted list) pairs, that
is, L = {(t1, I1), (t2, I2), . . . , (tT , IT)}, where T = |T | is the size of vocabulary T of
the indexed document collection. Inverted lists are composed of postings, where each
posting in Ii keeps some information about a document in which term ti appears.
Typically, this information includes the document’s id and term’s frequency in the
document.

In a distributed text retrieval system with K nodes, postings of an index are parti-
tioned among a set S = {S1, S2, . . . , SK} of K index servers. A term-based index partition
� = {T1, T2, . . . , TK} is a partition of T such that

T =
⋃

1≤�≤K

T� (1)

under the constraint

T� ∩ T�′ = ∅, for 1 ≤ �, �′ ≤ K and � �= �′. (2)

Based on partition �, every term subset T� is uniquely assigned to an index server S�,
and each index server S� constructs a subindex L� as

L� = {(ti, Ii) : ti ∈ T�}, (3)

That is, the index servers are responsible for maintaining only their own sets of terms
and hence all postings of an inverted list are assigned together to the same server.
Typically, the partitioning is performed such that the computational load distribution
on the index servers is balanced.

Given a term-based-partitioned index, queries can be processed in two alternative
ways: the traditional central broker scheme or the pipelined query processing scheme.
In the following two sections, we provide some background on these two alternative
query processing schemes. Then, we describe some inverted list replication heuristics
that are typically coupled with these schemes.

2.2. Traditional Query Processing Scheme

The traditional query processing scheme, which is previously considered in many stud-
ies [Tomasic and Garcia-Molina 1993; Ribeiro-Neto and Barbosa 1998; MacFarlane
et al. 2000; Badue et al. 2001], involves a central broker that is responsible for prepro-
cessing the user query and issuing it to the index servers in a selected search cluster.
In this scheme, queries are processed as follows. First, the broker splits the original
query q = {t1, t2, . . . , t|q|} into a set {̂q1, q̂2, . . . , q̂K} of K subqueries such that each sub-
query q̂� contains the query terms whose responsibility is assigned to index server S�,
that is, q̂� = {ti ∈ q : (ti, Ii) ∈ L�}. Then, the central broker issues each subquery to
its respective index server. Depending on the terms in the query, it is possible to have
q̂� = ∅, in which case no subquery is issued to S�.

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

15:4 B. B. Cambazoglu et al.

Upon the receipt of a subquery q̂�, index server S� accesses its disk and reads the
inverted lists associated with the terms in q̂�, that is, for each query term ti ∈ q̂�,
inverted list Ii is fetched from the disk. The document ids in the fetched lists are
used to determine the set of documents that match q̂�. Typically, the matching can
be performed in two different ways, based on the AND logic (the conjunctive mode)
or the OR logic (the disjunctive mode). In case of AND logic, a document matches
a query only if the document appears in all inverted lists associated with the query
terms. In case of OR logic, a document is a match if it appears in at least one of
the inverted lists associated with the query terms. Once matching documents are
identified, they are assigned scores by some relevance function (e.g., BM25) using the
statistical information stored in postings.1 This typically involves summing up, for each
matching document, the score contributions of the query terms. Finally, the matching
documents are sorted in decreasing order of their scores to create a local ranking R�,
which typically contains document ids and scores, for the subquery issued to index
server S�. This partial ranking is then transferred to the central broker.

Each ranking R� is only a partial ranking as the local scores do not include the
contributions received from the query terms that are hosted by nonlocal index servers.
To generate a global ranking of documents, all partial rankings are merged at the
central broker. In case of OR logic, the merge operation involves summing up all local
scores corresponding to the same document and sorting the final document scores in
decreasing order. In case of AND logic, only the documents that appear in all partial
rankings are considered for the final ranking. Finally, the central broker returns to
the user the highest ranked (typically 10) document ids, potentially together with
some additional information (e.g., snippets). This type of query processing has three
performance drawbacks.

—Communication overhead. If the processing of a query is distributed across more
than one index server, the servers involved in the processing have to transfer their
entire partial ranking information to the central broker. Especially, if document
matching is performed in the disjunctive mode, large volumes of data may need to
be communicated over the network, increasing query response times.

—Bottleneck at the central broker. The merge operation at the broker may form a
bottleneck if the query traffic volume is high or K is large. In such cases, the broker’s
queue, which temporarily stores the partial ranking information received from the
index servers, may start to grow beyond an affordable limit.

—Computational load imbalance. If postings are not evenly distributed across the index
servers, some index servers may be overloaded during the query processing while
others are mostly idle. This, in turn, causes a throughput bottleneck in the overloaded
index servers, eventually degrading the performance of the entire system.

2.3. Pipelined Query Processing Scheme

The pipelined query processing scheme is originally proposed by Moffat et al. [2007] and
is later enhanced by Jonassen and Bratsberg [2010, 2012a, 2012b]. This scheme solves
the bottleneck problem at the central broker and can also improve the computational
load balance of the system. In this scheme, for a given query, the set of index servers
that are responsible for processing the query is determined as in the traditional scheme.
One of the responsible index servers is given the central broker role. This particular
server determines a routing sequence for the remaining index servers on which the
query will be processed. The same server is also responsible for obtaining the final

1The techniques discussed in this work are not affected by the scoring function being used.

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

A Term-Based Inverted Index Partitioning Model for Efficient Distributed Query Processing 15:5

result set and returning it to the user or to the part of the retrieval system responsible
for presenting the search results.

The processing of the query proceeds by obtaining the local ranking of a server
and combining it with the ranking received from the previous server in the routing
sequence. The computation of local scores is similar to that in the traditional scheme.
The scores are combined with previous scores in different ways, depending on the
matching logic. In case of OR logic, each server simply updates received document
scores using the information in the postings that the server maintains and/or inserts
new entries, forming a new partial ranking with potentially more entries. In case of
AND logic, the server intersects the received partial ranking with its local partial
ranking, forming a new partial ranking with potentially fewer entries. The generated
partial score information is then passed to the next index server in the sequence. The
final server in the sequence extracts the top-ranked k documents and returns them to
the index server that has the broker role for the query.

We note that the pipelined scheme, in a sense, sacrifices intraquery parallelism in ex-
change for interquery parallelism. As the role of the central broker is now distributed
across all index servers, the result merging bottleneck in the traditional scheme is
avoided. Moreover, pipelined query processing allows for more fine-grained load bal-
ancing. In case of AND logic, the total communication volume in the traditional scheme
forms an upper bound on that of the pipelined scheme, whereas in case of OR logic, it
forms a lower bound. Unfortunately, compared to query processing on document-based-
partitioned indexes, the following issues still remain as problems.

—Communication overhead. The volume of data transferred between the index servers
can be quite high if the partial rankings are very long or too many index servers are
involved in processing of the query.

—Number of hops. For long queries, the routing sequence may involve many index
servers that contribute to the processing of the query. Having many hops in the
routing sequence may increase query response times.

—Computational load imbalance. The pipelined query processing scheme considerably
improves the computational load balance of the system, relative to the traditional
query processing scheme. However, the load imbalance remains as a problem at the
micro scale.

2.4. Inverted List Replication

A problem common to both query processing schemes described above is high compu-
tational load imbalance, mainly caused by high skewness in inverted list sizes and list
access frequencies. In particular, long and frequently accessed inverted lists are likely
to cause load imbalance in query processing. One remedy to this problem is to replicate
a small fraction of such load-intensive lists across all index servers [Moffat et al. 2006;
Lucchese et al. 2007]. In this solution, whenever a replicated list is involved in query
processing, a decision needs to be made to select an index server that will be respon-
sible for processing the replicated list. The technique adopted in Moffat et al. [2006]
assigns the responsibility of processing a replicated list to the currently least loaded
server. This approach achieves good load balance, but it has a high potential to disturb
the coherence of inverted list accesses. The technique in Lucchese et al. [2007] restricts
the set of responsible servers to those that hold at least one non-replicated term of the
query. This approach does not disturb the coherence of list accesses, but may result in
relatively higher load imbalance values compared to the above-mentioned technique.
In the replication strategy followed in Zhang and Suel [2007], the index servers are
given a relatively larger storage budget so that a high fraction of inverted lists are
replicated on multiple servers.

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

15:6 B. B. Cambazoglu et al.

3. RELATED WORK

3.1. Term-Based Inverted Index Partitioning

The inverted index partitioning problem is investigated in a number of works. Herein,
we restrict our focus only to related studies on term-based index partitioning [Tomasic
and Garcia-Molina 1993; Jeong and Omiecinski 1995; Cambazoglu 2006; Cambazoglu
and Aykanat 2006; Moffat et al. 2006; Lucchese et al. 2007; Zhang and Suel 2007],
omitting previous work on document-based index partitioning [Tomasic and Garcia-
Molina 1993; Jeong and Omiecinski 1995; Ma et al. 2002; Badue et al. 2007; Ma et al.
2011]. For a performance comparison between the two partitioning approaches, inter-
ested reader may refer to prior studies [Ribeiro-Neto and Barbosa 1998; MacFarlane
et al. 2000; Badue et al. 2001; Cambazoglu et al. 2006; Jonassen and Bratsberg 2009],
which mainly differ in their assumptions about the underlying retrieval architecture,
document matching logic, ranking models, datasets, parameters, and experimental
methodologies.

Tomasic and Garcia-Molina [1993] evaluate the performance of term-based index
partitioning on a shared-nothing parallel architecture, where each node is assumed
to have multiple I/O buses with multiple disks attached to each bus. The terms are
evenly partitioned across the disks (it is not explicitly stated how a partition is ob-
tained) and queries are processed under the AND logic assumption. The traditional
query processing scheme is extended by a novel two-phase prefetching technique.
In the first phase, an initial partial ranking is obtained from the index server that
hosts the query term with the shortest inverted list or from the index server that
covers the largest number of query terms. In the second phase, subqueries are issued
to the remaining index servers together with this initial ranking. Every contacted in-
dex server intersects its local ranking with the provided initial ranking. This way, the
volume of data communicated to the central broker is reduced.

Jeong and Omiecinski [1995] investigate the performance of different term-based
partitioning schemes for a shared-everything multiprocessor system with multiple
disks. In their main experiments, they use synthetically created document collections
with varying inverted list size skewness and observe the impact of the skewness on
the query processing performance. They propose two load balancing heuristics for
term-based index partitioning. Their first heuristic distributes inverted lists to servers
taking into account the number of postings in the lists so that each server keeps similar
amounts of postings. The second heuristic, in addition to inverted list sizes, takes into
account the access frequencies of the lists. Their simulations indicate that the query
processing throughput of a term-based-partitioned index does not scale well with the
query traffic volume if inverted list sizes are highly skewed.

Moffat et al. [2006] conduct a study to investigate the load imbalance prob-
lem in term-based-partitioned indexes, assuming the pipelined query processing
scheme [Moffat et al. 2007; Webber 2007]. Their work evaluates some alternatives
for estimation of index servers’ query processing loads and adopts a simple “smallest
fit” heuristic for load balancing, coupled with replication of frequently accessed
inverted lists on multiple index servers. Although simulations indicate improved load
balance, in practice, throughput values remain inferior to those in query processing
on document-based-partitioned indexes due to unexpected peaks in load imbalance at
the micro scale, that is, the load imbalance remains as an issue.

In an earlier work [Cambazoglu 2006; Cambazoglu and Aykanat 2006], we propose
a hypergraph partitioning model that aims to reduce the communication overhead
incurred in query processing on term-based-partitioned indexes. Similar to our cur-
rently proposed model, the previous model tries to balance the query processing loads
of index servers. However, our previous model does not make use of query logs, which

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

A Term-Based Inverted Index Partitioning Model for Efficient Distributed Query Processing 15:7

provide valuable information about the access patterns of inverted lists. Moreover, un-
like the currently proposed model, the previous model is computationally infeasible to
construct, as it requires creating a very large hypergraph that represents the entire
document collection and vocabulary, which can be quite large in practice.

Lucchese et al. [2007] propose a term-based index partitioning strategy that relies
on a greedy heuristic aiming to assign terms cooccurring in queries to the same index
servers. In their heuristic, the terms are iteratively assigned to the index servers, trying
to optimize a performance objective that combines query processing throughput and
average response time, scaled by a relative importance factor. Also, a small fraction
of frequently accessed inverted lists are replicated on all index servers. Compared
to random assignment and the bin packing approach proposed in Moffat et al. [2006],
some improvement is observed in query locality, that is, on average, fewer index servers
are involved in processing of a query.

Zhang and Suel [2007] formulate the term-based index partitioning problem as a
graph partitioning problem, where query term pairs whose corresponding inverted
lists’ intersection size is small are tried to be assigned to the same index server. Af-
ter obtaining an initial assignment of terms by graph partitioning, different greedy
heuristics are used to replicate certain inverted lists on a subset of index servers based
on the potential for reduction in the communication overhead. This approach is shown
to reduce the volume of the data communicated to the central broker during query
processing.

Several studies investigate the performance of query processing on term-based-
partitioned inverted indexes in the context of P2P systems. Under the AND logic
assumption, Li et al. [2003] investigate the use of Bloom filters for efficient intersec-
tion of inverted lists that are stored on different peers. Their approach significantly
reduces the communication overhead incurred due to the transfer of inverted lists at the
expense of having some false positives in the intersection of the lists. Suel et al. [2003]
use a distributed top-k pruning technique in which only a small portion of the shortest
inverted list has to be communicated between the peers. Their approach also consider-
ably reduces the communication overhead, but it is limited to certain classes of scoring
functions. Zhang and Suel [2005] investigate hybrid algorithms that combine the previ-
ously proposed Bloom filter and top-k pruning approaches, obtaining further reduction
in the communication overhead.

3.2. Term-Based versus Document-Based Inverted Index Partitioning

There are a number of issues that lead to a trade-off between term-based partitioning
and document-based partitioning. Herein, we provide a summary of the claims made
until now in regard to these issues.

—Hardware properties. Term-based partitioning works well in distributed search sys-
tems connected with a fast network while the speed of disk accesses is more critical in
case of document-based partitioning [Tomasic and Garcia-Molina 1993; Ribeiro-Neto
and Barbosa 1998].

—Parallelism. Document-based partitioning provides better intraquery parallelism as
the same query can be processed by all index servers, at the same time. Term-based
partitioning, on the other hand, provides better interquery parallelism since multiple
queries can be concurrently processed in the search system, mostly in the absence of
intraquery parallelism [Ribeiro-Neto and Barbosa 1998].

—Distributed index construction. Assuming the documents are already uniformly dis-
tributed on the nodes, constructing a document-based-partitioned index is a rel-
atively trivial task since each node can simply build a local index on its collection.
Constructing a term-based-partitioned index via message passing, on the other hand,

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

15:8 B. B. Cambazoglu et al.

requires coordination and communication among the nodes [Ribeiro-Neto et al. 1998;
Kucukyilmaz et al. 2012].

—Load imbalance. Document-based partitioning leads to better computational load
balancing compared to term-based partitioning [MacFarlane et al. 2000]. Although
the pipelined scheme helps reducing the load imbalance at the batch-level, the load
imbalance remains as a problem at the micro-scale due to the random bursts in the
workloads of some index servers [Moffat et al. 2006].

—Bottleneck at the broker. The central broker is more likely to be a bottleneck in case of
term-based partitioning than document-based partitioning [MacFarlane et al. 2000].

—Collection statistics. In document-based partitioning, the inverse document frequency
information needs to be computed and communicated to the index servers. This is
not needed in case of term-based partitioning [Badue et al. 2001].

—Fault tolerance. Document-based partitioning provides better fault tolerance than
term-based index partitioning in case of node failures since the result quality is less
likely to be affected from a node failure in case of a document-based-partitioned
index [Barroso et al. 2003].

—Memory footprint. In case of term-based partitioning, less memory is needed to store
the vocabulary of the collection because the vocabulary is distributed across the index
servers [Moffat et al. 2006]. Similarly, in case of document-based partitioning, less
memory is needed to store the document features (e.g., document length, PageRank)
since this data structure is distributed across the index servers and the features
associated with a particular document are stored in only one index server, instead of
all index servers.

—Scalability. Document-based partitioning provides better scalability in terms of in-
creasing number of index servers and collection size, compared to term-based parti-
tioning [Moffat et al. 2007; Webber 2007].

4. REDUCING THE COMMUNICATION OVERHEAD

4.1. Motivation

The objective of this work is to devise a term-based index partitioning model that
tries to reduce the communication overhead incurred in query processing while main-
taining the computational load balance among the index servers. Following previous
observations [Cambazoglu 2006; Cambazoglu and Aykanat 2006; Lucchese et al. 2007;
Zhang and Suel 2007], the idea is to assign to the same index servers the inverted
lists that are often accessed together while processing queries. In a sense, the goal is
to group inverted lists into K clusters such that the lists that are frequently accessed
together fall into the same clusters. This technique is expected to achieve reduction
in the communication overheads of index servers due to the increased likelihood of
early aggregation of document scores in index servers. Moreover, as the processing
is expected to span fewer index servers, this technique can also reduce the number of
hops in the pipelined query processing scheme. The largest gains in the communication
overhead are obtained if all inverted lists associated with the query are available in
one index server, in which case it suffices to communicate only the local top-k result set
of the server.

4.2. Formal Problem Definition

We are given a set Q = {q1, q2, . . . , q|Q|} of queries,2 a set T = {t1, t2, . . . , t|T |} of terms
in the collection vocabulary, an inverted index L = {(t1, I1), (t2, I2), . . . , (t|L|, I|L|)}, and a
set S = {S1, S2, . . . , SK} of K index servers. Each query qj ∈ Q is composed of a set of

2We use the term query to refer to individual occurrences of queries, not the query string.

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

A Term-Based Inverted Index Partitioning Model for Efficient Distributed Query Processing 15:9

terms in the collection vocabulary, that is, qj ⊆ T . Each term ti ∈ T is associated with
an access frequency fi, that is, the number of queries that contain the term. Given
these, we now provide a number of definitions and then formally state our problem.

Definition 1 (Hitting set of a query). For a term partition �, the hitting set h(qj,�)
of a query qj ∈ Q is defined as the set of index servers that hold at least one term of
qj [Lucchese et al. 2007], that is,

h(qj,�) = {S� ∈ S : qj ∩ T� �= ∅}. (4)

Let c(qj,�) denote the communication cost incurred when processing qj under term
partition �. Herein, we model the communication cost in two alternative ways. First, we
assume that qj incurs a communication cost only if the processing involves more than
one index server. This is because if all inverted lists associated with qj are available
in the same index server, no partial score information needs to be transferred from the
index servers as it is sufficient to communicate only the final top k scores. In this case,
we can approximate the communication cost by

c(qj,�) =
{

0, |h(qj,�)| = 1;
1, otherwise.

(5)

Second, we model the communication cost by the number of network messages that
contain some partial score information. For the traditional query processing scheme,
this number is |h(qj,�)| since every index server S� ∈ h(qj,�) communicates its partial
scores to the central broker. Similarly, for the pipelined query processing scheme,
exactly |h(qj,�)| network messages are exchanged between the index servers (including
the data transfer for the final result set). Hence, we can estimate the communication
overhead as

c(qj,�) = |h(qj,�)|. (6)

In processing every subquery, we can assume that each term ti ∈ q̂j incurs a com-
putational load proportional to its inverted list size [Gan and Suel 2009]. This implies
that each term ti ∈ T introduces a load fi ×|Ii| in processing of all queries in Q. Hence,
the overall load L�(�) of a server S� with respect to a given term partition � becomes

L�(�) =
∑
ti∈T�

fi × |Ii|. (7)

Definition 2 (ε-Balanced partition). Given an inverted index L, a query set Q, and
a set S of servers, a term partition � is said to be ε-balanced if the computational load
L�(�) of each server S� satisfies the constraint

L�(�) ≤ Lavg(�)(1 + ε), (8)

where Lavg(�) denotes the average computational load of index servers.

Problem 1 (Term-Based index partitioning problem). Given a set Q of queries, an
inverted index L, a set S of index servers, and a load imbalance threshold ε ≥ 0,
find an ε-balanced term partition � = {T1, T2, . . . , TK} that induces an index partition
{L1,L2, . . . ,LK} such that the total communication cost �(�) is minimized, where

�(�) =
∑
qj∈Q

c(qj,�). (9)

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

15:10 B. B. Cambazoglu et al.

5. TERM-BASED INDEX PARTITIONING MODEL

Our solution to the term-based index partitioning problem is based on hypergraph
partitioning. Hence, we first provide some background on hypergraph partitioning
before presenting the proposed model.

5.1. Hypergraph Partitioning

A hypergraph H = (V,N) consists of a set V of vertices and a set N of nets [Berge
1985]. Each net nj ∈ N connects a subset of vertices in V. The set Pins(nj) of vertices
connected by a net nj are called the pins of net nj . Each vertex vi ∈ V has a weight wi.

� = {V1,V2, . . . ,VK} is a K-way vertex partition if each part V� is nonempty, the parts
are pairwise disjoint, and the union of the parts gives V. In �, a net is said to connect
a part if it has at least one pin in that part. The connectivity set �(nj,�) of a net nj
is the set of parts connected by nj . The connectivity λ(nj,�) = |�(nj,�)| of a net nj is
equal to the number of parts connected by nj . A net nj with connectivity λ(nj,�) = 1
is referred to as an internal net. If the connectivity of a net is larger than one, it is
referred to as a cut net. The set of cut nets of a partition � is denoted by Ncut(�).

A partition � is said to be ε-balanced if each part V� satisfies the balance criterion

W� ≤ Wavg(1 + ε), for � = 1, 2, . . . , K, (10)

where the weight W� = ∑
vi∈V�

wi of a part V� is defined as the sum of the weights of the
vertices in that part and Wavg is the average part weight.

The K-way hypergraph partitioning problem is defined as finding an ε-balanced
partition � that optimizes a cutsize function defined over the nets of a hypergraph
H = (V,N). The hypergraph partitioning problem is known to be NP-hard [Alpert and
Kahng 1995]. There are several cutsize functions developed and used in the litera-
ture [Alpert and Kahng 1995]. The metrics used by our term-based partitioning model
are the cutnet (χcut(�)) and connectivity (χcon(�)) metrics, which are defined as

χcut(�) = |Ncut(�)| (11)

and

χcon(�) =
∑

nj∈N
λ(nj,�). (12)

The objective in the cutnet metric is to minimize the number of nets that span more
than one part. The objective in the connectivity metric, on the other hand, is to minimize
the total number of parts that are spanned by the nets in the hypergraph.

5.2. Model

In our model, we represent the interaction between the queries in a query set Q and
the inverted lists in an inverted index L by means of a hypergraph H = (V,N). In H,
each term ti ∈ T is represented by a vertex vi ∈ V, and each query qj ∈ Q is represented
by a net nj ∈ N . Each net nj connects the set of vertices representing the terms that
constitute query qj . That is,

Pins(nj) = {vi : ti ∈ qj}. (13)

Each vertex vi is associated with a weight wi = fi × |Ii|, which represents the total
estimated computational load for processing ti.

A K-way vertex partition � = {V1,V2, . . . ,VK} of hypergraph H is decoded as a K-way
term partition � = {T1, T2, . . . , TK} of T . That is, each vertex part V� in � corresponds to
the subset T� of terms assigned to index server S�. Since the total weight W� of each part
V� is equal to the total load L�(�) of the corresponding index server S�, balancing the

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

A Term-Based Inverted Index Partitioning Model for Efficient Distributed Query Processing 15:11

n12

n17

n8

v13

v16

v18

v17

v11

n6

n5

v7

n15
n16

v15

n10

v14

v2

v5

v9

n9

V3

V1 V2

n7

n11

n13

v1

n1 n2

n4

n3

v6
v4

v3

n14

v8

v10

v12

q2 = {t2, t3}
q3 = {t3, t4, t5, t6}
q4 = {t3}
q5 = {t7, t8}
q6 = {t8, t9}
q7 = {t7, t10, t11}
q8 = {t9, t10, t11, t12}
q9 = {t13, t14, t15}
q10 = {t15}
q11 = {t14, t15, t17}
q12 = {t15, t16}
q13 = {t16, t17, t18}
q14 = {t1, t2, t5, t14}
q15 = {t5, t14, t17}
q16 = {t5, t7, t17, t18}
q17 = {t7, t11, t18}

q1 = {t1, t2, t3}

Fig. 1. A three-way partition of the hypergraph representing the relationship between a sample query log
and an inverted index.

part weights according to the balance criterion in Equation (8) effectively balances the
computational load among the index servers, satisfying the constraint in Equation (10).

In a K-way vertex partition � of H, consider a net nj with connectivity set �(nj,�).
By definition, for each part V� ∈ �(nj,�), we have Pins(nj) ∩V� �= ∅, that is, qj ∩T� �= ∅.
Thus, T� ∈ h(qj,�) if and only if V� ∈ �(nj,�). This implies

h(qj,�) = {S� ∈ S : V� ∈ �(nj,�)}, (14)

which shows the one-to-one correspondence between the connectivity set �(nj,�) of
a net nj in � and the hitting set h(qj,�) of query qj in �, induced by �. Hence, the
minimization of the cutsize according to the cutnet (Equation (11)) and connectivity
(Equation (12)) metrics accurately captures the minimization of the total communica-
tion cost �(�) when c(qj,�) is modeled by Equation (5) and Equation (6), respectively.

We illustrate the model with an example, involving a toy inverted index with vocabu-
lary T = {t1, t2, . . . , t18}, a query set Q = {q1, q2, . . . , q17}, and three index servers (S1, S2,
and S3). Figure 1 shows the sample queries and a three-way partition � = {V1,V2,V3}
of the toy index. We can interpret the figure as follows. Terms t1 to t6 are assigned to
server S1; terms t7 to t12 are assigned to server S2; and the remaining terms t13 to t18 are
assigned to server S3. According to this assignment, the queries in sets {q1, q2, q3, q4},
{q5, q6, q7, q8}, and {q9, q10, q11, q12} can be fully processed by servers S1, S2, and S3, re-
spectively. For these queries, the servers communicate only their final top-k result sets,
that is, the communication of the partial score information is not necessary. However,
the remaining queries q14, q15, q16, and q17 necessitate the communication of partial
scores. In particular, during the processing of q16, all three servers communicate their
partial scores. For queries q14 and q15, only servers S1 and S3, and for query q17, only
servers S2 and S3 need to communicate data. Consequently, if the cost of a query is mod-
eled by Equation (5), the total communication cost is estimated as �(�) = 13 × 0 + 4 ×
1 = 4. If it is modeled by Equation (6), we have �(�) = 13 × 1 + 3 × 2 + 1 × 3 = 22.

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

15:12 B. B. Cambazoglu et al.

We note that, unlike most of the work mentioned in Section 3, our work aims to
capture the computational load balance and the minimization of the communication
overhead at the same time. In this respect, among the existing models, the closest
to ours are those proposed in Cambazoglu [2006], Cambazoglu and Aykanat [2006],
and Zhang and Suel [2007]. The model proposed in [Cambazoglu 2006; Cambazoglu
and Aykanat 2006] constructs a hypergraph using the inverted lists in the index. This
approach does not scale well with increasing index sizes as it requires constructing
and partitioning a very large hypergraph, where each term in the vocabulary of the
collection is represented by a vertex and each document is represented by a net. In this
hypergraph, a vertex is among the pins of a net if the document corresponding to the net
contains the term corresponding to the vertex, that is, the number of pins is proportional
to the number of postings in the index. In case of a Web-scale inverted index, where
the number of documents is in the order of tens of billions and the average number of
unique terms in a document is in the order of hundreds, the resulting hypergraph may
contain trillions of pins. The existing hypergraph partitioning tools are not capable of
partitioning such large hypergraphs. The approach of Zhang and Suel [2007] constructs
and partitions a graph where each edge represents a pair of inverted lists. Each edge
is weighted by the size of the intersection between corresponding inverted lists. For a
Web-scale inverted index, this approach may be computationally infeasible due to the
massive amount of list intersection operations that must be carried out.

The proposed model does not require accessing the inverted lists (except for their
sizes). Hence, its scalability is independent of the size of the inverted index. Construct-
ing our model, however, requires having information about the access patterns to the
lists. In practice, this information can be obtained from the past query logs collected
over a period of time. To account for the changes in the query stream, the model can be
periodically reconstructed using a recent query log and the previously deployed index
can be replaced by the newly generated index. Herein, we assume a similar mecha-
nism, i.e., we build our model using a training query log and evaluate its performance
over a more recent test query log.

We note that, in processing queries using a term-based-partitioned inverted index,
there are many cost components that determine the overall performance, mainly the
cost of disk seeks, disk data transfer, query processing, and network communication.
We feel that it is difficult to come up with a theoretically sound index partitioning
model that can capture all of these cost components at the same time. The proposed
model simply aims to minimize the average hitting set size of queries, trying to gather
coaccessed query terms on the same index servers. This approach indirectly reduces the
communication volume while increasing the computational benefits due to query pro-
cessing optimizations (e.g., skipping and MaxScore [Jonassen and Bratsberg 2012a]).
The reason our model cannot directly capture the communication volume is because
this information becomes available during the actual query evaluation, that is, it is
not available during the model construction phase. Moreover, in the pipelined query
processing scheme, the total communication volume incurred by a query depends on
the query routing policy, which is again determined on-the-fly. We note that our model
cannot capture the computational load of a query either. This is because the state of
the result cache before a query is processed cannot be exactly known during the model
construction phase. Our model can capture the computational load balance under the
assumption that future access frequencies of inverted lists can be accurately estimated.
Here, once again, the state of the posting list cache at the time of fetching a list from
disk cannot be known by the model. But, the vertex weighting scheme used in the model
can be modified to capture the fact that certain posting lists almost always reside in
the posting list cache and hence do not incur any disk access overhead.

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

A Term-Based Inverted Index Partitioning Model for Efficient Distributed Query Processing 15:13

We limit the discussion provided in the rest of the article to the pipelined query pro-
cessing scheme. Our model, however, is applicable to the traditional query processing
scheme as well. Moreover, our model is not restricted by the logic used in document
matching.

6. EXPERIMENTAL SETUP

In our experiments, we use about 25 million documents from the publicly available
TREC GOV2 collection and 100, 000 queries from the publicly available TREC Terabyte
Track 2006 Efficiency Topics.3 Both documents and queries are preprocessed using the
same procedure, which includes case conversion, stemming, and stop-word removal.
The number of queries that remain after preprocessing is 96,764. The size of the
full inverted index built on the document collection is about 7GB. The inverted lists
are compressed by the NewPFD algorithm [Yan et al. 2009]. The vocabulary contains
15,417,016 unique terms, each stored as a 20-character token with additional data
(e.g., term and collection frequency, maximum score, term-to-node mapping, inverted
file end offset). The main (global) lexicon stored on the broker node is 500MB and the
short (local) lexicon maintained on each node is about 50MB. Both types of lexicons
are kept in memory as sorted arrays and are accessed by binary search. The access
cost is negligible compared to the cost of posting list processing. The broker node stores
a memory-based array of maximum scores which contributes with another 200MB of
data, but according to our observations in an earlier work [Jonassen and Bratsberg
2012a], this significantly improves the performance.

To create a more realistic setup, we assume the presence of a query result cache
with infinite capacity [Cambazoglu et al. 2010]. We divide the cleansed query sample
into three parts, each serving a different purpose. The first 60,000 queries are used
to construct the proposed partitioning model. The next 10,000 queries are used to
warm up the retrieval system. Finally, the following 20,000 queries are used in the
actual performance evaluation. Due to the infinite result cache assumption, only the
compulsory misses need to be evaluated using the inverted index. Hence, we consider
only the unique queries in the model construction and evaluation steps. Moreover, we
ignore a query if none of its terms appears in the vocabulary of the document collection.

The experiments are conducted on a nine-node PC cluster interconnected with a
Gigabit network. One of the nodes is used as a broker, and the other nodes are used
as workers. Each node has two 2.0 GHz quad-core CPUs, 8 GB of memory, and a
SATA hard-disk. The query processing framework is implemented in Java.4 In the
implementation, we use the Okapi BM25 scoring model with skipping and MaxScore
optimizations [Jonassen and Bratsberg 2012a].

To partition the constructed hypergraphs, we use the PaToH hypergraph partitioning
tool [Aykanat et al. 2008; Catalyurek and Aykanat 1999] with its default parameters
(except for the load imbalance constraint, which is set to 5%). PaToH uses the recursive
bipartitoning (RB) framework to produce K-way partitions. In each RB step, it adopts
the multilevel framework to obtain two-way partitions. Each RB step involves three
phases: coarsening, initial partitioning, and uncoarsening. In the coarsening phase,
various matching heuristic are used to cluster highly interacting vertices. During the
uncoarsening phase, some FM-based iterative improvement heuristics are used to
refine the bipartition found in the initial partitioning phase.

The running time of the FM-based heuristics is linearly proportional with the number
of pins in the hypergraph. The matching heuristics used in the coarsening phase are

3TREC Terabyte Track 2006 Efficiency Topics, http://plg.uwaterloo.ca/ claclark/TB06.
4The code is available on GitHub: https://github.com/s-j/laika.

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

15:14 B. B. Cambazoglu et al.

Table I. The Naming Convention Used in the Article

Type Tag Description
CutHP Proposed model optimizing the cutnet metric (Equation (11))

Inverted ConHP Proposed model optimizing the connectivity metric (Equation (12))
index Moffat Bin packing approach in Moffat et al. [2006]
partitioning Zhang Graph partitioning approach in Zhang and Suel [2007]
strategy Lucchese Partitioning heuristic in Lucchese et al. [2007]

DP Document-based partitioning with round-robin distribution
Server NR Inverted lists are not replicated
selection LL Currently least loaded server is selected
policy HS Index server is selected from those in the hitting set
Processing AND Queries are processed in conjunctive mode
mode OR Queries are processed in disjunctive mode

relatively expensive and they determine the overall running time. Their running times
can be as high as the sum of the squares of the net sizes. In our particular problem,
the size a net ni is equal to the number of terms in the corresponding query qi. Hence,
the overall running time complexity of the hypergraph partitioning tool is O(log K ×∑

qi∈Q |qi|2). The hypergraphs used in our experiments could be partitioned in only a
few minutes.

We evaluate the proposed index partitioning model for the cutnet metric
(Equation (11)) as well as the connectivity metric (Equation (12)). We refer to
the corresponding strategies as CutHP and ConHP, respectively. As the baseline, we
consider three previously proposed term-based index partitioning strategies. First, we
consider the bin packing approach, where inverted lists are assigned to index servers
in decreasing order of their expected loads (the “past Lt” strategy proposed by Moffat
et al. [2006]). Second, we consider the graph partitioning strategy proposed by Zhang
and Suel [2007]. To partition the constructed graphs, we use the MeTiS graph parti-
tioning tool (version 5.0) [Karypis and Kumar 1998]. Finally, we evaluate the heuristic
proposed by Lucchese et al. [2007]. We refer to these three strategies as Moffat, Zhang,
and Lucchese, respectively. In addition to these, we consider document-based parti-
tioning as another baseline. In our implementation of this partitioning strategy, herein
referred to as DP, the documents are distributed to index servers in a round-robin
fashion, that is, the documents are assigned to each index server in a circular order.

The aforementioned term-based partitioning strategies are coupled with index repli-
cation. In particular, we replicate the longest 100 inverted lists on all index servers,
following the practice in Moffat et al. [2006]. The postings of the replicated inverted
lists form 8.46% of all postings in the inverted index. We evaluate two different policies
to select the index server responsible for processing a replicated list (see Section 2.4
for more details). In the first strategy [Moffat et al. 2006], the currently least loaded
server is selected. In the second strategy [Lucchese et al. 2007], the responsible server
is selected from those in the hitting set of the query. We denote these two server se-
lection policies by the LL (least loaded) and HS (hitting set) tags, respectively. We also
evaluate a policy where the inverted lists are not replicated. This policy is denoted by
the NR (no replication) tag.

We adopt the pipelined query processing scheme in all strategies involving term-
based partitioning. In query processing, we consider the conjunctive mode (AND logic)
as well as the disjunctive mode (OR logic). The naming convention we follow in the rest
of the article is summarized in Table I.

In our experiments, we reset the disk cache of the operating system and flush the
memory before each experiment as an effort towards reading some portion of the

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

A Term-Based Inverted Index Partitioning Model for Efficient Distributed Query Processing 15:15

1 2 3 4 5 > 5
Hitting set size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F
ra

ct
io

n
of

 q
ue

ri
es

ConHP-NR
CutHP-NR
Zhang-NR
Lucchese-NR
Moffat-NR

Fig. 2. Fraction of queries that have a certain hitting set size.

inverted list data from the disk. We repeat each experiment twice in alternating
order of considered multiprogramming levels5 (e.g., first m = 1, 8, . . . , 64 and then
m = 64, 8, . . . , 1) and take the average of the values observed in the two runs. Unless
otherwise stated, we set the number of index servers to eight in all experiments (i.e.,
K = 8).

7. EXPERIMENTAL RESULTS

7.1. Partitioning Quality

We first evaluate the partitioning quality of the competing term-based index partition-
ing strategies. Ideally, better strategies should lead to smaller hitting set sizes, that is,
the query terms should span fewer index servers. In Figure 2, we display the fraction
of queries which have a certain hitting set size. In case of ConHP and CutHP strate-
gies, about one-fifth of the queries can be answered by only one index server, without
requiring any communication for the intermediate score information. In general, the
ConHP strategy, whose optimization objective is to minimize the hitting set size, per-
forms slightly better than CutHP. Compared to the proposed strategies, the baseline
strategies demonstrate relatively inferior performance in reducing the hitting set size.
The worst performance is obtained by Moffat, which aims to improve the load balance
instead of reducing the hitting set size. The results of this experiment indicate that the
proposed model can effectively increase the likelihood that coaccessed inverted lists
are stored on the same index server.

Figure 3 shows the hitting set sizes with respect to queries of different lengths, that
is, the average number of index servers that are involved in processing queries of a
certain length. Obviously, the hitting set size is one for all queries that contain a sin-
gle term, independent of the employed partitioning strategy. In general, the proposed
model seems to result in smaller hitting set sizes relative to the baseline strategies,
independent of the query length. For queries containing more than seven terms, how-
ever, we observe a slightly different behavior in that the performance gap between
different strategies becomes smaller. This is due to the presence of very long queries

5Multiprogramming level refers to the number of queries that are concurrently being processed in the system
at any point in time.

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

15:16 B. B. Cambazoglu et al.

1 2 3 4 5 6 7 > 7 Avg.

Query length

0

1

2

3

4

5

6

A
ve

ra
ge

 h
it

ti
ng

 s
et

 s
iz

e

ConHP-NR
CutHP-NR
Zhang-NR
Lucchese-NR
Moffat-NR

Fig. 3. Variation of the average hitting set size with query length.

(i.e., |q|
 K) whose processing spans all index servers, no matter how the index is par-
titioned. For such queries, the proposed model is less effective in reducing the hitting
set size. On average (the last five columns in the figure), the hitting set sizes are 2.39,
2.42, 2.46, 2.48, and 2.69 for ConHP, CutHP, Zhang, Lucchese, and Moffat, respectively.

7.2. Performance Comparison of Term-Based Partitioning Strategies

The goal of the experiments whose results are reported in this section is to evaluate the
impact of the competing index partitioning strategies on the actual query processing
performance. We evaluate the performance at different multiprogramming levels. In
particular, we set the multiprogramming level m to 1, 8, 16, 24, 32, 40, 48, 56, and
64. The first data point in the curves corresponds to m = 1 while the last data point
corresponds to m = 64. In the experiments, we evaluate all possible combinations of
index partitioning strategies (ConHP, CutHP, Zhang, Lucchese, Moffat) with the policies
for selecting an index server responsible for processing a replicated list (NR, LL, HS).

Figure 4(a) shows the average query response time and query processing throughput
values observed at different multiprogramming levels, assuming the AND logic in query
processing. According to the figure, independent of the selected index partitioning
strategy, the HS replicated list selection policy always yields better performance than
the LL policy. Interestingly, also the NR policy always gives better results than the
LL policy. Under the LL or NR policies, the performance gap between the competing
index partitioning strategies is relatively small. If the HS policy is employed, however,
the performance gaps are more visible. Especially at lower multiprogramming
levels, the performance of the proposed ConHP and CutHP strategies is better than
the performance of the baseline strategies Zhang, Lucchese, and Moffat. At higher
multiprogramming levels (56 and 64), Zhang performs slightly better than the rest of
the strategies. The throughput values start to saturate around 250 query/sec.

In Figure 4(b), we report similar performance results for the OR mode. As expected,
at the same multiprogramming levels, the OR logic results in much slower response
times and lower throughput values than the AND mode. In general, when the HS policy is
employed, the ConHP and CutHP strategies both achieve considerably better performance
than the rest of the combinations. As an example, when m = 24, about seven more
queries can be processed every second, on average, with an average response time

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

A Term-Based Inverted Index Partitioning Model for Efficient Distributed Query Processing 15:17

100 125 150 175 200 225 250 275 300
Average query response time (ms)

0

30

60

90

120

150

180

210

240

270

Q
ue

ry
 p

ro
ce

ss
in

g
th

ro
ug

hp
ut

 (
qu

er
y/

se
c)

ConHP-HS
CutHP-HS
Zhang-HS
Lucchese-HS
Moffat-HS
ConHP-LL
CutHP-LL
Zhang-LL
Lucchese-LL
Moffat-LL
ConHP-NR
CutHP-NR
Zhang-NR
Lucchese-NR
Moffat-NR

(a) AND mode.

240 280 320 360 400 440 480 520 560
Average query response time (ms)

0

20

40

60

80

100

120

140

Q
ue

ry
 p

ro
ce

ss
in

g
th

ro
ug

hp
ut

 (
qu

er
y/

se
c)

ConHP-HS
CutHP-HS
Zhang-HS
Lucchese-HS
Moffat-HS
ConHP-LL
CutHP-LL
Zhang-LL
Lucchese-LL
Moffat-LL
ConHP-NR
CutHP-NR
Zhang-NR
Lucchese-NR
Moffat-NR

(b) OR mode.

Fig. 4. Average query response time versus query processing throughput at different multiprogramming
levels (m ∈ {1, 8, 16, 24, 32, 40, 48, 56, 64}).

saving of 40 ms relative to the closest baseline Zhang. We also observe that ConHP
performs slightly better than CutHP, but the performance gap is not significantly large.

In Figures 5(a) and 5(b), average query response times are dissected into two com-
ponents as computation time and communication time, at selected multiprogramming
levels (m ∈ {1, 32, 64}), for the AND and ORmodes, respectively. The computation times in-
clude the time for fetching the inverted lists and scoring the documents. The communi-
cation times include the time for the preparation and transfer of the network messages.

According to Figure 5(a), the query response times in the AND logic are mainly de-
termined by the computation time rather than the communication time. Especially
at large multiprogramming levels (e.g., m = 64), the computation is the bottleneck as
the load imbalance among the index servers becomes more pronounced. When m = 64,

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

15:18 B. B. Cambazoglu et al.

1 32 64 1 32 64
Multiprogramming level

0

20

40

60

80

100

120

140

160

180

200

220

T
im

e
(m

s)

ConHP-HS
CutHP-HS
Zhang-HS
Lucchese-HS
Moffat-HS

Computation Communication

(a) AND mode.

1 32 64 1 32 64
Multiprogramming level

0

30

60

90

120

150

180

210

240

270

300

330

T
im

e
(m

s)

ConHP-HS
CutHP-HS
Zhang-HS
Lucchese-HS
Moffat-HS

Computation Communication

(b) OR mode.

Fig. 5. Computation and communication times at different multiprogramming levels (m ∈ {1, 8, 16, 24, 32,

40, 48, 56, 64}).

the computation times are relatively higher for the ConHP and CutHP strategies, which
are less successful in load balancing. At lower multiprogramming levels, however, those
two strategies lead to lower computation times as certain overheads are reduced by
better placement of inverted lists on the index servers (e.g., less initialization overhead
and better performance in query processing optimizations) and the computational load
imbalance is relatively less important since the index servers are not heavily loaded.
As expected, the ConHP and CutHP strategies lead to lower communication times since
there are fewer hops in the communication and less data has to be communicated.

According to Figure 5(b), in case of OR logic, the communication is relatively more
pronounced although the computation time still dominates the overall response time.
The proposed strategies are still better in reducing the communication overheads.

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

A Term-Based Inverted Index Partitioning Model for Efficient Distributed Query Processing 15:19

0 50 100 150 200 250 300 350 400 450 500
Average query response time (ms)

0

40

80

120

160

200

240

280

320

360

400

Q
ue

ry
 p

ro
ce

ss
in

g
th

ro
ug

hp
ut

 (
qu

er
y/

se
c) DP-AND

ConHP-LR-AND
DP-OR
ConHP-LR-OR

Fig. 6. Document-based partitioning versus the best performing term-based partitioning technique
(ConHP-LR).

More specifically, when m = 64, the ConHP and CutHP strategies incur about 31% less
communication overhead than Moffat and 14% less communication overhead than
Zhang and Lucchese. Also, at low multiprogramming levels, some savings are observed
in the average computation times.

7.3. Comparison with Document-Based Partitioning

In this section, we compare the best-performing term-based index partitioning strategy
(ConHP) with document-based index partitioning (DP). In Figure 6, we display the query
response times and throughput values observed at different multiprogramming levels,
for both AND and OR modes. According to the figure, the throughput achieved by the
DP strategy saturates at much lower multiprogramming levels. The decrease in the
throughput as we increase m from 8 to 16 is potentially due to the bottleneck emerging
in disk accesses as there are too many queries per index server. In general, if we compare
the performance at the same multiprogramming levels, the performance attained by
DP is quite superior to that attained by ConHP.

We next conduct experiments in which the test queries are of a certain length
(|q| ∈ {1, 2, 3, 4, 5,> 5}). The results reported in Table II indicate that the superior per-
formance of DP is mainly because the pipelined query processing scheme performs quite
poorly for very long queries. The poor performance in case of long queries is mainly due
to the high communication overhead and because the query processing optimizations
are less effective. Moreover, in term-based partitioning, increasing query length tends
to increase the load imbalance because the variation in inverted list sizes is higher.
This implies much slower response times for long queries compared to document-based
partitioning, which does a good job in balancing the query processing load across the
index servers. With short queries (e.g., one- or two-term queries) and especially at high
multiprogramming levels (e.g., m = 64), the performance gap between the proposed
term-based partitioning model and DP is relatively smaller.

In Table II, it is also interesting to observe that, at high multiprogramming levels,
two-term queries lead to better throughput values compared to single-term queries
although single-term queries have a lower average response latency. This is mainly due
to the effect of query processing optimizations (e.g., skipping), which are only applicable

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

15:20 B. B. Cambazoglu et al.

Table II. Performance with Varying Query Length

Response latency (ms) Throughput (query/sec)
AND OR AND OR

m |q| CutHP-LR DP CutHP-LR DP CutHP-LR DP CutHP-LR DP

1

1 50.9 11.1 50.9 11.1 19.6 89.3 19.6 89.3
2 59.9 7.1 69.5 13.5 16.6 138.4 14.4 73.3
3 111.1 8.8 133.6 18.1 9.0 111.5 7.5 54.7
4 136.8 9.7 278.6 26.0 7.3 101.9 3.6 38.1
5 151.3 10.7 481.1 36.1 6.6 92.2 2.1 27.6
> 5 161.3 12.0 1,077.6 56.6 6.2 82.8 0.9 17.6

32

1 66.5 75.7 66.5 75.7 247.3 368.8 247.3 368.8
2 88.9 71.5 97.9 94.1 348.5 439.2 304.4 334.1
3 154.9 91.0 180.9 130.0 203.1 348.7 173.1 244.4
4 206.5 118.6 373.0 184.6 149.2 267.6 82.9 172.4
5 234.5 153.9 637.6 258.1 131.5 205.4 48.2 122.8
> 5 271.3 197.4 1,394.8 392.4 111.3 158.6 21.7 80.3

64

1 86.6 122.8 86.6 122.8 216.6 349.7 216.6 349.7
2 141.7 130.0 153.0 182.6 418.1 475.5 375.6 338.7
3 245.9 179.8 277.7 252.5 253.4 349.8 223.1 249.4
4 341.4 233.4 547.6 370.6 177.8 270.0 111.0 170.6
5 386.9 301.5 898.9 506.7 155.7 207.0 66.3 123.7
> 5 449.0 388.4 1,902.8 766.7 129.4 157.3 30.3 80.7

Table III. Performance with Varying Number of Index Servers

Response latency (ms) Throughput (query/sec)
AND OR AND OR

m K ConHP-LR DP ConHP-LR DP ConHP-LR DP ConHP-LR DP

8
2 126.1 56.5 214.9 77.8 63.4 141.2 37.1 102.6
4 114.7 38.1 236.7 55.3 69.6 209.6 33.7 144.2
8 117.9 21.2 253.5 33.7 67.7 375.0 31.5 236.6

16
2 215.0 150.9 320.7 205.8 74.3 105.9 49.7 77.6
4 138.3 93.1 265.1 136.7 115.4 171.5 60.0 116.9
8 129.0 46.8 273.5 77.1 123.7 341.0 58.2 207.0

32
2 428.6 302.3 588.6 416.3 74.5 105.6 54.1 76.7
4 229.3 184.2 387.2 268.6 138.5 173.2 81.7 118.9
8 156.4 90.5 311.2 152.6 203.6 352.4 101.9 209.2

64
2 802.6 604.8 1,158.3 837.3 79.2 105.3 54.9 76.2
4 462.8 360.5 727.9 535.8 136.4 176.5 86.6 119.0
8 253.8 178.4 452.0 304.5 249.0 356.6 139.4 209.3

in case of multiterm queries. When processing two-term queries whose inverted lists
are located in the same index server, the postings in the shorter list can be used to skip
the postings in the longer list. Hence, such two-term queries can be processed faster
than single-term queries, resulting in increased throughput. On the other hand, the
average response latency of two-term queries is higher than that of single-term queries
due to the larger communication overhead incurred in case of two-term queries whose
lists are located in different index servers.

As a final experiment, we evaluate the performance of the ConHP and DP strategies
with varying number of index servers (K ∈ {2, 4, 8}). According to the results in
Table III, DP shows better scalability than ConHP with increasing number of servers.
The main reason is the presence of intraquery parallelism in document-based par-
titioning, which prevents high load imbalance rates as the number of index servers

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

A Term-Based Inverted Index Partitioning Model for Efficient Distributed Query Processing 15:21

increases. On the other hand, interquery parallelism, which is available in term-based
partitioning, does not help much against the increasing load imbalance. Hence, ConHP
does not scale well with increasing number of index servers, especially when the
multiprogramming level is low (see the decrease in the throughput values as we
increase K from four to eight, when m = 8). However, it has relatively good scalability
at high multiprogramming levels (e.g., m = 64). In general, we observe that the
performance gap between ConHP and DP is lower at high multiprogramming levels
and small number of index servers. Both strategies scale better under the AND logic
assumption than the OR logic assumption.

We believe that term-based partitioning is likely to be less scalable compared to
document-based partitioning with increasing collection sizes. This is because, in term-
based partitioning, the inverted lists are assigned to index servers as a whole. Growing
collection sizes imply larger inverted list sizes. Hence, we can expect to have high
response latencies in online query processing. This is one of the reasons for commercial
search engines to prefer document-based partitioning [Barroso et al. 2003].

8. CONCLUSION

We proposed a novel term-based inverted index partitioning model. The proposed model
aims to reduce the communication costs incurred in query processing while maintaining
the computational load balance of the index servers. Through extensive experiments,
we demonstrated that the proposed model can yield better query processing perfor-
mance compared to the term-based index partitioning strategies previously proposed
in literature. Compared to document-based index partitioning, however, there is still a
large performance gap that remains.

A possible extension to our work is a multiconstraint model, where the storage load
imbalance can be captured as an additional constraint in the model. Another possible
extension is to replace the adopted replication heuristic, which replicates frequently
accessed inverted lists on all index servers, with the recently proposed techniques that
couple hypergraph partitioning with replication [Selvitopi et al. 2012]. This may lead
to further reduction in communication costs.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, whose comments have greatly improved the quality of the article.

REFERENCES

ALPERT, C. J. AND KAHNG, A. B. 1995. Recent directions in netlist partitioning: a survey. Integration VLSI J.
19, 1–2, 1–81.

AYKANAT, C., CAMBAZOGLU, B. B., AND UÇAR, B. 2008. Multi-level direct K-way hypergraph partitioning with
multiple constraints and fixed vertices. J. Parallel Distrib. Comput. 68, 5, 609–625.

BADUE, C., RIBEIRO-NETO, B., BAEZA-YATES, R., AND ZIVIANI, N. 2001. Distributed query processing using
partitioned inverted files. In Proceedings of the 8th International Symposium on String Processing and
Information Retrieval. 10–20.

BADUE, C. S., BAEZA-YATES, R., RIBEIRO-NETO, B., ZIVIANI, A., AND ZIVIANI, N. 2007. Analyzing imbalance among
homogeneous index servers in a web search system. Inf. Process. Manage. 43, 3, 592–608.

BARROSO, L. A., DEAN, J., AND HÖLZLE, U. 2003. Web search for a planet: the Google cluster architecture. IEEE
Micro 23, 2, 22–28.

BERGE, C. 1985. Graphs and Hypergraphs. Elsevier Science Ltd.
CAMBAZOGLU, B. B. 2006. Models and algorithms for parallel text retrieval. Ph.D. dissertation. Department

of Computer Engineering, Bilkent University.
CAMBAZOGLU, B. B. AND AYKANAT, C. 2006. A term-based inverted index organization for communication-

efficient parallel query processing. In Proceedings of the IFIP International Conference on Network and
Parallel Computing. 104–109.

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

15:22 B. B. Cambazoglu et al.

CAMBAZOGLU, B. B. AND BAEZA-YATES, R. 2011. Scalability challenges in web search engines. In Advanced
Topics in Information Retrieval, Information Retrieval Series, vol. 33, Springer, 27–50.

CAMBAZOGLU, B. B., CATAL, A., AND AYKANAT, C. 2006. Effect of inverted index partitioning schemes on perfor-
mance of query processing in parallel text retrieval systems. In Proceedings of the 21st International
Conference on Computer and Information Sciences. 717–725.

CAMBAZOGLU, B. B., JUNQUEIRA, F. P., PLACHOURAS, V., BANACHOWSKI, S., CUI, B., LIM, S., AND BRIDGE, B. 2010. A
refreshing perspective of search engine caching. In Proceedings of the 19th International Conference on
World Wide Web. 181–190.

CATALYUREK, U. AND AYKANAT, C. 1999. Hypergraph-partitioning-based decomposition for parallel sparsematrix
vector multiplication. IEEE Trans. Parallel Distrib. Systems 10, 7, 673–693.

GAN, Q. AND SUEL, T. 2009. Improved techniques for result caching in web search engines. In Proceedings of
the 18th International Conference on World Wide Web. 431–440.

JEONG, B.-S. AND OMIECINSKI, E. 1995. Inverted file partitioning schemes in multiple disk systems. IEEE
Trans. Parallel Distrib. Systems 6, 2, 142–153.

JONASSEN, S. AND BRATSBERG, S. E. 2009. Impact of the query model and system settings on performance of
distributed inverted indexes. In Proceedings of the Norsk Informatikkonferance. 143–154.

JONASSEN, S. AND BRATSBERG, S. E. 2010. A combined semi-pipelined query processing architecture for
distributed full-text retrieval. In Proceedings of the 11th International Conference on Web Information
Systems Engineering. 587–601.

JONASSEN, S. AND BRATSBERG, S. E. 2012a. Improving the performance of pipelined query processing with skip-
ping. In Proceedings of the 13th International Conference on Web Information Systems Engineering. 1–15.

JONASSEN, S. AND BRATSBERG, S. E. 2012b. Intra-query concurrent pipelined processing for distributed full-text
retrieval. In Proceedings of the 34th European Conference on Advances in Information Retrieval. 413–425.

KARYPIS, G. AND KUMAR, V. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput. 20, 1, 359–392.

KUCUKYILMAZ, T., TURK, A., AND AYKANAT, C. 2012. A parallel framework for in-memory construction of
term-partitioned inverted indexes. Comput. J. 55, 11, 1317–1330.

LI, J., LOO, B., HELLERSTEIN, J., KAASHOEK, F., KARGER, D., AND MORRIS, R. 2003. On the feasibility of peer-to-peer
web indexing and search. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems.
207–215.

LUCCHESE, C., ORLANDO, S., PEREGO, R., AND SILVESTRI, F. 2007. Mining query logs to optimize index parti-
tioning in parallel web search engines. In Proceedings of the 2nd International Conference on Scalable
Information Systems. 43:1–43:9.

MA, Y.-C., CHEN, T.-F., AND CHUNG, C.-P. 2002. Posting file partitioning and parallel information retrieval.
J. Syst. Soft. 63, 2, 113–127.

MA, Y.-C., CHUNG, C.-P., AND CHEN, T.-F. 2011. Load and storage balanced posting file partitioning for parallel
information retrieval. J. Syst. Soft. 84, 5, 864–884.

MACFARLANE, A., MCCANN, J. A., AND ROBERTSON, S. E. 2000. Parallel search using partitioned inverted files.
In Proceedings of the 7th International Symposium on String Processing and Information Retrieval.
209–220.

MOFFAT, A., WEBBER, W., AND ZOBEL, J. 2006. Load balancing for term-distributed parallel retrieval. In
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. 348–355.

MOFFAT, A., WEBBER, W., ZOBEL, J., AND BAEZA-YATES, R. 2007. A pipelined architecture for distributed text
query evaluation. Inf. Retriev. 10, 3, 205–231.

RIBEIRO-NETO, B. A. AND BARBOSA, R. A. 1998. Query performance for tightly coupled distributed digital
libraries. In Proceedings of the 3rd ACM Conference on Digital Libraries. 182–190.

RIBEIRO-NETO, B. A., KITAJIMA, J. P., NAVARRO, G., SANT’ANA, C. R. G., AND ZIVIANI, N. 1998. Parallel generation
of inverted files for distributed text collections. In Proceedings of the 18th International Conference of
the Chilean Society of Computer Science. 149–157.

SELVITOPI, R. O., TURK, A., AND AYKANAT, C. 2012. Replicated partitioning for undirected hypergraphs.
J. Parallel and Distrib. Comput. 72, 4, 547–563.

SUEL, T., MATHUR, C., WU, J., ZHANG, J., DELIS, A., KHARRAZI, M., LONG, X., AND SHANMUGASUNDARAM, K. 2003.
ODISSEA: A peer-to-peer architecture for scalable web search and information retrieval. In Proceedings
of the International Workshop on the Web and Databases.

TOMASIC, A. AND GARCIA-MOLINA, H. 1993. Performance of inverted indices in shared-nothing distributed text
document information retrieval systems. In Proceedings of the 2nd International Conference on Parallel
and Distributed Information Systems. 8–17.

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

TWEB0703-15 ACM-TRANSACTION August 28, 2013 16:15

A Term-Based Inverted Index Partitioning Model for Efficient Distributed Query Processing 15:23

WEBBER, W. 2007. Design and evaluation of a pipelined distributed information retrieval architecture.
Master’s thesis. University of Melbourne.

YAN, H., DING, S., AND SUEL, T. 2009. Inverted index compression and query processing with optimized
document ordering. In Proceedings of the 18th International Conference on World Wide Web. 401–410.

ZHANG, J. AND SUEL, T. 2005. Efficient query evaluation on large textual collections in a peer-to-peer environ-
ment. In Proceedings of the 5th IEEE International Conference on Peer-to-Peer Computing. 225–233.

ZHANG, J. AND SUEL, T. 2007. Optimized inverted list assignment in distributed search engine architectures.
In Proceedings of the 23rd IEEE International Parallel and Distributed Processing Symposium. 1–10.

ZOBEL, J. AND MOFFAT, A. 2006. Inverted files for text search engines. ACM Comput. Surv. 38, 2, Article 6.

Received January 2012; revised August 2012, January 2013; accepted March 2013

ACM Transactions on the Web, Vol. 7, No. 3, Article 15, Publication date: September 2013.

