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In this paper, a novel algorithm is proposed to achieve robust high resolution detection in sparse
multipath channels. Currently used sparse reconstruction techniques are not immediately applicable in
multipath channel modeling. Performance of standard compressed sensing formulations based on dis-
cretization of the multipath channel parameter space degrade significantly when the actual channel
parameters deviate from the assumed discrete set of values. To alleviate this off-grid problem, we make
use of the particle swarm optimization (PSO) to perturb each grid point that reside in each multipath
component cluster. Orthogonal matching pursuit (OMP) is used to reconstruct sparse multipath compo-
nents in a greedy fashion. Extensive simulation results quantify the performance gain and robustness
obtained by the proposed algorithm against the off-grid problem faced in sparse multipath channels.
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1. Introduction

In a multipath channel, transmitted signal is reflected off vari-
ous obstacles and a superposition of multiple delayed, attenuated,
frequency-phase shifted copies of the original signal arrive at the
receiver. At first, the presence of multipath arrivals seems to de-
grade the quality of the communication, but a carefully designed
communication system can take advantage of the diversity pro-
vided by the multipath environment and mitigate fading. Diver-
sity in multipath channels is a result of variation between the
direction-of-arrivals (DOA), delays and Doppler shifts of the indi-
vidual multipath components. In order to use the diversity and
mitigate the affect of multipath fading, the channel should be ac-
curately modeled and the channel state information (CSI) should
be provided to the receiver. Most of the time, since the CSI is not
available to systems, channel should be periodically estimated at
the receiver to take advantage of the diversity provided by mul-
tipath propagation. Mainly, there exist two approaches: training
based and blind channel estimation. In training based methods,
information carrying training signals, that are known to the re-
ceiver, are emitted to the environment and the CSI is obtained
from received and known training signals. Training based chan-
nel estimation methods need simple processing and considerably
reduce receiver complexity. Therefore, these methods are exten-
sively used in wireless communication systems [1]. On the other
hand, blind channel estimation methods obtain the CSI using only
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the statistics of information carrying signals. They are known to be
theoretically efficient but need complex processing [2].

There have been many research efforts in developing train-
ing based methods for channel modeling. These efforts basically
concentrate on two phases, namely the sensing and reconstruc-
tion. In the sensing phase, training signals are designed to probe
the channel and in reconstruction phase, receiver output is pro-
cessed to obtain the CSI. Designing proper training signals and
developing efficient reconstruction techniques are highly critical
in order to accurately model the channel. The general assump-
tion in most of the important works in wireless communications
is that there exists a rich multipath environment and linear recon-
struction techniques are known to be optimal in these channels
[3,4]. However, recent research show that wireless channels have
a sparse structure in time, frequency and space [5–7]. Moreover, it
is presented in [8,9], that training based methods using linear re-
construction techniques cannot fully exploit the sparse structure of
the channel and causing over utilization of the resources. Recently,
by embedding the key concepts from compressed sensing, new
training based techniques have been proposed for sparse channels
that have better performance than usual least-squares (LS) based
approaches to model the sparse wireless channel [8]. In [10,11],
authors use a virtual representation of physical multipath chan-
nels to model the time–frequency response of sparse multipath
channel. In [12,13] the matrix identification problem, where the
matrix has a sparse representation in some basis, is discussed.
Herman and Strohmer introduced the concept of compressed sens-
ing radar, which provides better time–frequency resolution over
classical radar by exploiting the sparse structure [13]. General as-
sumption used in all of these approaches is that the all multipath
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components fall on the grid points, which is practically impossible
as the multipath/target parameters are unknown. Hence the true
grid, which is possibly irregular, cannot be known beforehand. This
so called off-grid problem, results in a mismatch of the dictionary
and severely degrades the performance of techniques that exploit
sparsity. Furthermore, such methods exhibit an unstable behavior
as previously shown in theoretical studies on dictionary errors. In
several papers, the problem is pointed out and very simple grid
refinement approaches are stated [14,15].

In this paper, we propose a novel algorithm to overcome the
off-grid problem based on the sparse approximation theory. Firstly,
the receiver output is transformed to delay–Doppler domain by us-
ing the CAF for efficient exploitation of the delay–Doppler diversity
of the multipath components. In the transform domain, multi-
path clusters above the noise level are identified. This way, the
original channel identification problem is reduced to channel iden-
tification problems over the identified multipath clusters in the
delay–Doppler domain. Then, we make use of the particle swarm
optimization (PSO), to perturb the location of each grid point that
reside in each cluster separately and orthogonal matching pursuit
(OMP) is used to reconstruct sparse multipath components in a
greedy fashion [16,17].

The paper is organized as follows. The parametric channel
model is detailed in Section 2. In Section 3, some key concepts
of the CS and channel matrix identification are presented. Off-grid
problem in sparse approximation is defined in Section 4. Details of
the proposed technique are introduced in Section 5. The simulation
results are presented in Section 6.

2. Sparse multipath channel model

In this section, we present some important key points of the
virtual channel model for doubly selective channels (BWτmax � 1,
Tνmax � 1) that exploits the relation between the multipath com-
ponents and the signal space. Here, BW stands for bandwidth,
T for duration, τmax and νmax for delay and Doppler spreads, re-
spectively. Canonical model, also known as virtual channel model,
formulizes a lower dimensional approximation of the physical mul-
tipath channel by uniformly sampling of the delay–Doppler–spatial
domain [18,19]. This alternative modeling exploits the relation
between the clustering of multipath components within delay–
Doppler–spatial domain and sparsity of degrees of freedom in the
multipath channel and prepares the underlying structure to be
able to make use of the benefits of the CS theory and sparse ap-
proximation tools. Recent multipath channel measurement results
show that multipath components are distributed in as clusters
within a defined channel spread and impinge onto a receiver in
clusters [5,6]. In a scattering environment, clusters of multipath
components occur due to the large scale scatters such as build-
ings and hills. Multipath components within a cluster occur due
to small scale scatters of the large scale scatters such as windows
of buildings. Moreover, most of the practical multipath channels
such as ultra-wideband channels [7], high definition digital tele-
vision channels [20,21] underwater acoustic channels [22,23] and
broadband wireless communication channels [24] exhibit a clus-
tered sparse structure. There exist various efforts in the literature
to clarify the underlying theory of clustered sparsity. Therefore,
sparse nature of the multipath channels should be exploited in or-
der to accurately estimate the channel parameters [8]. For the sake
of simplicity and to be able to introduce the main idea clearly, we
provide formulation of the virtual channel model in delay–Doppler
domain. Extension to spatial domain is straightforward and can
be found in Ref. [19]. Doubly selective multipath channels can be
classified as either rich or sparse, depending on the separation be-
tween different multipath component clusters. The separations are
smaller than �τ = 1/BW and �ν = 1/T in delay–Doppler domain
for rich multipath component channels. However in sparse multi-
path component channels, the separations are larger than �τ and
�ν , where each delay–Doppler bin is of size �τ × �ν .

The physical multipath communication channel can be modeled
as:

H(t, f ) =
d∑

i=1

ζie
− j2πτi f e j2πνt, (1)

where d is the number of multipath components in the environ-
ment, ζi , τi and νi are the complex attenuation factor, delay and
Doppler shift of the ith multipath component, respectively. Al-
though, physical channel model given in (1) is a realistic model,
analysis and estimation steps are difficult, due to the presence of
large number of parameters, ζi , τi , νi , i = 1, . . . ,d. In situations
where we have finite signaling duration and channel bandwidth,
this multipath model can be approximated by a linear one, known
as virtual channel model [19]. By uniformly sampling the physi-
cal multipath environment in both delay with �τ and in Doppler
with �ν , a lower dimensional approximation of the multipath
channel model can be obtained. The corresponding discrete model
is:

H(t, f ) =
K−1∑
k=0

P∑
p=−P

H(k, p)e j2π p
T te− j2π k

BW f . (2)

The virtual channel coefficients can be related to the continuous
channel model as:

H(k, p) = 1

T BW

T∫
0

BW/2∫
−BW/2

H(t, f )e j2π p
T te− j2π k

BW f dt df . (3)

Number of resolvable delay and Doppler cells in each dimension
are:

K =
⌈

τmax

�τ

⌉
+ 1 = �BWτmax� + 1, (4)

P =
⌈

νmax

2�ν

⌉
+ 1 = �Tνmax/2� + 1. (5)

Hence, in the simplified model, the channel is characterized with
virtual channel coefficients H(k, p), K and P only. Physical and vir-
tual channel models can be related with each other by substituting
(1) into (3) as [19]:

H(k, p) =
d∑

i=1

ζie
− jπ(p−νi T ) sinc(p − νi T ) sinc(k − τiBW) (6)

≈
∑

i∈Sτ ,k∩Sν,p

ζi, (7)

where Sτ ,k ∩ Sν,p is the set of all multipath components whose
delays and Doppler’s are inside of a delay–Doppler resolution cell
of size �τ × �ν and centered on the kth virtual delay ( k

BW ) and
pth virtual Doppler shift ( p

T ). By using the given sampled virtual
channel representation, baseband receiver output can be written
as:

x(t) =
d∑

i=1

ζi s(t − τi)e j2πνi t

≈
K−1∑ P∑

H(k, p)s

(
t − k

BW

)
e j2π p

T t, (8)

k=0 p=−P
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where s(t) is the transmitted signal. Therefore, we can say that
the virtual model given above approximately represents the phys-
ical discrete doubly selective multipath channel in terms of an
Nh-dimensional parameter vector containing the virtual channel
coefficients H(k, p). Nh is defined as:

Nh = K (2P + 1) (9)

= (
2�Tνmax/2� + 1

)(�BWτmax� + 1
)

(10)

≈ τmaxνmaxT BW (11)

≈ τmaxνmaxNb. (12)

In the following sections, having summarized some key concepts
in sparse approximation, we formulate sensing of sparse doubly
selective multipath channels.

3. Sparse approximation and channel estimation

Consider the following model:

v = Υ α, (13)

where v ∈ C
N is the discrete signal in time domain which has

to be under-sampled, Υ ∈ C
N×N is the transform domain matrix

and α ∈ C
N is the S-sparse (‖α‖0 � S) vector with support set

ΛS = supp(α). Assume that, instead of directly using N samples
of v, take M (M 	 N) linear combinations of samples. These lin-
ear combinations can be represented with the matrix Φ ∈ C

M×N

and new model can be written as:

Φv = ΦΥ α,

x = Ψα, (14)

where x ∈ C
M can be termed as the observation or measurement

vector and Ψ ∈ C
M×N is the sensing matrix. Here we are looking

for a matrix Ψ , which has as few rows as possible and can guar-
antee recovery of a sparse input.

Our aim is to reliably recover α from knowledge of x and Ψ .
However, the dictionary matrix Ψ consists of more columns, called
as atoms, than rows. Therefore, in the absence of further prior
information, α is unidentifiable from x. This problem can be re-
solved by regularizing via sparsity constraints. That is, we search
for approximate solutions to linear systems in which the unknown
vector has few nonzero entries relative to its dimension:

min
α

‖α‖0 s.t. x = Ψα. (15)

In literature, this formulation is known as sparse approxima-
tion [25]. Extensive research is going on the theory and applica-
tions of sparse approximation and CS [26–30].

3.1. Requirements for the dictionary

In order to reliably recover α, we must have a guarantee no-
tifying that different values of α produce different values of x.
One way of having such a guarantee is determining all possible
S-element sets of atoms called subdictionaries and verifying that
the subspaces spanned by these subdictionaries differ from each
other. There exists several concepts that formulize the suitabil-
ity of a dictionary for sparse approximation: the mutual coher-
ence [31], the cumulative coherence [29], the exact recovery coef-
ficient (ERC) [29], the spark [30], the restricted isometry constants
(RICs) [32]. Mutual and cumulative coherence measures provide
close values and they are easy to calculate but suboptimal when
the RICs of Ψ are known. However, for arbitrary dictionary Ψ , cal-
culation of other three approaches is not efficient. In this paper,
we focus on the mutual coherence concept [27,31].
The mutual coherence μ = μ(Ψ ) is defined as:

μ� max
i 
= j

∣∣ψ T
i ψ j

∣∣, (16)

where columns ψ i of dictionary Ψ are atoms of the dictionary. As-
suming that each atom ‖ψ i‖2 = 1, then the coherence is bounded
by [33]:√

N − M

M(N − 1)
�μ(Ψ ) � 1. (17)

Two atoms are aligned when μ(Ψ ) = 1 and we have the maxi-
mal coherence which is the worst case scenario. When μ(Ψ ) =√

(N − M)/M(N − 1) we have the maximal incoherence which is
the best case scenario. In maximal incoherence scenario, the atoms
are spread out in C

M .

3.2. Orthogonal matching pursuit (OMP)

There exists many different approaches to solve the following
problem

x = Ψα + n, (18)

where n is the random noise. These approaches can be basi-
cally grouped in five classes [34]: convex relaxation [25], greedy
pursuit [35], nonconvex optimization [36], brute-force [37] and
Bayesian techniques [38]. Convex relaxation based and greedy pur-
suit techniques are the mostly used techniques in the rapidly
growing literature on CS theory. Choosing the proper algorithm
for a specific problem is not an easy task. In this paper, we pre-
fer to use OMP, which is the simplest effective greedy algorithm
in the literature [17]. The major advantage of OMP is its ease of
implementation and low cost of computation compared to relax-
ation based approaches [26]. Secondly, similar to relaxation based
approaches, OMP has also proven performance guarantees, two of
them are provided in the subsequent section. Thirdly, it is shown
that, in high SNR regimes, OMP shows better performance com-
pared to relaxation based approaches [27]. For this case, support
set of α can be recovered accurately and therefore OMP converges
to the oracle estimator that is based on the known support set Λo
(Λo is assumed to have been given by an oracle).

Basically, OMP estimates the support set Λ from the measure-
ments x by iteratively refining the current estimate for the vector
α by updating one or several coefficients that yield a considerable
improvement in approximating the signal. Having found a support
set Λ, α can be estimated by using LS as:

α̂ = Ψ
†
Λx, (19)

and 0 elsewhere. Here, Ψ
†
Λ is the Moore–Penrose pseudoinverse

of Ψ Λ . Algorithmic steps of the OMP are given in Table 1. Com-
putationally costly part of the OMP is the identification step [34]
which requires O (M × N) number of multiplications for an un-
structured dense matrix. LS technique is used in the reconstruction
step. For this purpose, QR factorization of Ψ Λk , which has a cost
of O (Mk) in the kth iteration, can be used. To stop the algorithm,
the following listed criteria can be used:

• stop after a fixed number of iterations, k = S ,
• stop when the residual has a small enough magnitude,

‖rk‖2 � ε .

An important property of the OMP is that the algorithm never
chooses the same atom twice [30]. Therefore, stopping after S
iterations guarantees that ‖α̂‖0 = S . In most of the practical appli-
cations similarly in the sparse multipath channel identification, the
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Table 1
Orthogonal matching pursuit (OMP).

– Input: x ∈C
M and Ψ ∈C

M×N

– Output: sparse vector α ∈C
N

(1) Initialization: set Λ0 = ∅, the residual r0 = x and set counter k = 1
(2) Determination: find an atom nk of Ψ , which is most strongly correlated with the residual r as

nk = arg max
n

|〈rk−1,ψn〉|
Λk = Λk−1 ∪ {nk}

(3) Estimation: using the chosen atoms up to now, find the best coefficients for approximating the signal

αk = arg min
b

‖x − Ψ Λk b‖2

(4) Iteration: update the residual:

rk = x − Ψ Λk αk

k = k + 1

repeat (2)–(4)
(5) Output: return the vector α with components α(n) = αk(n) for n ∈ Λk and α(n) = 0 otherwise
focus is on detecting significant components, i.e., indexes of α with
large magnitude, instead of recovering whole support set of α. It is
shown that, with the proper stopping rule, OMP will choose all the
most important components of α before possibly selecting incor-
rect components [39]. Therefore, due to the given reasons and to
put forward the novel idea behind the paper, we believe that OMP
is the right algorithm for the considered sparse multipath channel
identification problem.

3.3. Sensing sparse doubly selective multipath channels

In this section, based on the virtual model presented in Sec-
tion 2, we model the sensing matrix or dictionary matrix. Firstly,
we give the discrete time representation of the channel output
given in (8) as [9]:

xn =
K−1∑
k=0

P∑
p=−P

H(k, p)e
j2π p

Nb
n

sn−k, n = 0,1, . . . , Nb + K − 2

(20)

where Nb = T BW . Let’s define an Ňb = Nb + K − 1 length sequence
of vectors sn ∈C

K as:

sn = [sn sn−1 . . . sn−K+1]T , n = 0,1, . . . , Ňb − 1 (21)

where sγ = 0 for γ /∈ (0,1,2, . . . , Nb −1). The K ×2(P +1) channel

matrix Ȟ, each column of which represents the impulse response
for a fixed Doppler shift, is defined as

Ȟ =

⎡
⎢⎢⎣

H(0,−P ) . . . . . . H(0, P )

H(1,−P ) . . . . . . H(0, P )
... . . . . . .

...

H(K − 1,−P ) . . . . . . H(K − 1, P )

⎤
⎥⎥⎦ . (22)

Lastly, let � ∈ C
2P+1 be an Ňb-length sequence of phase vectors

with elements w Nb = e j2π/Nb :

�n = [
w Pn

Nb
w(P−1)n

Nb
. . . w−(P−1)n

Nb
w−Pn

Nb

]T
(23)

where n = 0,1, . . . , Ňb − 1. Channel output in (20) can be written
as follows:

xn = sT
n Ȟ�n (24)

= (
�T

n ⊗ sT
n

)
h, n = 0,1, . . . , Ňb − 1 (25)

where h = vec(Ȟ) ∈ Nh is the channel coefficients vector. In a
more compact form, channel system of equations is

x = Ψh (26)

where Ψ is the Ňb × Nh sensing matrix:
Ψ =

⎡
⎢⎢⎣

(�0 ⊗ s0)
T

(�1 ⊗ s1)
T

...

(�Ňb−1 ⊗ sŇb−1)
T

⎤
⎥⎥⎦ . (27)

Sensing matrix Ψ can also be expressed as the concatenation of K
blocks each of which are (Ňb × 2P + 1)-dimensional matrices:

Ψ = [Ψ 0 Ψ 1 . . . Ψ K−1 ]. (28)

If we have noise, Eq. (26) becomes:

x = Ψh+ n, (29)

where n is a zero-mean white Gaussian noise with variance σ 2. In
the following discussions, h is treated as an unknown determinis-
tic vector.

Linear measurement model in (29) contains Nh unknowns and
sensing matrix Ψ is a full rank matrix. Therefore, without a prior
sparsity assumption, LS solution of h is:

ĥ = (
Ψ HΨ

)−1
Ψ H x. (30)

This solution is also the maximum likelihood estimate [40]. Clearly,
we can write the ĥ as [9,27]:

ĥ = h+ (
Ψ HΨ

)−1
Ψ H n (31)

and the mean squared error of the LS estimator is bounded by the
following equation.

E‖ĥ− h‖2
2 = E

∥∥(
Ψ HΨ

)−1
Ψ H n

∥∥2
2 (32)

= σ 2 tr
((

Ψ HΨ
)−1)

(33)

� σ 2Nh. (34)

If we have a prior sparsity information, oracle estimator solution
of h is:

ĥ = (
Ψ H

Λo
Ψ Λo

)−1
Ψ H

Λo
x. (35)

Similarly, the mean squared error of the oracle estimator is
bounded by:

E‖ĥ− h‖2
2 = σ 2 tr

((
Ψ H

Λo
Ψ Λo

)−1)
(36)

� σ 2S. (37)

If we compare the results presented in (34) and (37), conven-
tional LS estimator shows poor performance in the identification of
sparse multipath channels. Although constructing an oracle estima-
tor is practically impossible, there exists efficient algorithms, such
as OMP, that provide much more better estimates than the con-
ventional LS estimator and have proven performance guarantees
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in sparse multipath channels. For example, the following theorem
quantifies the MSE upper bound for OMP in terms of mutual co-
herence in (16):

Theorem 1. (See [27].) Assume that h is an unknown deterministic vec-
tor with ‖α‖ = S and x = Ψh where n is a Gaussian random vector
with mean 0 and covariance σ 2I. Define

|hmin| = min
i∈Λo

|hi|, (38)

|hmax| = max
i∈Λo

|hi|. (39)

Assume that

2σ
√

2(1 + ε) log Nh � |hmin| − (2S − 1)μ(Ψ )|hmin|, (40)

for some constant ε > 0. Then with probability exceeding

1 − 1

Nε
h

√
π(1 + ε) log Nh

(41)

the obtained solution ĥ of the OMP satisfies

‖ĥ− h‖2
2 �

2(1 + ε)

(1 − (S − 1)μ(Ψ ))2
Sσ 2 log Nh

� 8(1 + ε)Sσ 2 log Nh. � (42)

Although, the solution given by OMP cannot reach the or-
acle estimator, with very high probability it gives MSE within
8(1 + ε) log Nh multiplied by the MSE bound of oracle estimator
given in (37). This result is better than what LS estimator gives.
Moreover, we provide another very important theorem which gives
the relation between sparsity level and coherency for guaranteed
recovery.

Theorem 2. (See [26].) For a general dictionary Ψ , every S-sparse signal
h with

S <
1

2

(
1

μ(Ψ )
+ 1

)
, (43)

is the unique sparsest representation and is guaranteed to be recovered
by OMP when observing

x = Ψh. � (44)

As we noticed before, coherency of a dictionary is crucial in
representing known data. Atoms in the dictionary should not re-
semble each other. Namely, the sequence which is used to con-
struct the dictionary should have good incoherency properties and
constructed dictionary should have a coherency value close to the
lower bound given in (17). In the last part of this section, we
present a candidate channel probing sequence called Alltop se-
quences, which enable us to construct dictionaries with very good
incoherence properties [41]. Alltop sequences have been used ef-
fectively in several different areas [42,43]. For some prime number

Ňb � 5, Alltop sequence, sA = (sb)
Ňb−1
b=0 , has the following elements

sb = 1√
Ňb

e2π jb3/Ňb . (45)

Considering that the ‖sA‖2 = 1 and the dictionary structure
in (28), within the same block we have the following property:∥∥〈ψk,i,ψk,i′ 〉

∥∥ = 0, if i 
= i′, (46)∥∥〈ψk,i,ψk,i′ 〉
∥∥ = 1, if i = i′. (47)
For different blocks, k 
= k′ , we have the following property:

∥∥〈ψk,i,ψk′,i′ 〉
∥∥ = 1√

Ňb

, (48)

for all i, i′ = 0, . . . , K − 1. In order to emphasize this desirable fea-
ture of Alltop sequences, assume that there exists the same num-
ber of delay and Doppler bins as Ňb and the resulting dictionary

is Ψ ∈ C
Ňb×Ň2

b . By using (17) we know that the lower coherency
bound is 1√

Ňb+1
. Therefore, using Alltop sequences and for large

values of Ňb , it is clearly seen that this bound can be practically
achieved.

4. Off-grid problem in sparse signal recovery

General assumption used in all of these sparse multipath/target
detection techniques is that all of the multipath components fall
on the discrete grid points. Dictionary matrix Ψ is typically con-
structed based on the assumption of all the possible multipath
components are on-grid points. In other words, each atom in the
dictionary corresponds to a signal created with a delay–Doppler
pair, which fall onto a discrete grid point. However, this situation
is practically impossible as the multipath parameters are unknown.
In Fig. 1, multipath components that fall on the discrete grid and
off-grid points are illustrated. Therefore, the true grid, which is
possibly irregular, cannot be known beforehand. This so called off-
grid problem, results in a mismatch of the dictionary and severely
degrades the performance of techniques that exploit sparsity. If
there exists off-grid multipath components, then we won’t be able
to represent the received signal by using the dictionary Ψ which is
created based on the on-grid assumption. Furthermore, such meth-
ods exhibit an unstable behavior as previously shown in theoretical
studies on dictionary errors. Therefore, atoms of the dictionary Ψ
should be properly modified to sparsely represent the receiver out-
put. In several papers, the problem is pointed out and very simple
grid refinement approaches are presented [14,15]. In the vicinity
of the multipath components, grid is iteratively refined to match
with the exact location of the off-grid component. The major draw-
backs of these approaches are that this grid refinement is a costly
procedure and secondly addition of new atoms to the dictionary
adversely affects the recovery guarantees. Therefore, to the best of
our knowledge, there exist no viable solution to the off-grid prob-
lem in the existing literature up to now.

Negative effects of the off-grid problem can be verified on a
four-path scenario. In this scenario we used length-53 Alltop se-
quence and OMP as a recovery technique. In Fig. 2, all on-grid
multipath components are recovered. However, as in Fig. 3, if we
perturb the delay–Doppler location of each multipath component
in the vicinity of the on-grid point, OMP fails to recover the two
paths and makes estimation error in recovery of other two paths.
As we pointed out, this result is due to the fact that there exist
no atom in the dictionary corresponding to the off-grid multipath
components. In the next section, details of the proposed technique
to alleviate the off-grid problem by using PSO and OMP will be
presented.

5. Sparse approximation on cross-ambiguity function surface

We propose a novel technique to overcome the so called off-
grid problem in sparse multipath channel modeling. In a multipath
environment, as given in (8), the receiver output signal is the su-
perposition of delayed, Doppler shifted and scaled versions of the
transmitted signal. In time domain, there exists a considerable
overlap between the signals received from different multipaths.
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Fig. 1. On-grid and off-grid multipath components on delay–Doppler domain.

Fig. 2. True on-grid and estimated position of each multipath component are illustrated with red circles and black crosses, respectively.
Therefore, it is desirable to have a preprocessing that enables lo-
calization of the multipath signal components and reduction of the
significant overlapping of components in the time domain. Since
typical communication signals are phase or frequency modulated,
with large time–bandwidth products, as in radar detection their
CAFs are highly localized in the delay–Doppler domain. Therefore,
the transformation of the signal outputs to the CAF domain local-
izes different multipath signals in clusters to their respective delay
and Doppler cell. Although there exist several different represen-
tation, symmetrical version of the CAF between the transmitted
signal and the received signal can be written as [44,45]:

χ x(t),s(t)(τ , ν) =
∞∫

−∞
x

(
t + τ

2

)
s∗

(
t − τ

2

)
e− j2πνt dt. (49)

To illustrate the localization on delay–Doppler surface, consider a
synthetic multipath channel with 6 distinct paths. As shown in
Fig. 4(a), the individual multipath signals overlap significantly in
time at the output of the receiver. However, as shown in Fig. 4(b),
the CAF given in (49) between the received signal and the trans-
mitted signal localizes the contribution of different multipath com-
ponents in delay–Doppler domain. Matched filtering is the opti-
mum solution for detection, in terms of signal-to-noise ratio (SNR).
Performance of the receiver that makes use of a matched filter
that matched to the transmitted signal may significantly degrade,
when the Doppler shift is not known. The CAF characterizes the
output of a matched filter when the input signal is delayed and
Doppler shifted. CAF calculation is the optimal solution for detec-
tion, in the case of one multipath component. If there exist two or
more multipath components separated enough in delay–Doppler
domain, again, CAF surface offers a very useful detection surface
by using properly chosen waveforms for the application of interest
[45–48].

Proposed algorithm starts with the detection of multipath
clusters on ambiguity surface exceeding a predefined detection
threshold. For that purpose, peak point of the ambiguity surface,
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Fig. 3. True off-grid and estimated position of each multipath component is illustrated with red circles and black crosses, respectively.
|χ(τ , ν)|, is determined and compared with the noise level. Similar
strategies are commonly employed in radar target detection [49].
Since it is relatively insensitive to possible outliers, noise level
on the ambiguity surface is quantified with the median opera-
tor. Specifically, ratio between maximum and median values of
|χ(τ , ν)| is computed as:

max(|χ x(t),s(t)(τ , ν)|)
median(|χ x(t),s(t)(τ , ν)|) � ξ (50)

and compared with a properly chosen threshold value, ξ . If the
calculated ratio is higher than the determined threshold value
then that peak point is considered as the center location of the
strongest multipath cluster [50,51]. This detection phase enable us
to determine corresponding grid points that will be perturbed to
be able to detect multipath components that reside on possible
off-grid locations. Having estimated the parameters of each mul-
tipath component in the cluster, effect of the cluster is eliminated
from receiver output to recurse on the residual for detection of the
remaining multipath clusters.

As stated before, we make use of PSO as a global optimization
tool in this work [16]. Although, there are exist many evolutionary
techniques like differential evolution [52], genetic algorithm [53],
artificial bee colony algorithm [54], shuffled frog leaping [55],
MCMC-based methods and their variations, PSO is by far the most
well-known evolutionary algorithm in the literature. Main reasons
for its popularity are simplicity, ease of modification with which
it can be adapted to various practical applications, ability to be
hybridized with other methods and faster in convergence. A very
good reference paper categorizing a large number of publications
on applications of PSO can be found in [56].

Block diagram of the proposed technique is presented in Figs. 5
and 6. C clusters of multipath components present on delay–
Doppler domain and the number of multipath components in clus-
ter c is dc for 1 � c � C . For example, as shown in Fig. 4(b),
6 multipath components are localized in C = 2 clusters and each
cluster consists of 3 multipath components. Having identified the
location of each cluster, individual PSO searches are conducted to
perturb the assumed discrete set of delay and Doppler values that
are in the support of each cluster, separately. Then, with this op-
timized dictionary matrix, OMP is used as a sparse reconstruction
method to estimate delay–Doppler parameters of multipaths. Fol-
lowing PSO searches and multipath reconstruction in each cluster,
Fig. 4. 6 Alltop sequences (a) in time domain, and (b) in delay–Doppler domain
localized in 2 clusters each of which has 3 paths.

effects of the estimated multipath components are eliminated for
a better estimation in the remaining clusters. Since, optimization
in each cluster has to be performed multiple times, PSO itera-
tions in each cluster need not to be pursued until convergence
is established. Therefore, by cycling over the identified set of clus-
ters, the proposed technique iteratively provides estimates for each
path in each cluster. Before getting into to the details of the pro-
posed technique, it is better to clarify the differences between the
PSO–OMP and the technique presented in [47]. Firstly, main goals
of this work are to analyze the level of performance degradation
when off-grid problem is not considered and propose a compu-
tationally efficient sparse channel estimation method using sparse
approximation tools and compressed sensing theory. Secondly, PSO
is used to optimize the dictionary atoms to better represent the
received signal. PSO optimization is conducted in a small dimen-
sional search space. Search dimension is equal to the number of
delay–Doppler grid points of the cluster that is under consider-
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Fig. 5. Signal flow diagram of the algorithm.

Fig. 6. Signal flow sub-block diagram of the parameter estimation in each cluster using PSO and OMP block in Fig. 5.
ation. Therefore, optimization search dimension is constant irre-
spective of the number of multipath components. However, in [56],
a search is conducted to estimate delay, Doppler, azimuth and
elevation in a four times number of multipath components di-
mensional space. Namely, search dimension depends on number
of multipath components under the considered cluster. Lastly, in
each PSO cycle, a linear system of equation based on the modified
dictionary is solved using OMP in a computationally efficient way.
On the other hand, in [56], a cost function formulated in the am-
biguity function domain is evaluated in each PSO cycle and fitness
of each particle is determined. The only similar point between this
manuscript and [56] is in the detection mechanism of the clus-
ters on the cross-ambiguity function domain. However, as stated
previously, peak detection procedure is a strategy which is com-
monly employed in the literature. In the following, formulation of
the proposed technique for each cluster is presented.

Associated with the cth cluster, the following fitness function is
optimized:
fc
(
Ψ c

(
ϕ(Gc),η

)
,hη

) = ∥∥ŷc(t, η) − Ψ c
(
ϕ(Gc),η

)
hc(η)

∥∥2
2, (51)

where η represents the iteration index of the algorithm, ϕ ∈ R
N2

is the vector containing all possible discrete delay–Doppler values:

ϕ = [ϕ11, . . . ,ϕ1N ,ϕ21, . . . ,ϕN N ], (52)

ϕ1N = [τ1, νN ], Gc is the set containing index of grid points (each
grid point corresponds to a delay–Doppler value pair) inside the
cth cluster, ŷc(t, η) is the estimated output signal and Ψ c is the
sub-dictionary created using the columns of dictionary matrix Ψ
that are in the set Λc which contains column index of vectors
of Ψ , that are in support of cluster c:

Ψ c = (ψ i: i ∈ Λc). (53)

In Fig. 7, two clusters of on-grid points are shown. For each clus-
ter, during PSO cycles, location of these grid points are changed to
update the corresponding atoms that belong to the cluster. With
these definitions, ϕ(Gc) holds the delay–Doppler pairs that will
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Fig. 7. Equally spaced P + 1 × K discrete on-grid points on delay–Doppler domain. 2 clusters of on-grid points are selected.

Fig. 8. On-grid points that reside in a cluster are zoomed. Boundaries around each on-grid point is marked with dash lines. Crosses represent particles. 10 particles are used.
Corresponding vector (here, 9-dimensional) elements of each particle is notated with crosses. That is why many crosses are seen in the figure, although there are 10 particles.
be perturbed and Ψ c(ϕ(Gc), η) holds the vectors that are cre-
ated with these perturbed delay–Doppler pairs during the PSO cy-
cles at ηth iteration. Proposed algorithm works in an expectation-
maximization (EM) like manner [57]. EM includes two steps called
as expectation and maximization steps. In the expectation step:
unobservable (complete) data is estimated. In the maximization
step: an optimization is conducted to find the unknown param-
eters of the expected complete data. Estimated output signal, so
called the complete data ŷη , can be formed as:

ŷc(t;η) = x(t) −
C∑

γ =1,γ 
=c

Ψ̂ γ

(
ϕ(Gγ ,η)

)
ĥc(η). (54)
For the first iteration, η = 1, for the first cluster, ŷc(t;η) is ini-
tialized as ŷc(t;η) = x(t). In the maximization step, the channel
parameter estimates and proper sub-dictionary to represent off-
grid multipaths for the cth cluster at ηth iteration are obtained by
maximizing the following optimization problem:

Ψ̂ c
(
ϕ(Gc, η)

)
ĥc(η) = arg max

Ψ c ,hc

1

fc(Ψ c(ϕ(Gc),η),hc(η))
. (55)

Channel parameters and sub-dictionary corresponding to the
cth cluster are estimated using swarm of particles in a |Gc|-
dimensional search space. As shown in Fig. 8, at the beginning
of the PSO cycles, particle locations (each of which is a solution
candidate) are randomly initialized as:
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Fig. 9. One snapshot coordinates of particles z (×) and globalBest(pg , �) distributed on the delay–Doppler domain. Particles swarm to the globalBest position.

Fig. 10. Position update of each grid point, that reside in a cluster, to the estimated new off-grid position.
zl = ϕ(Gc) +U(−κ/2, κ/2), l = 1, . . . ,#particles (56)

and updated according to PSO equations as follows

υl = ι
(
υl + c1ε1(pl − zl) + c2ε2(pg − zl)

)
, (57)

zl = zl + υl. (58)

Here, U represents uniform random distribution, κ is the spac-
ing between discrete grid points, υl is the velocity vector, pl is
the personal best position vector, pg is the global best position
vector, c1 is the cognitive factor that adjusts how much a parti-
cle is influenced by the historical best position of his own, c2 is
the social factor that adjusts how much a particle is influenced
by the historical best of the swarm, ε1 and ε2 are two uniformly
distributed random numbers and ι is the constriction factor, that
balances global and local searches and defined as:
ι = 2

|2 − ς − √
ς2 − 4ς | , (59)

where ς = c1 + c2. Recommended values for these constants are
c1 = c2 = 2.05 and ι = 0.72984 [58].

Location, zl ∈ R
|Gc | , of each particle in the |Gc |-dimensional

search space is a candidate off-grid location solution. Fig. 9 illus-
trates the search of particles around each discrete grid point and
the convergence of particles to a possible solution. In each PSO cy-
cle, the following linear system of equation:

ŷc(t;η) ≈ Ψ̂ c
(
ϕ(Gc, η)

)
hc(η), (60)

is solved using the OMP in a greedy fashion and very efficiently by
minimizing

∥∥ŷc(t;η) − Ψ̂ c
(
ϕ(Gc, η)

)
hc(η)

∥∥2
, (61)
2
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Fig. 11. Location of on-grid multipath components in two separate clusters on delay–Doppler domain.
in order to compare the performance of each particle. Eq. (55) is
evaluated using the location values of each particle and the loca-
tion that gives the best fitness chosen as the globalBest. In Fig. 10,
it is shown that, in the end of PSO cycles, initial on-grid points
are updated based on the minimization results and new off-grid
points are estimated to better support existing off-grid multipath
components. Having estimated the parameters of each multipath
component in the cth cluster, effects of these multipath compo-
nents are eliminated as in (54) from the receiver output for a
better estimation in remaining clusters. Iterations, η, continue un-
til convergence is established or a preset number of iterations is
reached.

6. Simulation results

In this section, we present numerical results to clarify the
performance gains obtained by exploiting the clustered structure
and handling the off-grid problem. In all simulations, length-53
(Ňb = 53) Alltop sequences are used as a probing signal and OMP
is used as a sparse recovery technique. 500 Monte Carlo simula-
tions are conducted for each scenario. Number of multipath com-
ponents, in other words sparsity level S is changed in between 2
and 12. It is assumed that there exist two multipath clusters exists
on the delay–Doppler domain. Locations of multipath components
in two separate clusters on delay–Doppler domain are shown in
Fig. 11. In each Monte Carlo realization, cluster locations are pre-
served but multipath component locations are randomly changed.

Firstly, we observe the effect of off-grid problem in terms of
recovery percentage for different sparsity S = 2, . . . ,12 and per-
turbation levels κ = 0,0.2,0.3,0.4,0.5. On-grid delay–Doppler lo-
cation of each multipath components is perturbed as follows:

τi = τi +U(−κ,κ)/�τ, (62)

νi = νi +U(−κ,κ)/�ν. (63)

Results obtained by OMP are shown in Fig. 12. Note that, for S � 4
we have a recovery rate of 100% when all multipath components
are on-grid as suggested by Theorem 2. However, when we perturb
the delay–Doppler location of each multipath randomly within a
limit κ , performance degrades severely. Since we cover all proba-
ble delay–Doppler parameter pairs, most realistic scenario is when
κ = 0.5. Even for sparsity level smaller than 4, S � 4, we have an
approximately 30% decrease in recovery percentage.
Fig. 12. Recovery percentage the OMP technique for various sparsity and perturba-
tion levels.

In the following experiments, we provide results obtained by
using proposed technique for various different settings. In the first
experiment, we look for how much we can improve recovery abil-
ity with minimum resources. In other words, using minimum num-
ber of particles, PSO cycles and EM iterations. Choose number of
particles as 2, number of PSO cycles as 10,30,50, and number of
EM iterations η = 1 and κ = 0.5. All simulations are conducted
on an HP Desktop with Intel Core-2 2.13 GHz processor. Param-
eter estimation time of standard OMP technique is recorded as
0.012 s and PSO–OMP with #particles = 2, η = 1, PSO cycles =
10 is recorded as 0.3 s for this specified scenario. In Fig. 13 per-
formance of PSO–OMP with #particles = 2 and η = 1 is compared
with standard OMP and results are presented in terms of recov-
ery percentage (%), rMSE and rMSE of detected multipath com-
ponents. Perturbation limit κ is set to 0.5. 10,30 and 50 PSO
iterations are conducted. Even for 10 PSO iterations, PSO–OMP out-
perform OMP and solves the off-grid problem. For example, it seen
that, for sparsity level 10, PSO–OMP with 10 PSO iterations in-
crease the recovery 20%. Moreover it is obvious that performance
is increased with higher number of PSO iterations due to the in-
creased chance of converging the global solution. In the second
set of results that are presented in Fig. 14, we provide the per-
formance improvements in recovery percentage, rMSE and rMSE
of detected multipaths when we have 2 EM iterations instead of
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Fig. 13. Recovery percentage, rMSE and rMSE of detected multipath components of
OMP and PSO–OMP (number of EM iterations is 1 and number of particles is 2),
for various sparsity levels and number of PSO iterations, respectively. Perturbation
limit, κ = 0.5.

1 EM iteration. As expected, since we better isolate the effect of
multipath clusters to each other with addition of second EM it-
eration, we obtained better results. For sparsity level 6, recovery
percentage is increased approximately 15%, with addition of 1 EM
iteration.

In the third set of results we tested the performance of the al-
gorithm by using more resources. Namely, number of particles is
increased to 4 and number of PSO iterations are increased to 80.
It is seen in Fig. 15 that performance is increased. For sparsity
level 6, recovery percentage is increased approximately 10%.

We also analyzed the error progress curves of EM and PSO it-
erations. In Fig. 16, the rMSE between measured and estimated
receiver outputs obtained with PSO–OMP, are shown for 20 EM
iterations values and for different sparsity levels. Number of PSO
iterations and number of particles are chosen as 30 and 2, respec-
tively. The rMSE is monotonically decreases and saturates around
after 20 iterations. Sharp decreases occur in between 1th–4th iter-
ations. However, as proofed in previously conducted experiments,
Fig. 14. Recovery percentage, rMSE and rMSE of detected multipath components of
OMP, PSO–OMP (number of EM iterations is 1 and number of particles is 2), and
PSO–OMP (number of EM iterations is 2 and number of particles is 2), for various
sparsity levels and number of PSO iterations, respectively. κ = 0.5.

even for 1 EM iteration, off-grid problem is successfully handled.
In Fig. 17, normalized error versus number of PSO iterations curve
obtained with PSO–OMP is shown. Number of EM iterations and
number of particles are chosen as 2 and 2, respectively. Similar to
the curve in Fig. 16, the rMSE is monotonically decreases and satu-
rates around after 100 iterations. Meaning that, particles converged
to a point and movement of particles does not change the estima-
tion error anymore. Note from the results shown in Fig. 13 that
only 10 PSO iterations are enough to get good results. Finally, sim-
ilar to the results shown in Fig. 12, for various perturbation limit
values performance of the PSO–OMP is tested (see Fig. 18). Number
of EM iterations, number of particles and number of PSO iterations
are chosen as 1, 2 and 10, respectively. As expected, when we
lower the perturbation limit we get better results. This is due to
the fact that, since particles firstly search for the global optimum
in the very vicinity of the on-grid point, they found the correct
off-grid point rapidly and inrush onto the point.
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Fig. 15. Recovery percentage, rMSE and rMSE of detected multipath components of
OMP, PSO–OMP (number of EM iterations is 2 and number of particles is 2), and
PSO–OMP (number of EM iterations is 2 and number of particles is 4), for various
sparsity levels and number of PSO iterations, respectively. κ = 0.5.

Fig. 16. rMSE values for various EM iteration values and for various sparsity levels
obtained with PSO–OMP. Number of particles is 2 and number of PSO iterations
is 30.

Fig. 17. Normalized error during PSO iterations obtained with PSO–OMP. Number of
particles is 2 and number of EM iterations is 2.

Fig. 18. Recovery percentage, rMSE and rMSE of detected multipath components of
PSO–OMP (number of EM iterations is 1 and number of particles is 2, number of
PSO iterations is 10) for various sparsity levels and κ values. κ = 0.5.
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7. Conclusions

Based on sparse approximation tools and compressed sensing
theory, a new approach for identification of sparse multipath chan-
nels is presented. A general assumption used in all of the sparse
multipath channel estimation techniques is that the all multipath
components fall on the grid points, which is practically impossible
as the target parameters are unknown. Performance of standard
compressed sensing formulations based on discretization of the
multipath channel parameter space degrade significantly when the
actual channel parameters deviate from the assumed discrete set
of values. To solve this so called “off-grid”, we proposed a novel
algorithm that can also be used in applications other than the mul-
tipath channel identification. The proposed algorithm, firstly makes
use of the cross-ambiguity function calculation and transform the
receiver output to the delay–Doppler domain for efficient exploita-
tion of the delay–Doppler diversity of the multipath signals. Then
by detecting the candidate multipath clusters, the original channel
identification problem is reduced to channel identification prob-
lems over the identified clusters in the delay–Doppler domain.
After that, on-grid points that reside in each cluster are perturbed
by using PSO and multipath components are recovered by using
OMP in a greedy fashion. Superior performance of the proposed
algorithm verified on various test scenarios.
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