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Abstract—Polar codes were originally introduced as a class
of non-systematic linear block codes. This paper gives encoding
and decoding methods for systematic polar coding that preserve
the low-complexity nature of non-systematic polar coding while
guaranteeing the same frame error rate. Simulation results are
given to show that systematic polar coding offers significant
advantages in terms of bit error rate performance.

Index Terms—Polar codes, systematic polar codes, successive
cancellation decoding, error propagation.

I. INTRODUCTION

POLAR coding is a linear block coding method that has
been introduced recently [1] and is of interest currently

for its provably capacity-achieving performance with low-
complexity encoding and decoding algorithms in a diverse
set of scenarios. For a representative list of papers discussing
potential applications of polar coding, we cite [2], [3], [4], [5],
[6], [7]. Hardware implementations are discussed in [8].

Polar codes in their standard form are non-systematic codes,
in other words, the information bits do not appear as part
of the codeword transparently. Since any linear code can be
turned into a systematic code, polar codes can also be encoded
systematically. However, it is not clear immediately if this can
be done while retaining the low-complexity nature of polar
coding. It is also unclear at first if there are any significant
advantages that arise from systematic encoding of polar codes.
In this note we describe a systematic variant of polar coding
that preserves the low-complexity properties of standard non-
systematic polar coding while significantly improving its bit-
error rate (BER) performance. Systematic polar coding may
also prove useful in turbo-style receiver designs where a polar
decoder exchanges information with other modules iteratively.
For such reasons, it is likely that systematic polar coding will
become the preferred method of polar coding. The methods
presented here are also applicable to Reed-Muller codes and
may be of independent interest in that context.

II. SYSTEMATIC ENCODING IN GENERAL

We consider coding schemes defined by a linear transfor-
mation over a field 𝔽:

x = uG, x,u ∈ 𝔽
𝑁 ,G ∈ 𝔽

𝑁×𝑁 (1)
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For polar coding, we are mainly interested in the case where
𝔽 is the binary field, 𝔽 = 𝔽2, but the results in this section
hold for arbitrary fields, finite or infinite.

In non-systematic coding, u is regarded as the source word
and x as the codeword. Actually, we use (1) to define a family
of codes whose rates are adjusted by splitting the source word
into two parts u = (u𝒜,u𝒜𝑐) for some 𝐴 ⊂ {1, . . . , 𝑁} so
that the first part u𝒜 = (𝑢𝑖 : 𝑖 ∈ 𝒜) consists of user data
that is free to change in each round of transmission, while the
second part u𝒜𝑐 = (𝑢𝑖 : 𝑖 ∈ 𝒜𝑐) consists of digits that are
frozen at the beginning of the session and made known to the
decoder. The mapping (1) can then be written as

x = u𝒜G𝒜 + u𝒜𝑐G𝒜𝑐 (2)

where G𝒜 and G𝒜𝑐 are the submatrices of G consisting of
rows with indices in 𝒜 and 𝒜𝑐, respectively. This mapping
defines a non-systematic encoder u𝒜 �→ x = u𝒜G𝒜 + c

where c
Δ
= u𝒜𝑐G𝒜𝑐 is a fixed vector. The code rate can be

adjusted by choosing the size of the set 𝒜.
Let us now fix a code, as specified by a non-systematic

encoder as in (2), and consider various possible systematic
encoders for this code. To that end, let us split the codeword
into two parts by writing x = (xℬ,xℬ𝑐), where ℬ is an
arbitrary subset of {1, . . . , 𝑁}, and rewrite (2) as

xℬ = u𝒜G𝒜ℬ + u𝒜𝑐G𝒜𝑐ℬ (3)

xℬ𝑐 = u𝒜G𝒜ℬ𝑐 + u𝒜𝑐G𝒜𝑐ℬ𝑐 (4)

where G𝒜ℬ denotes the submatrix of G consisting of the
array of elements (𝐺𝑖,𝑗) with 𝑖 ∈ 𝒜 and 𝑗 ∈ ℬ, and
similarly for the other submatrices. We now seek systematic
encoders where xℬ plays the role u𝒜 played in non-systematic
encoding as the data carrier, while u𝒜𝑐 is fixed as before.
More precisely, for any given non-systematic encoder with
parameter (𝒜,u𝒜𝑐), we say that a systematic encoder with
parameter (ℬ,u𝒜𝑐) exists if equations (3) and (4) establish a
one-to-one correspondence between the sets of possible values
of u𝒜 and xℬ .

Proposition 1: For any polar code defined by some non-
systematic encoder with parameter (𝒜,u𝒜𝑐), there exists a
systematic encoder with parameter (ℬ,u𝒜𝑐) if (and only if)
𝒜 and ℬ have the same number of elements and G𝒜ℬ is an
invertible matrix.
Proof is immediate and omitted. (The only-if part is not used in
the sequel.) If the sufficiency conditions of Proposition 1 are
satisfied, a systematic encoder with parameter (ℬ,u𝒜𝑐) can
implement the mapping xℬ �→ x = (xℬ,xℬ𝑐) by computing

u𝒜 = (xℬ − u𝒜𝑐G𝒜𝑐ℬ)(G𝒜ℬ)−1

and then inserting u𝒜 into (4) to obtain xℬ𝑐 .
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III. SYSTEMATIC ENCODING FOR POLAR CODES

We now specialize the results of the previous section to
polar codes. We first fix the field as the binary field, 𝔽 = 𝔽2.
We recall that for any 𝑛 ≥ 1, polar codes of block size 𝑁 = 2𝑛

can be defined so that they have an encoder as in (1) with

G𝑁 = F⊗𝑛, F =

[
1 0
1 1

]
, (5)

where F⊗𝑛 denotes the 𝑛th Kronecker power of F. Some
important properties of generator matrices for polar codes are
as follows.

1) Generator matrices are related by the recursion

G𝑁 =

[
G𝑁/2 0𝑁/2

G𝑁/2 G𝑁/2

]
(6)

where 0𝑁/2 is the all-zero matrix of size (𝑁/2)×(𝑁/2).
2) G𝑁 is lower-triangular with ones on the diagonal, hence

it is invertible (in fact, the inverse of G𝑁 is itself).
3) Any submatrix (G𝑁 )𝒜𝒜 of G𝑁 , with 𝒜 ⊂ {1, . . . , 𝑁},

is also lower-triangular and has ones on the diagonal, so
it is also invertible.

The third property implies that the sufficiency conditions of
Proposition 1 hold for polar codes if we choose 𝒜 = ℬ. In
accordance with this observation, we will leave 𝒜 subject to
choice but set ℬ = 𝒜 in the rest of the paper.

A. Complexity

Proposition 2: Systematic encoding for polar codes can be
carried out in time 𝒪(𝑁 log(𝑁)).

Proof: We will make use of the recursive structure of
the generator matrix as given by (6). Let 𝒜 ⊂ {1, . . . , 𝑁} be
given. For systematic coding, we wish to solve

x = uG𝑁 (7)

given (u𝒜𝑐 ,x𝒜). Let x = (x(1),x(2)) where x(1) =
(𝑥1, . . . , 𝑥𝑁/2) and x(2) = (𝑥𝑁/2+1, . . . , 𝑥𝑁 ), and similarly
let u = (u(1),u(2)). Then, (7) can be written as

(x(1),x(2)) = (u(1),u(2))

[
G𝑁/2 0𝑁/2

G𝑁/2 G𝑁/2

]
(8)

which contains, as a subproblem, solving a similar problem
of half the size, namely, finding a solution to

x(2) = u(2)G𝑁/2 (9)

for a given (u
(2)
𝒜𝑐

2
,x

(2)
𝒜2

), where

𝒜2 = {𝑖 ∈ {1, . . . , 𝑁/2} : 𝑖+𝑁/2 ∈ 𝒜}
Let 𝜒𝑁/2 denote the worst case complexity of solving this
problem over all possible choices for the set 𝒜2. Supposing
that (9) has been solved, we can transform problem (8) into
the form

x(1) = u(1)G𝑁/2 + u(2)G𝑁/2

= u(1)G𝑁/2 + x(2)

where x(2) is now known. This is simply another instance of
the encoding problem, also at code length 𝑁/2, as can be seen
more clearly by writing

(x(1) − x(2)) = u(1)G𝑁/2 (10)

We wish to solve (10) given u
(1)
𝒜𝑐

1
and (x(1) − x(2))𝒜1 where

𝒜1 = {𝑖 ∈ {1, . . . , 𝑁/2} : 𝑖 ∈ 𝒜}
Since this problem, too, can be solved in time 𝜒𝑁/2, the overall
complexity 𝜒𝑁 of the original problem is bounded as

𝜒𝑁 ≤ 2𝜒𝑁/2 + 𝛼𝑁 (11)

where the term 𝛼𝑁 , for some constant 𝛼, accounts for the
work required in transforming problem instances back and
forth; namely, first subtracting x

(2)
𝒜1

from x
(1)
𝒜1

to prepare (10),
and then adding x(2) to (x(1) − x(2)) once (10) has been
solved. The recursive inequalities (11) give the complexity
bound 𝜒𝑁 ≤ 𝛼𝑁 log2(𝑁).

Another method for systematic encoding is to use a succes-
sive cancellation decoder as an encoder. For this, one pretends
that x has been sent across a binary erasure channel (BEC)
and that the user data part x𝒜 has been received intact while
the remaining part x𝒜𝑐 has been fully erased. One initializes
the decoder suitably to reflect full knowledge of (u𝒜𝑐 ,x𝒜)
and complete uncertainty about (u𝒜,x𝒜𝑐). It can be shown
by recursive arguments that the decoder will always find u𝒜
correctly.

B. Permuted generator matrices

Polar codes may also be defined by generator matrices
which differ from (5) by a post permutation operation, namely,

G𝑁 = F⊗𝑛Π𝑁

where Π𝑁 is an 𝑁 × 𝑁 permutation matrix. In fact, the
standard form of polar coding as described in [1] applies such
a permutation that corresponds to the bit-reversal operation.
In such cases, a systematic encoder can be constructed by
choosing the sets 𝒜 and ℬ so that ℬ is the image of 𝒜 under
the permutation represented by Π𝑁 .

IV. PERFORMANCE

In this part, we give simulation results to demonstrate the
performance advantages of systematic coding of polar codes.
Simulations reported here were conducted using a polar code
with length 𝑁 = 256 and rate 1/2 over an additive white
Gaussian noise (AWGN) channel. The modulation was binary
phase shift keying (BPSK). Specifically, the codeword x ∈ 𝔽

𝑁
2

produced by the polar encoder was mapped to a BPSK signal
s ∈ {−1,+1}𝑁 by the rule

𝑠𝑖 =

{
+1 for 𝑥𝑖 = 0

−1 for 𝑥𝑖 = 1

and the equivalent AWGN channel was

y = s+ z

where z = (𝑧1, . . . , 𝑧𝑁 ) is an i.i.d. set of Gaussian random
variables with mean zero and variance 𝑁0/2.

The decoder used in the simulations was a successive
cancellation (SC) decoder, as described in [1]. In fact, we
employed the same SC decoder for both systematic and non-
systematic codes. In both cases, the decoder took as input
(y,u𝒜𝑐 ) and produced an estimate û of u. For non-systematic
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Fig. 1. BER vs. 𝐸𝑏/𝑁0 for systematic and non-systematic polar codes under
successive cancellation decoding: BPSK modulation over AWGN channel.
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Fig. 2. FER vs. 𝐸𝑏/𝑁0 for systematic and non-systematic polar codes under
successive cancellation decoding: BPSK modulation over AWGN channel.

coding, the decoder stopped after putting out û𝒜. For system-
atic coding, the decoder had an extra step of computing an
estimate x̂ = ûG𝑁 of x, and produced x̂𝒜 as output.

For non-systematic codes, bit error rate (BER) and frame
error rate (FER) statistics were compiled by comparing û𝒜
with u𝒜; for systematic codes, they were compiled by com-
paring x̂𝒜 with x𝒜. Clearly, the two codes have the same
FER under the particular decoder used here. In simulations, we
used identical sets of test vectors for both systematic and non-
systematic codes to ensure that their FER statistics coincided;
this helped focus on the variation in BER statistics.

Figures 1 and 2 show, respectively, BER and FER vs.
𝐸𝑏/𝑁0 results. The parameter 𝐸𝑏 stands for the transmitted
signal energy per source bit and equals 2 here. The set 𝒜 for
polar coding was optimized for operation at 𝐸𝑏/𝑁0 = 1 (0 dB)
using the Tal-Vardy method [9]. (Note that 𝐸𝑏/𝑁0 = 0.188
dB is the Shannon limit here.) Simulations with polar codes
optimized for operation at various other 𝐸𝑏/𝑁0 values did not
show any significant variation from the results reported here.

In summary, this simulation study confirms that systematic
polar codes achieve better BER performance compared to

non-systematic polar codes. The performance improvement is
especially pronounced at low 𝐸𝑏/𝑁0 values where the BER
curves are relatively flat.

V. DISCUSSION

The development of systematic polar coding was motivated
by the desire to reduce the susceptibility of non-systematic po-
lar codes to error propagation under SC decoding. Systematic
codes are expected to be more robust against error propagation
than their non-systematic counterparts since the information
bits in systematic coding are directly observed through the
channel. Our results are consistent with this expectation.

It is surprising, however, that systematic polar coding
showed an improvement in BER under a decoding method that
computed x̂ indirectly, by first computing û as if the code were
non-systematic. One would expect that any decoding errors in
û (which suffers from error propagation) would be amplified
in the re-encoding step x̂ = ûG𝑁 . Paradoxically, the simu-
lation results show that this is not the case. Apparently, the
SC decoder inherently pays more attention to minimizing the
errors in x̂ than those in û. A better understanding of this
issue is a subject for further study.

An alternative to SC decoding of polar codes is belief prop-
agation (BP) decoding, as discussed in [10]. We repeated the
above experiments with a BP decoder but did not obtain any
results to recommend BP decoding over SC decoding; in fact,
BP decoding performed noticeably worse than SC decoding
at high 𝐸𝑏/𝑁0. In essence, we may view SC decoding as a
special form of BP decoding with a carefully crafted schedule
of belief updates. It is conceivable that there exist some
other well-crafted schedules for BP decoding that give better
performance than SC decoding at comparable complexity.
Currently, we view SC decoding as the method of choice for
low-complexity decoding of polar codes—systematic or non-
systematic.
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