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Abstract: Remarkable progress has been made to date in the discovery of material binding 

peptides and their utilization in nanotechnology, which has brought new challenges and 

opportunities. Nowadays phage display is a versatile tool, important for the selection of 

ligands for proteins and peptides. This combinatorial approach has also been adapted over 

the past decade to select material-specific peptides. Screening and selection of such phage 

displayed material binding peptides has attracted great interest, in particular because of 

their use in nanotechnology. Phage display selected peptides are either synthesized 

independently or expressed on phage coat protein. Selected phage particles are 

subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures 

on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. 

In this paper, we present an overview on the research conducted on this area. In this review 

we not only focus on the selection process, but also on molecular binding characterization 

and utilization of peptides as molecular linkers, molecular assemblers and material 

synthesizers.  
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1. Introduction  

Phage display (PD) has been utilized as a powerful tool for the selection of ligands for many 

biological molecules [1-4]. In the case of peptides, the power of the phage displayed peptide libraries 

arose from the diversity of peptide sequences displayed on the phage coat protein, which have been 

demonstrated in numerous studies [5-7]. Additionally, by integrating the diversity enabled by PD 

peptide libraries, the evolutionary processes of biomolecules in biological systems can be mimicked 

through a forced laboratory evolution [8-10]. PD peptide ligands were selected and screened for 

proteins, small molecules, and peptides using a man-made evolutionary process.  

In addition to the soft materials found in biological systems, such as proteins, lipids and nucleic 

acids, hard tissues have also been discovered and systematically investigated for medical and 

technological applications [11-13]. Biological hard tissues were formed in diverse arrays of 

functionality and strength under extended durations of evolutionary stresses [14-16]. In the past few 

decades more attention was paid to formation mechanisms of biological hard tissues such as teeth  

[17-19], sea shells [20,21], bones and cartilages [22-24]. These studies emphasized the crucial role 

proteins play in the formation of biological hard tissues [25]. The synthesis of these biomaterials is 

uniquely controlled by specific biomolecules through molecular recognition and self-assembly [26,27].  

The structure activity relationship of the biomaterial-forming proteins in living organisms has 

attracted increasing interest. In this context, some special proteins were extracted from organisms and 

shown to control the formation of biomaterials under ambient conditions, which revolutionized the 

area of biomaterials research. Hard tissue forming proteins and protein cascades are capable of 

forming materials in an unusual way compared to currently available synthetic methods. Naturally 

occurring proteins from various organisms were screened and extracted to observe in vitro their 

biomineralization and structural properties in vitro. Lustrin protein from Haliotis rufescens responsible 

for calcium carbonate mineralization [28], magnetite forming protein from magnetotactic bacteria 

localized in magnetosome of the bacteria [29], asprich protein from Atrina rigida [30], and silaffin 

protein isolated from Cylindrotheca fusiformis responsible for forming silica [31], are among the well 

known biomineral forming proteins.  

Biologically available proteins and peptides were formed through evolutionary pathways and these 

proteins operate based a molecular recognition. To mimic the naturally occurring biomineral forming 

proteins and create artificial biomolecules for technological applications combinatorial biology 

techniques, namely the phage display and cell surface display technologies, were employed. First 

attempts for the selection of the inorganic material binding peptides were successfully made using the 

cell surface display by Brown et al. [32,33]. However, due to the limitations in the cell surface display, 

for the selection of material binding peptides, phage display has become the dominant combinatorial 

method. The advantage of the phage display peptide libraries is that phages can be genetically 

modified and phage clones can be utilized as molecular building blocks. Compared to bacterial cells 

and flagella, phages are more resistant to shear stresses, which may emerge during the binding of cells 

or phages on substrate material [34]. From a material science point of view, each of the phage clones 

displaying a different peptide motif is a different nanowire with different surface chemistry. For 

example M13 filamentous phage (Figure 1) can be considered a nanowire which is 1 µm in length and 
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6 nm in diameter [35]. Besides M13 phage display library, T4 and λ phage display libraries are also 

available; however, they are not used in the selection of materials binding peptides [36,37].  

Figure 1. M13 phage with the coat proteins represented (note that the image is not drawn in scale).  

 
 

Phage displayed peptide libraries have been utilized for the selection of material binding peptides 

for a high number of materials. In the last decade peptides were selected for metals, metal oxides, 

metal compounds, polymeric materials, carbon materials, and semiconductors [38]. Following the 

selection of peptides, molecular characterization of these peptides has become an important tool for the 

robust and controlled design of peptide based material systems. In this manner, after screening the 

peptides, the material binding phages were purified and amplified. Later, using qualitative methods 

including fluorescence microscopy and colony counting, the binding affinity of phage clones was 

determined. Although these available methods have been useful for a quick classification of the phage 

clones, direct quantitative methods have been employed as well [39]. Once the selection and 

characterization are completed, PD selected peptides have been utilized for practical applications 

(Figure 2). To utilize the selected peptides in material systems, one possible approach is to basically 

use the whole phage body as the material binding agent [40], while the other is to synthesize the 

selected phage displayed peptides independently using solid state peptide synthesis method [41]. Yet 

another possibility is to use the selected inorganic peptides as fusion partners, to immobilize certain 

protein and enzymes on materials surfaces in an oriented and controlled fashion [42].  

Figure 2. Two different approaches for the utilization of PD selected material binding 

peptides: (A) PD selected material binding peptides expressed on pVIII major coat protein 

used to assemble nanoparticles, (B) individually synthesized material binding peptides (in 

this case with dual functionality) used for the assembly and ordering of nanoparticles on a 

different material surface. 
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The selection of materials binding peptides from phage displayed peptide libraries has become a 

popular instrument, widely used for identification of novel peptidic linker molecules, which have been 

proposed and demonstrated for used in nanotechnological applications. This paper gives an overview 

of PD based biomimetic materials research, not only for the selection and characterization, but also for 

the utilization of these PD selected peptides as molecular linkers, materials synthesizers, and molecular 

assemblers into technological applications.  

2. Phage Display Selection and Screening of Material Binding Peptides  

The screening and selection procedure for a peptidic ligand from a phage display library toward 

proteins, peptides, and other biological and chemical molecules has been well established since the 

early times of phage display [43]. However, it is essential to adapt combinatorial approaches to meet 

the needs of materials science. The design of binding experiments for the phage libraries is the key to 

the correct screening of binding phage clones. Preparation of the target material substrates must be 

done carefully. Substrate materials need to be characterized with surface analysis tools including X-ray 

photon emission spectroscopy, X-ray diffraction spectroscopy, scanning electron microscopy and 

transmission electron microscopy. Surface properties of a given material before PD must preferably be 

characterized for binding experiments. Additionally, inorganic materials can be found in many 

different forms; especially the chemical surface properties and crystal structure of the target materials 

play an important role during the binding process of phage clones.  

Different from the conventional phage display procedures, for the screening of the material binding 

phage clones, the phages libraries are directly brought in contact with the targets and they are not co-

immobilized on a support. Target materials may be prepared in varying physical forms, e.g., in powder 

form, crushed sheets, single crystal or polycrystalline films. In addition, the buffer solution in which 

the substrate will be soaked needs to be optimized. The buffer solution must be inert to conserve the 

chemical surface properties of the material of interest. This requires a series of surface characterization 

right after treating the target material in chemically differentiated buffer solutions. The optimization of 

the buffer material is not only important for preventing corrosion and eroding of the material but also 

vital for avoiding the effects of non-specific binding of the phage clones. As a matter of fact, the 

surface hydrophobicity of the material of interest needs to be prevented by decreasing the surface 

tension at the solution-material interface through using an emulsifier (which is possible by adding a 

certain amount of detergents in buffer solution.) In most of the previous studies Tween has been used 

at a ratio of 1% (v/v) in the buffer solution during screening, this will allow for the suppression of non-

specific interactions. [44]. 

Depending on the type of the target material, there is a need for the optimization of incubation 

conditions of the phage clones. If the material is in powder form, then the peptide clones must be 

mixed (e.g., in a rotator) in a controlled way, but if the substrate is in sheet form, the phage clones can 

be incubated directly on the material surface for a certain time. Following the incubation of phage 

clones, to remove the weakly bound and non-bound clones, harsh washing needs to be carried out by 

modulating pH and ionic strength of the elution buffers. This step is especially critical to obtain strong 

binding clones. For this purpose the elution buffers must be carefully designed to harvest the strongest 

binder from the substrate surface. Following the phenotype based selection of phage clones, the 
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genotypes of the phage clones were determined. The schematic presented in Figure 3 gives an 

overview of the phage display selection of material binding peptides. 

In most of the previous studies towards discovery of material specific peptides, commercially 

available M13 phage display libraries were used [45-47]. A schematic of a M13 phage is represented 

in Figure 1. In M13 phage libraries the pIII phage minor coat protein is carrying the insert coding the 

peptide. The insert was displayed as constrained heptamer or dodecamer linear peptides. The 7-mer 

peptides were expressed in constrained loop formed through a disulfide bridge. The linear peptides 

were fused to the pIII protein through a linker sequence which is –SGGG in the linear phage libraries 

and –SGGGC-XXXXXXX-AC in the case of 7-mer constrained peptides.  

Figure 3. Schematic representation of PD selection of inorganic binding materials. 

 

3. Selection and Characterization and Potential Uses of the Material Binding Peptides  

The PD selected materials binding peptides can be classified as metal, metal oxide, metal alloy, 

metal compounds, mineral, semiconductor, carbon material and polymer binders. In this part, the 

phage display selected material binding peptides from literature are listed in corresponding groups. To 
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explore the utilization of these selected peptide sequences, a deep understating of both structural 

features and binding affinity has developed, so here we have also included the studies towards 

characterization of peptides. The efforts for the characterization of these peptides were carried out by 

using both quantitative and qualitative methods. Most of the affinity characterization studies were 

related to the structural features of the peptides, like in protein-protein interactions, structure-activity 

based research results were demonstrated.  

3.1. Metal, Metal Oxide, Metal Alloys and Metal Compounds Binding Peptides 

Metals and metal compounds have been utilized in many technological applications including 

biomedical ones [48,49]. Most of the metal surfaces are well defined by means of chemistry and 

morphology. The first example of the material binding peptide from a combinatorial peptide library is 

iron oxide binding peptides selected from a cell surface display library [33] and later gold binding 

peptides  were isolated from a bacterial cell surface display library by Brown, whose studies pioneered 

the isolation and utilization of solid binding peptides [32]. The gold binding peptide screened and 

selected by Brown, was later utilized in human studies, and became a well characterized peptidic 

linker for immobilization of nanomaterials [50], materials synthesizer [51], and protein fusion partners 

for oriented protein immobilization [52].  

A phage display selected gold binding peptide, which is positively charged and selected using gold 

powder as the target material, was first reported by Whaley et al. [40]. This peptide was expressed on 

the phage coat and then gold nanoparticles were assembled on the phage via the selected peptide. 

Similarly, another gold binding peptide was isolated by the same group; this time the selection was 

carried out on a thin gold film. The peptide was displayed on the pVIII phage major coat protein and 

used to assemble gold nanoparticles while additionally expressed peptides on the same coat protein 

were used to co-assemble with CdSe nanocrystals on to create 2D optical assemblies [53]. Both 

peptides were characterized using plaque counting on solid media for their binding affinity on gold. 

Naik et al. reported another gold binding peptide, however this was not specially selected towards gold 

surfaces. AG3 peptide was originally selected for silver surfaces but utilized also for gold nanoparticle 

synthesis [54,55]. Kim et al., has recently isolated gold binding peptides with distinct nanoparticle 

formation capabilities, using PD approach and gold powder as the target material [56]. They picked 

one of the peptides, called Midas-2, which they utilized for the gold nanoparticle formation. Their first 

set of nanoparticle synthesis yielded poly-disperse gold nanoparticles. While probing the relationship 

between the primary structure of the binding peptide and shape-size of the synthesized nanoparticles, 

they carried out a point mutation based analysis by replacing each amino acid position with glycine. 

The Midas-2 mutant, Midas-11 was shown to form large gold platelets as wide as 24 µm with a 

thickness of 30-150 nm. These gold nano-platelets were formed in hexagonal, trigonal shapes [56]. 

This work by Kim et al. is a good example for controlling the size and shape of nano-structures by 

tuning the structural properties of example specific solid binding peptides; a similar type of conclusion 

was also previously presented in the work by Brown et al. [32,51].  

Like gold, silver is another frequently studied material. Silver binding peptides were screened and 

selected toward acid etched nanosized silver particles. The selected silver binding peptide ligands, 

AG3 and AG4, which are both 12-mer peptides, were determined as the predominant silver binding 
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peptides upon their capability to form silver nanoparticles with a strong localized surface plasmon 

resonance (LSPR) band. 

Figure 4. Gold nanoparticle formation in the presence of Midas-2 peptide, and gold 

platelet formed in the presence of Midas-11 peptides. Reprinted from [56] with permission 

from Elsevier. Copyright (2010). 

 
 

AG4 was also immobilized in a microfluidic system made of an elastomer to demonstrate its ability 

to grow arrays of silver nanoparticles [55]. The solution structure of the silver binding peptide was 

investigated as well; this was achieved using nuclear magnetic resonance (NMR). The data revealed 

that, during the synthesis of silver nanoparticles, multiple AG4 peptides are stuck on a nanoparticle 

and, Leu5, Phe6, and Arg7 residues were suggested to be the contact points for binding [57].  

The exploration of silver binders was further continued by proposing a new polymerase chain 

reaction (PCR)-based panning for phage displayed peptides, which resulted in many new silver 

binders. These binders were characterized for their interaction with the sliver nanoparticles, using an 

agarose gel based separation of the particle-peptide complex [58]. Moreover, AG4 was shown to 

control the orientation of maltose binding protein (MBP) on silver nanoparticles, when it was 

genetically fused to MBP, which was also validated in a surface enhanced raman spectroscopy (SERS) 

study. Also, an order in magnitude enhancement of the affinity of MBP AG4 fusion towards silver 

surface was achieved compared to MBP native [59].  

Platinum and palladium binding peptides were first reported by Sarikaya et al. [60], both isolated 

from 7-mer constrained phage display library. Molecular modeling studies of the platinum binding 

peptides indicated that a core domain may be responsible for the binding of the peptides, which is –

TST- region in strong binding platinum binding peptides [61,62]. The effect of elongation in the 

peptide sequence constrained conformation on the adsorption of the peptides onto platinum surface. 

The results indicated the importance of the orientation of the interaction points on the peptides, which 

is directly related to the conformational control of peptide affinity [63,64]. A proof of concept 

application of the platinum binding peptides  was demonstrated to immobilize a photoresponsive 

fluorescent probe on a platinum surface for sensing purposes [65]. Moreover, the possibility of using 

platinum binding peptides was successfully shown to create biologically active surfaces for enhanced 

biocompatibility for biomedical applications [66]. 
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Li et al. have also screened and selected platinum binding peptides from 7-mer phage display 

libraries using micrometer size platinum particles as the target substrate. After successful biopanning, 

the strong platinum binder P7A was used to synthesize ultra small platinum nanoparticles, which have 

a narrow size distribution between 1.5–3.5 nm, which is presented in Figure 5 [67].  

Figure 5. Ultra small platinum nanoparticles formed in the presence of platinum specific 

peptides, each image is taken at different time during nanoparticle formation, A (10s), B 

(60s) and C (5h). Reprinted with permission from [67]. Copyright 2009 American 

Chemical Society. 

 

Another noble metal, palladium, is also used as a catalyst in chemical reactions; in particular 

palladium nanostructures were found promising as catalysts for fuel cells or environmental 

applications [68]. To initiate a new route for the green synthesis of palladium nanoparticles, peptide 

ligands were screened and selected from a 12-mer PD library. Like the platinum nanoparticles, 

synthesis of ultra small palladium nanoparticles, with a size of ~2 nm, was achieved by employing Pd2 

and Pd4 peptides. More recently, Chiu et al. have also demonstrated palladium nanoparticle formation 

utilizing a phage display selected peptide, from a 7-mer PD library [69].  

Nian et al. have also carried out a novel and challenging bio-panning method for the selection of 

Pb+ binding peptides. In this study iminodiacetic acid (IDA) adsorbed bead columns loaded with Pb+ 

and other metal ions were used to isolate Pb+ binding phage clones, while avoiding cross-binding 

phage clones with unwanted metal ions from a cyclic septameric PD library. The library was first 

cleaned from the non-specifically IDA binding clones. The eluted binders were subjected to another 

biopanning using Cu2+, Ni2+, Co2+ , and Fe3+ immobilized IDA beads. This enables picking of phage 

clones which are only specific to Pb+, but not the other metal ions mentioned above [70].  

Not precious as gold, silver or platinum, steel is another widely used material in many industries 

and the most important problem is that it is open to corrosion and can be eroded easily. With the aim 

of suggesting a new method to prevent steel and alumina from corrosion, Zuo et al. reported mild steel 

and aluminum binding peptides. The most notable part of their study is their way of biopanning during 

the selection. They used a special corrosive solution to elute weakly bound peptides. This approach 

can be extended to future studies for selecting peptides with specific aims [71].  
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Titanium is a widely used biomaterial because of its biocompatibility. However, as a popular 

implant material, surface functionalization of titanium is challenging. To solve existing problems of 

titanium surface functionalization, peptides were screened from 12-mer and 7-mer PD libraries.  

Liu et al. selected peptides directly for a commercially used material cp-Ti. Using confocal 

microscopy they observed surface bound clones, and characterized the binding of phages on cp-Ti 

surface [72]. Moreover, Meyer et al. carried out a more complete study following the selection of 12-

mer titanium binding peptides. They synthesized integrin binding domain functionalized RGD 

derivatives of their titanium binders and successfully demonstrated how the endothelial cells 

preferably grow on titanium binder-RGD decorated titanium surface [73]. 

As common metal oxides silica and titania are used in numerous applications ranging from 

optoelectronic devices to biomedical systems. Consequently, many groups have focused on these 

materials to screen and select silica and titania binding peptides. Naik et al. reported the first silica 

binding peptides isolated from a phage display library with their unique capability to precipitate silica 

from silicilic acid, which are rich in arginine or histidine amino acids [74]. Different from Naik et al. 

another group of silica binding peptides were screened for their affinity towards a single crystalline 

quartz surface, which are rich in proline amino acids [75]. A quantitative analysis of the strongest 

binders among the single crystal quartz binding peptides was carried out using surface plasmon 

resonance spectroscopy (SPR). The peptides QBP1 and QBP2 were found to have equilibrium binding 

constants of 0.12 × 106 and 1.2 × 106, respectively. The effect of making concatamers for a increased 

affinity was also tested for these peptides. However, this was confirmed only for QBP1, but not for 

QBP2. This type of behavior was considered as a sign for a complex binding mechanism of the solid 

binding peptides. Here primary structure and conformational transition of the peptide upon adsorption 

at solid-liquid interface are to play a crucial role, contributing complexity of the process [46].  

Interestingly, silica binding peptides were screened using different strategies for different types of 

silica targets. For example, in a study by Etheshola et al., silica binding peptides were screened against 

a thermally grown silica substrate, a technologically common substrate which is a smart choice for 

peptide selection considering that most of the silica surfaces on devices and sensors are actually 

thermally grown. The affinity of the silica binding peptides to thermally grown silica was classified 

according their biopanning yield, which provides an overall qualitative idea for degree of binding. 

Similar to those peptides selected for single crystalline quartz surface, thermally grown silica binding 

peptides are also rich in proline residues [76]. As another type of silica substrate, Chen et al. screened 

silica binding peptides towards silica nanoparticles. The resulting peptides, which are rich in charged 

amino acids are conformationally restricted [77]. 

In a complementary study, by employing point mutations a diverse conformational space of 

peptides was investigated, and the importance of the peptide conformation on the binding affinity was 

demonstrated [78]. Chen et al. also aimed to screen titania binding peptides in the same study, but 

surprisingly they obtained with a sequence that showed a high affinity both towards titania and silica 

surfaces. This kind of dual affinity behavior was previously observed in another study conducted by 

Shiba et al. on TBP1 peptide [41,79]. This observation may also be expected due to the close chemical 

characteristics of both metal oxide surfaces [80]. TBP1 peptide was selected from a 12-mer PD library 

using atomized titania as the substrate. The affinity dissociation constants of TBP1 peptide for silica 

and titania were found to be close (13.2 µM and 11.1 µM respectively), which shows that this peptide 
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is not selective between these two metal-oxide surfaces. If the cross-specificity experiment, the phage 

particles harboring TBP1 was also found to be nonselective between titania and silica. 

TBP1 peptide has been also exploited in proof-of-concept studies on nanomaterial assembly. TBP1 

was fused to the N-terminus of apoferritin. Ferritin-TBP1 fusion was tested for its binding affinity and 

biomineralization activity. The affinity constant for this fusion toward titania was calculated to be 3.82 

nM [81]. Nanocrystal filled ferritin-TBP1 was utilized as a molecular building block to create layer by 

layer assembled nanostructures. TBP1 facilitated the biomineralization of titania and silica interlayer 

between assembled nanocrystal filled ferritin-TBP1, so that a multilayered structure was constructed 

[82]. Similarly, the selective formation multilayer of nanocrystal filled ferritin on titania strips but not 

on platinum was succeeded, using a platinum patterned titania film [83].  

Figure 6. Layer by layer (LbL) assembly of Fe, Cd, Se and CO filled ferritin-TBP1 

molecules: (A) SEM images of titania surface (I), after decoration with Ferritin-TBP1 (II), 

and after biomineralization of silica interlayer (III). (B) intersection of the constructed LbL 

(a), EDS mapping of metal filled ferritin-TBP1 after LbL assembly (b), (C) The QCM-D 

signal of the construction of ferritin-TBP1 and silica interlayers. Adapted with permission 

from [82]. Copyright 2009 American Chemical Society. 

 

Dickerson et al. reported titania binders, which were selected for rutile type single crystaline (100), 

(101) and (111) titania surfaces, and they were also shown to be capable of forming titania 

nanoparticles with anatase type monoclinic crystal domains. In this study, the importance of charged 

residues in binding process of the peptides was also discusses [84].  

In addition to experimental studies oxide binders were investigated in comprehensive computational 

studies. As an example, the importance of different effects other than electrostatic interactions  

such as pi-pi interactions and hydrophilic interactions were shown in silica binding peptides, which 

provided a good source of information towards understanding possible interactions during the binding 

process [85,86].  

As discussed above, most of the previous studies found that some of the titania binders also adhere 

on silica surfaces. A remarkable study opened a new avenue to eliminate the possibility of dual affinity 

of titania binders. They proposed a subtractive biopanning approach, similar to the study of Nian et al., 

where the silica binders were removed from the PD library by incubating them with silica 

nanoparticles. Therefore, they eliminated the possibility for a silica binder to be among the remaining 

of the 12-mer phage clones. The final titania binders were demonstrated to precipitate titania from 

potassium bis(oxalato)oxotitanate(IV) but not silica from silicilic acid [87].  
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Zinc oxide is used in many optical and optoelectronic applications was a wide band gap material 

[88]. Umetsu et al. made the selection of ZnO binding peptides from a 12-mer phage displayed library 

using micrometer sized ZnO particles as the target substrate, and further showed that ZnO binding 

peptides can discriminate ZnO from ZnS. By immobilizing ZnO binding peptides on a gold plate, the 

formation of ZnO nanoparticles in a flower-like shape was tuned. In a similar study, same effect of the 

peptides on the formation of ZnO nanoparticles with distinct shapes and sizes on a biopolymer surface 

was explored [89,90]. These studies proposed a novel way to create fluorescent ZnO particles with 

unique morphologies compared to available low temperature synthesis approaches, which needs a 

series of complex chemical reactions [91]. Veruls et al. also selected 12-mer ZnO binding peptides, 

which were used as a fluorescent probe to examine the quality of the ZnO coatings applied on 

galvanized steel. According to this study specific fluorescent labeled peptides were shown to adhere 

only into cracks of ZnO, and using a simple fluorescent microcopy the surface quality check was 

proposed [92].  

Besides silicon oxide, titanium oxide and zinc oxide, the phage display approach was also utilized 

to discover material binding peptides for other metal oxides; however, the number of these reports for 

the rest of oxide materials is smaller. These possible reasons for a lower number of such studies are 

that these metal oxides are not as widely used and/or that peptides are not suitable for surface 

functionalization under their processing. Iridium oxide is one of the oxide materials; for which a 

binding peptide from a 8-mer PD library was selected. In this study iridium oxide nanoparticles were 

assembled on the phage body surfaces, where iridium oxide binding peptides were on coat protein 

pVIII. As a co-assembly, porphyrin molecules were also chemically grafted on the coat protein of M13 

phage as a photosensitizer. These were utilized as a photocatalytic system for light driven water 

oxidation [93].  

Figure 7. Construction of phage particles decorated with iridiumoxide nanoparticles co-

assembled with ZnDPEG. (A) ZnDPEG grafted phage (B) iridium oxide nanoparticle 

nucleation via iridumoxide binding peptides on phage coat (C) final form of phage 

nanowire coated iridiumoxide. Reprinted by permission from Macmillan Publishers Ltd: 

Nature Nanotechnology [93], copyright 2010. 
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Germanium precipitating phage clones were isolated with the aim of forming biochemically 

controlled germanium nanostructures [94]. Similarly, 12-mer peptides for hematite surfaces were 

selected. Based on molecular modeling studies, a general oxide binding motif of –SPS- and –SGS- was 

proposed [95]. However, considering the variety of the metal oxide binding peptides, it may be 

difficult to define a single consensus sequence for all of the metal oxide binders. But it may be 

plausible to argue the presence of some amino acids harboring charged groups on their side groups 

may which may contribute to the affinity of the oxide binding peptides.  

Other than metals and metal oxides, some peptides were also screened to synthesize metal alloys 

and some special metal compounds that were utilized in actual applications. For this, peptide ligands 

were screened and selected for metal alloys composed of Fe-Pt. The metal alloy building activity of 

the selected phage clones were demonstrated. The synthesized alloys were found to exhibit a strong 

ferromagnetic characteristic, a similar type of approach was employed to create Co-Pt magnetic alloys 

using cobalt binding peptides as biotemplate [96,97].  

Ferroelectric materials e.g., barium titanate and perovskite have been investigated for selection of 

PD based peptidic ligands. Ahmad et al. used the selected peptides for the synthesis of barium titanate 

nanoparticles [98]. Reiss et al. employed the perovskite binding peptides for surface functionalization 

of perovskite, and noted no significant chemical alteration of the perovskite following the surface 

functionalization [99].  

3.2. Semiconductor Binding Peptides  

In the past two decades incredible progress had been made in semiconductor nanocrystals synthesis. 

Today semiconductor nanocrystals find a wide range area of applications in areas from optics to 

biosensing [100,101]. PD libraries were used in screening and selection of semiconductor binding 

peptides.  

GaAs binding peptides were selected using a 12-mer PD library, and these first GaAs binding 

peptides were also demonstrated for their selectivity among silica, gold and GaAs materials. The GaAs 

binding peptide selection also initiated selection of PD based peptides for a number of other 

semiconductors. A detailed TEM analysis was also included for the exact demonstration of selectivity 

of these GaAs peptides [40]. Similar approaches were later used by Estephan et al. for the exploration 

of GaN specific peptides, for which they characterized the binding affinity of the peptide using a 

atomic force microscopy (AFM) molecular force measurement tested the cross specificity on a 

silica/GaN substrate through fluorescence microscopy of labeled peptidic aptamers [102].  

For the selection of II–VI semiconductor binding peptides, ZnS and CdS single crystals were used 

for biopanning of 7-mer and 12-mer PD libraries. Phage particles for both of the materials were 

classified regarding their adhesion on single crystals. A7 peptide was determined as a strong binder for 

ZnS. Using the phage clone harboring the A7 peptide formation of nucleated nanocrystal structures of 

ZnS was also realized. The resulting ZnS crystals upon catalysis of A7 peptide was investigated in 

details using high resolution transmission electron microscopy (HRTEM) analysis. Diffraction patterns 

from TEM analysis revealed the regulation effect of A7 peptide on the crystal formation of ZnS. A7 

phage clones were further utilized to assemble nanocrystals in film-like supramolecular structures by 

using phages as a network formed by nanofibrillar structures [103,104]. Estephan et al. screened a  

12-mer phage display library for the exploration of CdSe, GaSb, GaAs, ZnTe, ZnSe, GaN, InAs, GaAs 
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and InP binding phage clones, where they carried out their selection in six rounds and extracted phage 

clones from each different round of selection. Interestingly, a peptide named P1was discovered from 

different rounds of the selection as a putative binder for most of the above listed semiconductor 

surfaces. To eliminate the possibility that the P1 peptide cloning phage is overexpressed in the M13 

phage library, they also conducted a detailed binding experiment using mass spectroscopy (MALDI-

TOF), which depends on the mass analysis of the bound synthetic peptides extracted from the target 

surface. They also demonstrated the importance of the solvent used for the correct assembly of solid 

binding peptides to their targets [45,105]. Cross specificity and affinity of the semiconductor binding 

peptides was studied using AFM by Goede et al. to characterize the interaction a peptide adhesion 

coefficient was calculated. A strong relationship between the peptide structure and affinity was shown 

upon the change in the adhesion coefficient [106]. 

3.3. Mineral Binding Peptides  

In Nature many peptides and proteins were evolved to function in the synthesis of bio-mineralized 

hard tissues [28,31,107]. Among these hard tissues, teeth and bones were well studied as mentioned 

above, and the main constituent of these tissues is hydroxyapetite (HA) mineral, which is commonly 

found in different crystal structures at the different parts of teeth and bones. Although some of the HA 

binding proteins were characterized in detail, they cannot be easily produced and fused with some 

other functional proteins, especially for surface functionalization or fluorescent probing. To utilize in 

biomedical applications, aptamers for HA were screened and selected from 12-mer and 7-mer  

PD libraries.  

Gungormus et al. selected and characterized HA binding peptides, namely HABP1 and HABP2, 

which are strong and weak binders, respectively. They tested the effect of HA binding peptides on the 

biomineralization of calcium phosphate. The results were promising, both of the binders can produce 

minerals as crystals, and however the weak binders can trigger smaller crystals in size [108]. Other HA 

binding peptides were screened and tested for their selectivity for different calcium phosphate minerals 

by Roy et al. HA binding peptides were observed to be selective between amorphous calcium 

phosphate and hydroxyapetite, and to exhibit high affinity towards human tooth surface which rich in 

hydroxyapetite minerals [109].  

As another calcium compound, calcite was also investigated to control its formation using peptides. 

Calcite binding peptides were isolated from phage display libraries separately by Gaskin et al. and  

Li et al. Both sequences were found to control the calcite crystal formation. In both cases peptides 

deterred transformation from vaterite to calcite [110,111].  

3.4. Carbon Materials Binding Peptides 

Carbon materials have found a vast range of use in technological applications [112-115]. The first 

carbon material binding peptides were selected for carbon nanotubes (CNTs). CNT binding peptides 

opened a new avenue for the surface functionalization, sorting and dispersing of CNTs. This was an 

innovative step towards developing CNT based biohybrid applications [116]. Both in experimental and 

modeling studies, it was found that histidine and tryptophan rich residues are important in the 

interaction of CNT binding peptides with the CNT surfaces [116,117].  
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Figure 8. Decorating of the surface of a microsphere with CNT using CNT binding 

peptides. (A) Microsphere surface in the absence of CNT binding peptide and (B) adhesion 

of CNTs on CNT binding peptide decorated microsphere Reprinted by permission from 

Macmillan Publishers Ltd: Nature Materials [116], copyright 2003. 

 

Single walled carbon nanohorns were also targeted by phage display to elute new peptidic ligands. 

These isolated ligand molecules were also classified and investigated from a structural point of view. 

The results suggest that of labile structural properties of the selected peptides play a crucial role in the 

binding of the peptides [118]. C60 recognizing peptides were also screened and selected using PD 

library, for which fluorescence microscopy analysis yielded string binders. C60 binding peptides 

promise a good strategy for surface functionalization of C60 [47]. 

3.5. Polymer Binding Peptides 

Material binding peptides have been routinely screened and selected for solid inorganic materials. 

However, only recently PD libraries have been employed for polymers and polymer binding peptide 

ligands have successfully been screened for the functionalization of polymer surfaces. The first 

polymer binding peptides were isolated for chlorine-doped polypyrrole, which is a conductive polymer 

used in electronic and biomedical applications. Strong binder selected from 12-mer PD library was 

independently synthesized and, using atomic force spectroscopy, the binding affinity of T59 peptide 

and its variants was tested. The results suggested a strong binding with the polymer surface. T59 

peptide was hybdrized with an integrin binding peptide GRGDS. Its binding and unbinding 

measurements revealed a strong binding within the peptide-polymer surface. Moreover the RGD 

integrated T59 was used to enhance cell proliferation on the polymer surface [119]. After the report 

this first polymer binding peptide, Serizawa et al. reported on a PD selected 7-mer peptide, which can 

recognize the stereoregularity on isotactic poly(methylmethacrylate) (it-PMMA) surface. In this work, 

during the binding analysis of phage clones, -RPTR- sequence was detected as a core motif in this 

peptide for the affinity. In a later study, the binding kinetics and affinity of the ti-PMMA binding 

peptide were examined. The equilibrium binding constants of this peptide was found to be Keq of  

7.6 × 105 M−1 [120,121], which is almost one order of magnitude higher compared to the peptide 

selected for poly-L-lactate [122].  

Polystyrene (PS) is a widely used polymer in many areas of biomedical research applications. 

Aiming to create a new PS surface modifying agent, Serizawa et al. screened and selected peptides for 

syndiotactic polystyrene (sPS). The resulting phage clones can strongly adhere on PS surfaces. Similar 

to their previous studies, they also demonstrated that these peptides can recognize the stereoregularity 

A  B
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of the polymer surfaces, and concluded that this property can lead to differentiation of nanostructural 

changes in the polymer films surface by using these peptides [123,124]. Cellulose binding peptides 

were also screened and selected as the only naturally occurring polymer binding ligand with high 

affinity, which may further allow cellulose fibers to be utilized in biomedical studies [125].  

4. Examples of Material Binding Peptides Utilization toward Practical Applications 

In decade, studies on material binding peptides have led to the formation of a large collection of PD 

selected material peptides, a list of which is presented in Table 1, along with available binding affinity 

constants and special applications. 

Table 1. Strong Material Binding Peptides from Literature. 

Material of 
Interest 

Peptide Sequence Notes 

Gold #VSGSSPDS [53], #LKAHLPPSRLPS [130] Gold nanoparticle (NP)assembly 

 *TGTSVLIATPYV [56] Gold NP synthesis 

Silver *AYSSGAPPMPPF [131] Ag NP synthesis 

 *IRPAIHIIPISH, *WSWRSPTPHVVT [58] Ag NP synthesis 

Silica #MSPHPHPRHHHT, #RGRRRRLSCRLL [74] Silica precipitation 

 RLNPPSQMDPPF, QTWPPPLWFSTS [75] SPR Keq(M
−1): 0.12 × 106, 1.24 × 106 

 HPPMNASHPHMH, HTKHSHTSPPPL [132]  

 CHKKPSKSC [77] 
LacI fusion QCM-D Keq (M

−1): 2.46 × 108 [133] 

Titania/ Titanium *RKLPDAPGMHTW [79,81] Depletion assay Keq (M
−1): 7.58 × 104 

 
*YPSAPPQWLTNT, *STPLVTGTNNLM 
*QSGSHVTGDLRL, *ATTLHPPRTSLP[87] 

Subtractive biopanning 

 #SCSDCLKSVDFIPSSLASS [73] ELISA Keq(M
−1): 4 × 106 

 #LNAAVPFTMAGS [92].  

 #ATWVSPY [72] Confocal microscopy 

 

*RKKRTKNPTHKLGGGW, 
*KSLSRHDHIHHHGGGW 

*TQHLSHPRYATKGGGW [84] 

 

Zinc Oxide *EAHVMHKVAPRP [89], *GLHVMHLVAPPR [90] ZnO NP synthesis 

 *VRTRDDARTHRK [92] Surface Quality Control 

Iridium Oxide #AGETQQAM [93] NP formation,co assembly 

Iron Oxide #LSTVQTISPSNH [95]  
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Table 1. Cont. 

Germania *TGHQSPGAYAAH, *SLKMPHWPHLLP [94] NP network formation 

Platinum *CPTSTGQAC, *CTLHVSSYC SPR Keq(M
−1): 3.4 × 106, 9.0 × 104, 

Palladium *QQSWPIS [134], *NFMSLPRLGHMH [69], Pd NP synthesis 

 #SVTQNKY, #SPHPGPY, #HAPTPML [5] Phage ELISA 

Aluminium #VPSSGPQDTRTT, #YSPDPRPWSSRY [71]  

Stainless Steel *MTWDPSLASPRS [92] Surface Quality Control 

 *ATIHDAFYSAPE, *NLNPNTASAMHV [71]  

Fe-Pt Alloy 
#HNKHLPSTQPLA, SVSVGMKPSPRP, 
VISNHRESSRPL [96] 

FePt NP synthesis 

Cobalt #HSVRWLLPGAHP, KLHSSPHTLPVQ, [58] CoPt NP synthesis 

Hydroxyapatite 
#SVSVGMKPSPRP [109]  

 *CMLPHHGAC [108] Mineral synthesis 

Polymers 

  

Poly(L-lactide) 
*QLMHDYR [122] SPR Keq (M

−1): 6.1 × 104 

Polypyrrole *THRTSTLDYFVI [119] AFM analysis 

it-PMMA *ELWRPTR [135] SPR Keq (M
−1): 7.6 × 105 

sPS #YLTMPTP ELISA Keq(M
−1): 2 × 1011 

Semiconductors 

  
GaAs- InP #AQNPSDNNTHTH [40], *SVSVGMKPSPRP [105]  

ZnS- PbS- CdS #CNNPMHQNC, #QNPIHTH, #CTYSRLHLC [103]  

# On phage particles; * independently synthesized using FMOC solid peptide synthesis. 

Thus far PD selected peptides have been utilized in nanotechnology and biotechnology applications. 

Because the area has been emerging just about for a decade now, and there is a still a large room for 

applications. To date, materials binding peptides have been utilized as molecular assemblers, material 

synthesizers, and genetic fusion partners of proteins and enzymes. Some of these uses and potential 

applications are summarized above. 

Nanoparticle synthesis is an area of application in which PD selected peptides are widely used. 

These peptides are capable of synthesizing nanoparticles made of the materials they are selected. 

These peptides are presented above. During the nanoparticle synthesis, peptides alsoserve as catalysts 

for the particle formation in the case of metal and metal compound based nanoparticles. However, for 

the formation of minerals, material binding peptides act as regulating agents that to restrict the growth 
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of the mineral crystal. In this case, materials binding peptides are capable of controlling the 

morphology of the synthesized nanomaterials and micromaterials. This is a desire property by the 

material scientists for the invention of novel material synthesis routes. To date material binding 

peptides have been used in the nanoparticle synthesis of Au [51,54,56], Ag [55,126], Pt [5,67], Pd 

[69], Fe-Pt and Co-Pt metal alloys [58,96], SiO2 [46,74,76], TiO2 [77,79,84,87], barium titanite [98], 

zinc oxide [89,127], and germenia [94] as well as minerals of calcite [110,111], mica [128] and 

hydroxyapetite [108]. In addition, several case studies for the genetic fusion of some PD selected 

material binding peptides are described above [59,81,129].  

PD selected material specific peptides have been widely used as the molecular linker molecules, 

where they have been commonly utilized to assemble nanomaterials. For this purpose, both 

independently synthesized peptide linkers and phages were used. In the case of using phage clones, the 

peptide is expressed generally on the pVIII major coat protein because of the high copy number of this 

protein on the phage body. Kacar et al. used a silica binding peptide, QBP1, derived from PD selected 

silica binders using computational tools, to assemble quantum dot nanocrystals and flourescein in the 

shape of arrays, which after potential use as optically active layers [136].  

Similarly, the same group demonstrated gold binding peptide as a linker to control the distance 

between quantum dots and nanofabricated gold nanoarrays to enhance the fluorescence via near-field 

plasmonic coupling [137]. Nochomovitz et al. also built a bifunctional peptide that consists of a gold 

binding peptide and carbon nanotube binding peptide connected via a linker. This bifunctional peptide 

was used to functionalize the silica surface either with carbon nanotubes or with gold nanoparticles, 

and similarly the gold surface was functionalized using silica nanoparticles [50]. In a recent study, Cui 

et al. successfully demonstrated coupling of the graphene surface with gold nanoparticles using such a 

bifunctional linker molecule [138]. Similarly Kuang et al. functionalized the single walled carbon-

nanotube surface with a SWNT binding peptide, which is coupled with a TNT binding domain 

(honeybee odor binding protein) [139]. Both platforms were demonstrated as a candidate for a TNT 

sensor, which relies on preparation of a SWNT field effect transistor. Other groups used filamentous 

phage clones, expressing selected material binding peptides as a nanowire platform to assemble 

nanomaterials to create ordered assemblies. Ki Tae Nam et al. demonstrated utilization of a phage 

clone to express a specific gold binding peptide and a non-specific cobalt nucleating motif to create 

Co-Au hybrid nanowire [130]. The same approach was previously shown to be effectively used in the 

synthesis of single crystal ZnS and CdSe nanowires as well as free standing ordered FePt and CoPt 

nanowires [140]. Recently, putting all these together, a notable challenge was achieved by means of 

which multiple virus genes encoding different material binding peptides was utilized in the formation 

of an actively operating lithium-ion battery [141].  

5. Conclusions 

To date PD libraries have been successfully applied for the selection and screening of material 

binding peptides grouped as follows: those for metals, metal compounds, metal alloys, 

semiconductors, minerals, and polymers. Today PD is a well established tool for the selection of ligand 

molecules for biological molecules and other small non-proteinous molecules. However, in the 

adaptation of PD for the selection of material specific peptides, there is a need for the fine tuning and 

optimization of the method. The main challenge was (and always is) that each material surface of a 
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given has distinct surface properties. Therefore, for each material system in a specific form, PD system 

must be carefully optimized, each time so as to avoid non-specific binders.  

Elution of the bound phage particles from the material surfaces can be problematic, as sometimes 

the phage clones bound very strongly due to defects or surface chemistry. Thus not only chemical 

approaches, but also some physical approaches might be necessary to remove strong phage clones very 

efficiently [128]. Following the biopanning process, the selected peptides further need to be 

characterized not only for their binding affinity toward the target material but also for their selectivity. 

To date, there are a limited number of studies that have investigated the mode of interaction between 

PD selected peptides and target material systems. This challenge deserves a deeper understanding of 

molecular interactions of PD selected peptides with materials surfaces. Another point that needs to be 

addressed is that some studies do not employ a set of negative control groups to demonstrate use and 

applications of the particles under investigation. This is important to the specificity as well as the 

affinity of the PD selected peptide within the material system given the targeted application as their 

most remarkable feature. 

PD display has made use of Nature’s way of material evolution to create new generation of 

materials with new functionality. To date remarkable progress has been made in the discovery and 

utilization of material specific peptides, which has brought new challenges and opportunities. Despite 

some problems in the selection and application of such PD selected material binding peptides, they 

promise a wide range of unusual applications in nanotechnology.  
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