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Abstract Sleep scheduling, which is putting some sensor

nodes into sleep mode without harming network func-

tionality, is a common method to reduce energy con-

sumption in dense wireless sensor networks. This paper

proposes a distributed and energy efficient sleep scheduling

and routing scheme that can be used to extend the lifetime

of a sensor network while maintaining a user defined

coverage and connectivity. The scheme can activate and

deactivate the three basic units of a sensor node (sensing,

processing, and communication units) independently. The

paper also provides a probabilistic method to estimate how

much the sensing area of a node is covered by other active

nodes in its neighborhood. The method is utilized by the

proposed scheduling and routing scheme to reduce the

control message overhead while deciding the next modes

(full-active, semi-active, inactive/sleeping) of sensor

nodes. We evaluated our estimation method and scheduling

scheme via simulation experiments and compared our

scheme also with another scheme. The results validate our

probabilistic method for coverage estimation and show that

our sleep scheduling and routing scheme can significantly

increase the network lifetime while keeping the message

complexity low and preserving both connectivity and

coverage.
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1 Introduction

In recent years, advances in wireless communications and

electronics have enabled the development of low-power

and small size sensor nodes. A Wireless Sensor Network

(WSN) consists of a large number of these sensor nodes

deployed in a geographic area. Wireless sensor networks

are utilized in a wide range of applications including bat-

tlefield surveillance, smart home environments, habitat

exploration of animals and vehicle tracking.

Each sensor node in a WSN has three basic units; a

sensing unit, a processing unit and a communication unit.

The sensing unit can sense various phenomena including

light, temperature, sound and motion around its location

[1]; the processing unit can process and packetize the

sensed data; and the transmission unit can send the pack-

etized data to a base station (also called sink node) possibly

via multihop routing.

In general, a sensor node can be considered to have two

associated ranges: a transmission range (Rt) and a sensing

range (Rs). As a simple and quite common model, a sensor

node can be assumed to detect every event happening

within a circular area with radius Rs around itself. Simi-

larly, a sensor node can be assumed to communicate with

all other sensor nodes located within the circular region

with radius Rt around itself.
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In a sensor node, energy is primarily consumed by its

three basic units. It is usually observed and assumed that

the most energy consuming operations are data receiving

and data sending which are provided by the communication

unit. Energy consumption in sensing unit is usually

assumed to be less than these operations. However, in some

studies such as [2], it is assumed that energy dissipated to

sense a bit is approximately equal to the energy dissipated

to receive a bit. Processing operations, on the other hand,

are assumed to be consuming very little energy compared

to sensing and communication operations. Therefore it is

important to be able to put sensing and communication

units into sleep mode whenever possible.

There are several ways of reducing the energy con-

sumption in a sensor network in order to increase the

network lifetime. In sufficiently dense networks, a common

technique is to put some sensor nodes into sleep and use

only a necessary set of active nodes for sensing and com-

munication. This technique is called sleep scheduling or

density control. A sleep schedule has to provide an even

distribution of energy depletion among sensor nodes so that

the network can function for a long time. Using only a

required set of nodes as active, can also reduce redundant

network traffic, decrease packet forwarding delay and help

in avoiding packet collisions.

While putting nodes into sleep or active mode, a sleep

scheduling algorithm should be able to maintain connec-

tivity and coverage. A sensor network is connected if every

functioning node in the network can reach the sink via one

or multiple hops. Coverage is defined as the area that can be

monitored by the active sensor nodes which can reach the

sink. Both connectivity and coverage are important objec-

tives to meet to properly monitor a given region. While

deciding to put a sensor node into sleep, it is important to

know if the area sensed by the sensor node can be suffi-

ciently covered by some active neighboring nodes and if the

sensor node is crucial for the connectivity of the network.

In this paper, we first provide a probabilistic and analytical

method to estimate the amount of overlapping sensing cov-

erage between a node and its neighbors. The method helps in

estimating whether a node can be put into sleep without

violating desired coverage. The method assumes that a large

number of sensor nodes are deployed uniformly and ran-

domly to target region. Based on this assumption and by just

knowing the number of neighbors of a node, the expected

amount of overlapping coverage is computed, without

requiring to know the exact locations of nodes. This coverage

estimation method is the first main contribution of the paper.

We then propose a distributed sleep scheduling and

routing scheme that also utilizes our coverage estimation

method. Our scheme assumes a static sensor network where

nodes are densely, randomly and uniformly distributed. It

works with local interactions only, reduces the energy

consumption in the network, and works with low control

messaging overhead while each node is learning about the

status of the neighborhood nodes and deciding its mode for

the next round. The routing scheme is a tree-based routing

scheme that can adapt to node-state changes and to node

failures due to lack of energy. Our sleep scheduling scheme

considers communication and sensing units of a sensor node

separately and is able to put only one unit into sleep instead

of putting all units into sleep together. The scheme also can

maintain a desired coverage and connectivity. This com-

bined sleep scheduling and routing scheme is the second

main contribution of our paper.

The remaining of the paper is organized as follows: In

Sect. 2, we discuss the related work in comparison with our

work here. In Sect. 3, we provide an analysis and method for

coverage estimation of a node’s sensing area by its neigh-

bors. In Sect. 4, we introduce and detail our combined sleep

scheduling and routing scheme. In Sect. 5, we present our

simulation experiments for evaluating our scheme and dis-

cuss the results. Finally, in Sect. 6 we give our conclusions.

2 Related work

The papers [3] and [4] give a detailed description and

comparison of the most recent energy saving algorithms

based on sleep scheduling technique. An important aspect

that distinguishes the proposed algorithms is whether they

are centralized or distributed. Usually, centralized algo-

rithms can provide more accurate results about which

nodes should be sleeping, but they usually suffer from high

messaging overhead and difficulty in quickly adapting to

changing conditions. Distributed algorithms, on the other

hand, have less messaging cost, can adapt to dynamic

conditions better, are scalable, but it is more difficult to

obtain optimal results with them.

There are various centralized sleep scheduling tech-

niques proposed. Two similar solutions are [5] and [6].

They work in a dense deployment and aim to provide

energy efficiency while preserving coverage. They are

based on dividing the nodes into disjoint sets, so that each

set can independently accomplish monitoring the area, and

the sets are activated periodically while the nodes in other

sets are put into low-energy mode. There are also sleep

scheduling schemes based on ILP techniques, basing their

decisions on remaining energy levels of nodes ([7] and [8]).

But these solutions can not scale well for very large net-

works. The works of [9] and [10] also apply centralized and

greedy approaches. While deciding which nodes should

stay active, [9] considers the nodes with better coverage

first, whereas [10] considers the nodes with more remaining

energy first. Our scheme in this paper is a distributed one,

hence differing from these works in this aspect.
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There are also various sleep scheduling schemes fol-

lowing distributed approach. GAF [11] divides a region

into equal-sized grid cells and tries to leave only one node

active in each cell. In PEAS [12, 13], a node decides to go

into sleep mode if there is an active neighbor in its probing

range. Otherwise, it stays active. In SPAN [14], all nodes

are classified as either a coordinator or a non-coordinator

such that at the end every node is in the radio range of at

least one coordinator. Only coordinators forward traffic.

These studies do not focus on preserving coverage, and

therefore they are different from our work here.

There are also some protocols that consider maintaining

coverage. [15] shows a way of finding the overlapping

sensing area between a node and its neighbors. However, it

only considers 1-hop neighbors. But, 1-hop neighbors may

not include all sensor nodes that might cover the same area.

We also consider 2-hop neighbors in this paper. Addi-

tionally, even though [15] guarantees coverage, it does not

guarantee connectivity.

There are some algorithms, OGDC [16] and CCP [17],

that consider both coverage and connectivity, as we do in

this paper. In [16], Zhang and Hou prove that coverage

implies connectivity if the ratio between the transmission

range and sensing range is at least two. Depending on this,

they propose Optimal Geographic Density Control (OGDC)

algorithm to maximize the number of sleeping sensor nodes

while maintaining coverage. A sensor node is active only in

the case it minimizes the overlapping area with the existing

active sensor nodes and it covers an intersection point of

two sensors. A sensor node decides this by using its own

location and the location of other active nodes. In [17],

Wang et al. propose coverage and connectivity configura-

tion protocol (CCP) which tries to maximize the number of

sleeping nodes while maintaining k-coverage and k-con-

nectivity. Here, k-coverage means each point in the moni-

toring area of the sensor network is sensed by at least

k different nodes of the network. The authors prove that

k-coverage implies k-connectivity and to decide k-coverage,

a node only needs to check whether the intersection points

inside its sensing area are k-covered. Similar to OGDC,

CCP assumes the transmission range is at least twice the

sensing range. But if it is not the case, it combines its

algorithm with SPAN so that SPAN can control connec-

tivity. In this case, a node decides to sleep if it satisfies the

eligibility rules in both schemes. Otherwise it stays active.

Our work here is different from the above two schemes

and others in many aspects. Below we summarize the main

features and contributions of our work and how it is dif-

ferent from the similar work described in this section.

• A probabilistic and analytical method is proposed to

estimate the overlapping sensing coverage between a

node and its neighbors. The method is then used by the

proposed sleep scheduling scheme to reduce the

number of control messages required to learn the status

of neighbors.

• A combined sleep scheduling and routing scheme is

proposed. Hence we consider sleep scheduling and

routing together. Most other works consider routing and

sleep scheduling independently from each other, which

may cause extra overhead.

• Both the sensing coverage and connectivity of the

network are maintained for a wide range of transmis-

sion range (Rt) and sensing range (Rs) values. Previous

work usually considers them one at a time, or for

restricted values of Rt/Rs.

• Different units of a sensor node are considered

separately for switching on and off. We define three

modes of operation: full-active (both sensing unit and

communication unit is on), semi-active (sensing unit is

off, communication unit is on) and inactive (both

sensing and communication unit is off). Previous work

usually does not consider the units separately and

defines just two modes of operation: active or sleep.

Hence, our scheme is multi-mode.

• The desired coverage is a parameter of the proposed

scheme. In this way, the protocol can work to maintain

a desired partial coverage (let say 70% of the sensing

area of each sensor node has to be covered). This is

different from many previous studies which consider

overlapping coverage amount as a boolean value.

3 Expected common coverage analysis

In this section we provide an analysis and method about

how to find the expected overlap between a node’s sensing

area and its neighbors’ sensing areas. Then this method is

used in our combined sleep scheduling and routing proto-

col. However, the coverage estimation analysis and method

we propose may find its place in some other applications as

well. For example, it can be adapted to estimate if a point

in a region is k-covered or not.

A sensor node is coverage redundant (or coverage eli-

gible) if its sensing area is covered (fully or partially,

depending on the requirements) by the sensing areas of

some other active nodes. Many sleep scheduling protocols

consider only the 1-hop communication neighbors (i.e.

nodes in the transmission range) to check whether they

cover the sensing area of the node. There may be, however,

nodes that are not reachable in 1-hop, but still may have

overlapping sensing coverage with the node.

Consider the example illustrated in Fig. 1. The nodes

B, C, and D are 1-hop neighbors of the node A, and the

nodes E, F, G, H are other nodes which have common
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sensing areas with node A. If node A only considers its

1-hop neighbors while deciding whether it is sensing area

is covered by other nodes (that is, it is coverage eligible or

not), it decides to be non-eligible, since the sensing area of

node A is not totally covered by 1-hop neighbors. However,

if other closer nodes to node A could be considered, the

sensing area of node A is totally covered by other nodes.

Hence, we should also consider the effect of other nodes

which are closer than 2Rs to a sensor node, while applying

coverage check on the node.

When Rt/Rs ratio decreases, we encounter such cases

more frequently. Therefore, a general coverage check

algorithm should work for a wide range of Rt/Rs values. In

today’s sensor node technology, we may see different val-

ues for this ratio. It mostly lies in the range [1/2, 3] [18, 19].

On the other hand, even a node can not communicate

with another node having an overlapping sensing area, this

may not always have a critical effect on coverage check.

Moreover, it may be too costly to learn about such multi-

hop neighbors and constantly maintain their current status

information. In Fig. 1, for example, even though node H is

not far away from node A, node A can communicate with

node H over 5 hops. As the hop count increases to reach

such nodes, messaging overhead to maintain up-to-date

information about these nodes increases as well. Therefore,

there is a tradeoff between a good coverage check and

control messaging overhead.

To find out how much other nodes cover the sensing

area of a node, we may collect precise information (i.e.

location, status) about the other nodes and then use geo-

metric computations to find out the overlap. This may be,

however, costly in terms processing and communication.

Another alternative is using probabilistic models. Assum-

ing the nodes are randomly deployed with uniform distri-

bution, we can derive a probabilistic model which gives the

expected coverage of a node’s sensing area using only the

number of other nodes that may have common coverage

with this node and the Rt/Rs value.

Next, we are proposing such a probabilistic and analytical

method to compute the expected coverage. Here, note that,

the analysis is based on a network model where nodes are

identical and uniformly distributed. Hence it can be appli-

cable for certain applications and scenarios where a large

number of nodes are expected to be randomly and uniformly

distributed. The method needs to be modified for networks

consisting of heterogeneous and non-uniformly distributed

nodes. We leave this out of the scope of this paper.

3.1 Expected common sensing coverage with 1-hop

neighbors

In this section we derive a model to find out the expected

common sensing coverage (i.e. overlap) between a node

and its 1-hop communication neighbors. The expected

common sensing coverage (which is a value between 0 and

1) depends on the number of 1-hop neighbors of the node

(n), the transmission range of the nodes (Rt), and the

sensing range of the nodes (Rs).

Assume we have a sensor node of interest located at

point O. Let X denote a random variable indicating the

distance of the sensor node to a point in its sensing range.

Possible values x of X are 0 B x B Rs. The probability

density function for X is fXðxÞ ¼ 2x=Rs
2.

Assume that the probability of a point P that is inside the

sensing area of the node and that is x m away from the node

is covered by a neighbor of the sensor node is p(x).

Obviously, this probability is not same for all points and it

depends on the distance x of the point to the sensor node.

When there are n neighbors of the node, then the proba-

bility that a point is covered by any of these neighbors is

1 - (1 - p(x))n. If we integrate p(x) over the sensing area

of the node, we can find out the expected common cov-

erage (overlap) between a node’s sensing area and its

n 1-hop neighbors’ sensing areas.

Consider the Fig. 2. We have the sensor node located at

point O. We want to find p(x) of point P. For point P to be

covered by a neighbor of the sensor node, there should be a

neighbor inside the shaded region. In other words, a

neighbor which is not more than Rs distant from point P

and which is inside Rt of node should exist. Therefore,

p(x) of point P is equal to the ratio of shaded area in Fig. 2

to whole communication area of the sensor node, i.e., pR2
t .

To calculate the area of the shaded region, we first place

our model into an x - y coordinate plane as it is shown in

Fig. 3a. Then we calculate the area of the shaded region

C

A

E

B

G

H

D

F

Fig. 1 Node A’s sensing area is totally covered by not only the 1-hop

nodes of A but also another node H
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using the integral of the difference of circle equations

enclosing it. Note that, in some cases (Fig. 3b) we first find

the complementary region and subtract it from the whole

communication area. For instance, we first find A(NKTL)

and then subtract it from pR2
t . These two different cases

separate from each other when the height of the required

region becomes Rt. Figure 3c shows this case. For the

points which have longer distance to the center (i.e. sensor

node) than this point the first approach is used, otherwise

the second approach is applied.

In Fig. 3a, let x denote the distance between the sensor

node and the point (i.e. x = |OP|). Note that, x is not the

x-axis value anymore for this analysis. Let |OS| = b; then

|PS| = x - b, and:

b ¼ R2
t � R2

s þ x2

2x

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
t � b2

q

AðTKMLÞ ¼ 2

Z

y¼h

y¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
t � y2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
s � y2

q

� x

� �

dy

p1ðxÞ ¼
AðTKMLÞ

pR2
t

And in Fig. 3b, let |OS| = b again. Then |PS| = x ? b,

and in a similar way:

Rs

Rt
P

L

K

O M

Fig. 2 Probability that a point P inside the sensing area is covered by

a neighbor of the node is proportional to the shaded area

P

L

K

M

h

S

Rt

Rs

O

T
(0, 0)

x

y

PO

h

L

S MT

N

K

Rt
Rs

x

y

(0, 0)

P
M

L

T

K

S

Rs
Rt

(a) (b)

(c)

Fig. 3 Different projections of the height of the region
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AðTKMLÞ ¼ pR2
t � AðTKNLÞ

AðTKNLÞ ¼ 2

Z

y¼h

y¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
t � y2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
s � y2

q

þ x

� �

dy

p2ðxÞ ¼ 1� AðTKNLÞ
pR2

t

The border value xborder, that separates these cases is

equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
s � R2

t

p

. As a result, when Rt \ Rs, the expected

value of the probability (E[p(X)]) that a point inside the

sensing area is covered by a neighbor is:

p ¼ E½pðXÞ� ¼
Z

x¼Rs

x¼0

pðxÞ fXðxÞdx

p ¼ E½pðXÞ� ¼
Z

x¼Rs�Rt

x¼0

ðRt=RsÞ2 fXðxÞdx

þ
Z

x¼xborder

x¼Rs�Rt

p2ðxÞ fXðxÞdx

þ
Z

x¼Rs

x¼xborder

p1ðxÞ fXðxÞdx where,

fXðxÞ ¼ 2x=R2
s

In other words, p expresses the expected common

coverage between a node and one of its neighbors. When

Rt [ Rs we can find p in a similar way. But there are two

different calculations in this case. The border case, which

happens when Rt ¼ Rs

ffiffiffi

2
p

, is illustrated in Fig. 4.

When Rs�Rt �Rs

ffiffiffi

2
p

:

p ¼
Z

x¼Rt�Rs

x¼0

ðRs=RtÞ2 fXðxÞdx

þ
Z

x¼xborder

x¼Rt�Rs

p2ðxÞ fXðxÞdx

þ
Z

x¼Rs

x¼xborder

p1ðxÞ fXðxÞdx

When Rs

ffiffiffi

2
p
�Rt � 2Rs:

p ¼
Z

x¼Rt�Rs

x¼0

ðRs=RtÞ2 fXðxÞdx

þ
Z

x¼Rs

x¼Rt�Rs

p2ðxÞ fXðxÞdx

Now, let pn;d1;d2
denote the expected overlap of a node

i’s sensing area by n nodes, where these nodes have

distance from the node in the interval [d1, d2]. And, let pn

denote the expected overlap by n 1-hop neighbors. Then,

pn ¼ pn;0;Rt
. When n = 1, it is equal to p0;Rt

or simply p.

Assume there are n nodes in interval [0, Rt] after

deployment (i.e. n 1-hop neighbors). Then1,

pn ¼ pn;0;Rt
¼
Z

x¼Rs

x¼0

ð1� ð1� pðxÞÞnÞ fXðxÞdx

We did some simulation experiments to check the

validity of our estimation method. In our simulation

experiments, we created random multiple neighbors to a

node within its transmission range and calculated the

overlap of the node’s sensing area by its neighbors.

Besides, for each multiple neighbor count, the simulation is

run 1000 times and the result is obtained as the average of

them. The Fig. 5 show the comparison of simulation and

analytical results for three different Rt/Rs values. As it can

be seen from the figure, the analytical results completely

overlap with the simulation results.

L

K

P

Rs

Rs

Rt

O

Fig. 4 Border case when Rt [ Rs

1 In this analysis, we assumed that the links between the nodes are

mostly reliable and there are no frequent link failures which may

affect the data acquisition significantly. However, we can reflect the

failure-prone nature of sensor node connections to this formula by

multiplying n by k (the probability that a connection between two

connections may fail). Moreover, we can also include non-uniform

node distribution in the network by updating the density function

fX(x).
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3.2 Expected common sensing coverage with 2-hop

neighbors

A sensor node may have not only 1-hop communication

neighbors but also two- or more hop communication

neighbors which have overlapping sensing area with itself.

Especially, when the Rt/Rs value gets smaller, multi-hop

neighbors may create a significant overlap on the node’s

sensing area. To see the effect of multi-hop neighbors we

need to calculate expected overlap as in 1-hop neighbor case.

Here, we calculate the expected overlap with only 2-hop

neighbors. Computing expected overlap for more than two

hops is more complex and we leave it out of the scope of this

paper. Additionally, as we discuss, using only 1-hop and

2-hop neighbors addresses a wide range of realistic scenarios.

Consider the Fig. 6. First, we will find the expected

overlap by another node which has a distance to the node of

interest in the interval [Rt, 2Rt]. As it is stated before, we

denote this with pRt ;2Rt
. We can calculate this expected

value similar to 1-hop case as follows:

p0;Rt
¼
Z

x¼Rs

x¼0

A

pR2
t

fXðxÞdx

p0;2Rt
¼
Z

x¼Rs

x¼0

Aþ B

pð2RtÞ2
fXðxÞdx

pRt ;2Rt
¼
Z

x¼Rs

x¼0

B

pð2RtÞ2 � pRt
2

fXðxÞdx

¼ 4p0;2Rt
� p0;Rt

3

For example, when Rt ¼ Rs; p0;Rt
¼ 0:58 and p0;2Rt

¼
0:25, then pRt ;2Rt

¼ ð4ð0:25Þ � 0:58Þ=3 ¼ 0:13.

Furthermore, if there are n such nodes (located at a

distance in the interval [Rt, 2Rt]), the expected overlap by

these nodes is:

pn;Rt ;2Rt
¼
Z

x¼Rs

x¼0

1� 1� B

3pR2
t

� �n� �

fXðxÞdx

In the above, note that, we found the expected overlap

by possible 2-hop neighbors, i.e. nodes that are located at

a distance between Rt and 2Rt. But for a node to be an

actual 2-hop neighbor, being located at a distance

between Rt and 2Rt is not sufficient because it should

also be in the transmission range of a 1-hop neighbor of

the node.

In Fig. 7, the existence of an actual 2-hop neighbor

at point P is possible with the existence of at least one

1-hop neighbor in the shaded region. Following the same

calculation approach used before, given that there are n1

1-hop neighbors of the node, we conclude that the

average probability (an1;Rt
) that there will be an actual

2-hop neighbor at any point in the range [Rt, 2Rt] is:

Rt

L

K

Rs

2Rt

E

D

P

M
A B

O

Fig. 6 Expected overlap by a node located at a point P which has a

distance to the node in the interval [Rt, 2Rt]

Fig. 7 The probability that there will be a 2-hop neighbor at point P

is proportional with the probability that shaded area contains a 1-hop

neighbor

1 2 3 4 5 6 7

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of one−hop neighbors

E
xp

ec
te

d 
O

ve
rla

p

Simulation Rt/Rs=0.5
Formula Rt/Rs=0.5
Simulation Rt/Rs=1
Formula Rt/Rs=1
Simulation Rt/Rs=1.5
Formula Rt/Rs=1.5

Fig. 5 Expected overlap values from simulation and formula with

different Rt/Rs ratios
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an1;Rt
¼
Z

x¼2Rt

x¼Rt

2x

3R2
t

ð1� ð1� bÞn1Þ
� �

; where

b ¼ 2

Z

y¼
ffiffiffiffiffiffiffiffiffiffi

Rt
2�x2

4

p

y¼0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rt
2 � y2

q

� x

� �

:

Let pn1;n2
denote the expected overlap by n1 1-hop and

n2 2-hop neighbors. Then, to find the value of pn1;n2
, we

again use the same probabilistic approach and combine the

expected overlap of each hop. For instance, if there are n1

1-hop neighbors and n2 2-hop neighbors, the expected

overlap by 1-hop and 2-hop neighbors (pn1;n2
) together can

be calculated as:

Z
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1� 1� A

pR2
t

� �n1
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3pR2
t

� �n2
� �
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Consequently, when a node knows the number of 1-hop

and 2-hop neighbors, it can find the expected overlap of its

sensing area by these nodes.

To check the validity of our analysis for 2-hop case, we

also did simulations. When Rs = Rt, we found the expected

overlap for different n1 and n2 values by using both anal-

ysis and simulation. Figure 8 shows the expected overlap

for a node for all cases when 1� n1� 3 and 0� n2� 6: As

Fig. 8 shows, the results obtained with analysis are

matching with simulation results. For instance, if a node

has one 1-hop neighbor and two 2-hop neighbors, then it

can expect that 60.9% of its sensing area is covered by

these neighbors. Here, note that, the overlap shows only a

small increase with increasing n2. Moreover, the effect

of 2-hop neighbors on the overlap decreases when n1

increases. These two observations are expected because

2-hop neighbors are located around 1-hop neighbors so that

the most part of the overlap resulting from 2-hop neighbors

are already covered by 1-hop neighbors.

At the beginning of a network deployment, if we know

the Rt and Rs values, we can calculate the expected overlap

values for different 1- and 2-hop neighbor counts into a

table (we call it Expected Overlap Table) where cell

(i, j) of the table shows the expected overlap with i 1-hop

and j 2-hop neighbors, and install this table in each sensor

node. Then during network operation, sensor nodes can use

the table to estimate the common coverage with their

neighbors at any moment by just using their count.

4 Our combined sleep scheduling and routing scheme

In this section we introduce our combined sleep scheduling

and routing scheme that works in a distributed and local-

ized manner. It preserves both coverage and connectivity.

It utilizes our probabilistic coverage estimation method,

presented in the previous section, to reduce messaging

overhead while collecting status information from neigh-

boring nodes.

We assume all sensor nodes in the network are identical

and have the same Rt and Rs. Besides, we assume that all

nodes know their locations. This may be achieved via GPS

modules or by use of localization algorithms [20, 21]. We

also assume that nodes use data aggregation while for-

warding the data they receive from their descendants. This

is, however, not crucial. The scheme will work with no

data aggregation as well.

Our combined sleep scheduling and routing scheme

consists of four phases; global tier assignment, neighbor-

hood table construction, mode selection, and operation

phases. Global tier assignment phase and neighborhood

table construction phase run only at network setup time;

and the mode selection and operation phases run in each

round (see Fig. 9).

Our scheme requires network to operate in rounds. A

round is a fixed time interval, determining the frequency of

mode re-assignments to nodes. A round consists of two

phases executed sequentially one after another: mode

selection phase and operation phase. Those two phases are

of fixed length as well. The operation phase should be

much longer than the mode selection phase. During mode

selection phase, the mode of each node (which can either

be ON-DUTY, or TR-ON-DUTY, or DEEP-SLEEP) is

decided. During the operation phase, each node stays at the
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decided mode and data gathering from the sensor nodes to

the sink happens. The round duration and the duration of its

inner phases are same for all nodes and we assume all

nodes are aware of this.

At each round, modes are re-assigned to nodes. At the

beginning of each round, each node starts with a new mode

selection phase where it selects a random delay and waits

that much time before running the mode selection algo-

rithm. Then it runs the algorithm and decides on its mode.

Nodes may finish deciding their modes at different times,

and wait until the start the operation phase to operate.

Moreover, during the operation phase of a round, there can

be multiple data gathering operations from full-active

sensor nodes to the base station depending on the length of

the round.

Round duration is a parameter that may affect energy

consumption. The smaller the round duration is, the higher

is the number of mode re-assignments, hence the higher is

the energy consumption due to mode re-assignments. On

the other hand, performing frequent mode re-assignments

allows active nodes to be changed more frequently and

enables a more even distribution of energy consumption

among the nodes. This issue is discussed in [22] and a

method about how to define an optimum round duration

that provides minimum energy consumption is proposed.

During the execution of our algorithm, different control

management messages are used. In Table 1, we list all

these control messages used by our scheme together with

their important fields (inside square brackets) and the sit-

uations when they are used. Here, sid indicates the id of the

source node (i.e. the node generating the message), did

indicates the id of the destination node. Each control

message has a code field indicating which control message

it is. Since we have less than 16 different control messages,

a 4-bit field is enough to hold the message code informa-

tion. When a node receives a control message, it first looks

to the 4-bit code field and then reacts according to the code

and other fields of the message.

In the following sections, we describe the phases of our

scheme in more detail. Moreover, we also explain how our

scheme handles sensor network dynamics, such as transient

and permanent link and node failures, new node arrivals

and node departures.

4.1 Global tier assignment phase

In this phase, the goal is to create a tree-like routing structure

rooted at the sink node that will be used in routing the packets

from sensor nodes to the sink node. As a result of this phase,

each node in the network is assigned a tier number (indi-

cating how many hops the node is away from the sink node)

and a parent node. Each node in the network that is active or

semi-active forwards the data that it has generated or

received to its parent node which has a smaller tier number.

By this way, shortest path routing in terms of hop count is

achieved and the possible routing loops are avoided.

After deployment, the sink node initiates the process of

assigning tier numbers to all nodes in the network. For that

it broadcasts a GlobTierAssignment message containing its

ID and a tier number set to zero. Each node receiving a

GlobTierAssignment message creates its own GlobTierAs-

signment message by incrementing the tier number by one

and putting its own ID, and then broadcasts this new

message to its neighbors. If a node receives multiple

GlobTierAssignment messages, it only considers the mes-

sage which has lower tier number than its current tier

number. However, the node can record the IDs of all

neighbors and their tiers as well. Furthermore, among the

GlobTierAssignment messages having same tier number,

the one coming from the closest node is considered (by

utilizing the RSSI value) and that node is recorded as the

current parent.

Table 1 All control messages

used by our scheme
Message When it is used

Hello At the beginning of each round, [sid]

GlobTier Assignment In Global Tier Assignment phase, [sid, tier-no]

TierQuery To learn tier numbers of neighbors [sid]

TierReply To reply to TierQuery messages [sid, tier-no]

Discovery In Neighborhood Table Construction phase [sid, Location, TTL]

StatusUpdate In Mode Selection phase [sid, status]

StatusQuery To learn the status of 2- and 3-hop neighbors [sid, TTL]

StatusReply To reply StatusQuery messages [sid, status, did]

Bye Message When a node predicts to lose its energy in the next round [sid]

LocalTierUpdate When a node changes its tier number [sid, tier no]

LocalFindParent When a node can not find a parent among its 1-hop neighbors [sid]

Connectivity-Ok When a node can connect to another parent node [sid]

Connectivity-Not-Ok Used when a node cannot connect to another parent node [sid]
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4.2 Neighborhood table construction phase

Throughout this phase, each sensor node starts a discovery

phase to learn about the other nodes in its vicinity and

constructs a Neighborhood Table. This is needed for cov-

erage check: a node may need to find out all other sensor

nodes which have overlapping sensing areas with itself.

Our scheme tries to discover the neighbors up to three hops

and within 2Rs distance. Using multiple hop neighbors may

provide better performance in the coverage check algo-

rithm. However, this also causes a remarkable increase in

the number of control messages. Therefore there is a

tradeoff between a good coverage check and control mes-

sage overhead. In [22], Bulut et al. discuss this tradeoff and

find the conditions that give the maximum gain. As we

mentioned earlier, since Rt/Rs value usually lies in the

range [1/2, 3] [18, 19], even if the Rt/Rs value is quite small

(i.e. 0.5), the neighbors that are more than 3-hops away

cover either minor or no extra part of the node’s sensing

area as it is shown in Sect. 3.2 (Fig. 8).

At the beginning of the Neighborhood Table Con-

struction phase, each sensor node broadcasts a Discovery

message which contains the ID and the location of itself

and a TTL value. Since each node may search for up to

three hops, the TTL is set to 3 initially. Each node

receiving this Discovery message records the ID and the

location value in the message into its Neighborhood

Table, unless the node originating the message is further

than 2Rs. Moreover, the receiver node decreases the TTL

by 1 and if the TTL is still bigger than zero, the node

forwards the message to other nodes within its transmis-

sion range. If a node receives multiple Discovery mes-

sages with the same ID (same source), it uses the one that

has traveled the smallest number of hops (i.e. that has the

largest TTL value). As a result of this process, each node

learns about its 1-, 2-, and 3-hop communication

neighbors.

4.3 Mode selection phase

In this phase each node of the network decides its mode for

the remainder of the current round. Our scheme puts a

sensor node in one of three modes:

ON-DUTY (full-active): Both the communication and

sensing units are turned on.

TR-ON-DUTY (semi-active): Sensing unit is turned off,

but communication unit is turned on. Hence the node can

not sense the environment, but can transmit and receive

data.

DEEP-SLEEP (inactive): Both the communication and

sensing units are turned off. The node can neither sense,

nor communicate.

We ignore the energy consumption in the processing

unit and therefore we assume it is always on. However, the

processing unit can be turned off as well when a node

enters DEEP-SLEEP mode, provided that there is a timer

hardware that can wake up the node when a round ends.

Mode selection phase consists of three parts which are

executed sequentially in each node: (1) backoff delay

computation and waiting, (2) coverage eligibility check,

and (3) connectivity eligibility check. If a node passes

coverage eligibility test, that means the sensing area of the

node is covered by some other nodes, hence its sensing unit

can be turned off. If a node passes connectivity check, that

means its neighbors can by-pass the node while trans-

porting packets towards the sink, hence its communication

unit can be turned off. While performing these checks,

however, due to the independent and distributed operation,

some nodes may act simultaneously and attempt to change

their modes at the same time. This can cause unhealthy

results for eligibility checks. Therefore, we assign ran-

domized backoff delays for each node so that when this

time expires the node decides on its mode and informs its

neighbors about this new mode via StatusUpdate messages.

Figure 10 shows the overall mechanism in mode selec-

tion phase. At the beginning of each round, each node

selects a random backoff delay time and waits that much

time in TR-ON-DUTY mode (other nodes may need to

communicate with this node). When the backoff timer

expires, the node first applies our coverage check algo-

rithm. If it can not pass the coverage check, it goes into

ON-DUTY mode, otherwise it applies our connectivity

check algorithm. If it passes connectivity check, it goes

into DEEP-SLEEP mode; otherwise it goes into TR-ON-

DUTY mode. When operation phase comes, each node

fulfills the requirements of its new mode.

4.3.1 Backoff delay computation

If the nodes attempt to determine their modes at the same

time, no reasonable results may occur due to message

contentions. We resolve this problem by using a backoff

delay mechanism similar to the one proposed in SPAN

[14]. Each node chooses a backoff value and when it

expires the node decides its mode according to the states of

the nodes in its neighborhood table at that moment.

In our solution, the backoff delay depends on two fac-

tors: the remaining energy levels and the number of

neighbors of the nodes. A node with a lower remaining

energy should have a shorter backoff delay, so that it can

be the one who will decide to go to sleep earlier. A node

with larger number of neighbors should have a longer

backoff delay, so that it can be less likely to go to sleep and

can stay active, since it can contribute to the coverage and

communication of many other nodes. Let N(i) be the
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neighbor count of node i and Nmax be the maximum of

N(i)’s in a network. The nodes having higher value of N(i)/

Nmax should have lower priorities for turning off their units

due to their effect on coverage and connectivity. The fol-

lowing is our backoff time computation formula:

Delay ¼ a
ErðiÞ
EtðiÞ

� �

þ b
NðiÞ
Nmax

� �

þ R

� �

� T ð1Þ

Here R is a uniform random value in the interval

[0, 1 - a - b], T is the size of random backoff time choices,

and a; b are weights of energy and coverage parameters.

Although this delay mechanism produces different

delays, some nodes may still have same or very close

backoff delays. Thus, some nodes may decide their mode at

the same time and some blind points covered by no nodes

may occur. To prevent such kind of cases, we force each

node to wait a short period of time Tw after deciding its

mode. This time interval should be enough to receive

possible StatusUpdate messages from a neighbor. If a

message is received from a neighbor in this period, the

node recalculates its off-duty eligibility. Otherwise, it

changes its status to what it has decided. Besides it sends a

StatusUpdate message to its neighbors. Choosing bigger

T values can also decrease the contentions.

Note that, starting from the beginning of each round

(including the backoff time), each node can receive mes-

sages from its neighbors and reply them accordingly. For

instance, a StatusUpdate message from a 1-hop neighbor

can be received and Neighborhood Table of the node can

be updated. But, the states of 2-hop and 3-hop nodes are

updated when they are needed, as described in the next

section.

4.3.2 Coverage eligibility check

As soon as the backoff timer expires for a node, it runs

the coverage eligibility algorithm with its current neigh-

borhood information to check if its sensing area is cov-

ered by its neighbors with a ratio greater than a threshold

value dr. Here, dr is a user defined parameter

(0 B dr B 1). If the amount of common coverage is 0,

that means no neighbor is covering the sensing area of

the node. If it is 1, that means the sensing area of the

node is completely covered by the nodes in the

neighborhood.

Given the location of nodes, there are various ways of

computing common sensing area of a node with other

nodes [15, 16, 23]. Some of these methods can only be used

to decide whether the area is totally covered by other nodes

or not, but can not be used to find out how much of the area

is covered. A method that can give how much of a node’s

sensing area is covered by other nodes is a grid based

approach. It first assumes a very fine grained grid put over

the sensing area of the node. Hence the sensing area con-

sists of many tiny grid cells. Then for each grid cell, it

checks if the cell is covered by another node. This can be

done by computing the distance of the grid cell to each of

the other nodes. If the distance is less than Rs for any of the

other nodes, then the grid cell is covered by another node.

This is done for each grid cell, and then the percentage of

the sensing area of the node covered by other nodes is

computed.

To achieve a good coverage check, a node should know

all of other nodes which have common sensing area with

itself. However the number of nodes within 2Rs distance

may be remarkably large and this may require creating lots

of control messages to have an updated knowledge of these

nodes’ current modes. Here, we propose to utilize the

expected overlap tables which are derived in the previous

section. Note that in the expected overlap table of a node,

the table cell (n1, n2) contains the expected overlap of this

node’s sensing area when it has n1 1-hop and n2 2-hop

active neighbors.

Algorithm 1 shows the pseudo-code of our coverage

check algorithm (N1 stands for set of 1-hop neighbors and
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dr stands for desired coverage ratio). We assume Expected

Overlap Table is installed to each node before deployment.

According to the desired overlap, the node decides on the

set of nodes in its Neighborhood Table that will be con-

sidered in the coverage check (we call this set as coverSet).

Here, if the required set is only 1-hop neighbors, no extra

messaging is needed to learn their status because 1-hop

neighbor information is always updated via StatusUpdate

messages. However, if the set also includes other nodes,

the node should try to learn their current status from its

neighbors. By this algorithm, we not only reduce the load

due to control messages which update the status of nodes in

the Neighborhood Table, but also make a good coverage

check of nodes.

Algorithm 1 CoverageCheck (N1: set of 1-hop neighbors, dr:

desired coverage ratio)

1: if (ExpectedOverlapTable(|N1|, 0) C dr) _ (Rt/Rs C 2) then

2: coverSet = N1;

3: else

4: Broadcast StatusQuery message with TTL 1;

5: Wait Tw time for receiving StatusReply messages;

6: N2 = The set of 2-hop nodes in ON-DUTY mode;

7: if ExpectedOverlapTable(|N1|, |N2|) C dr then

8: coverSet ¼ N1 [ N2;

9: else

10: Broadcast StatusQuery message with TTL 2;

11: Wait Tw time for receiving StatusReply messages;

12: coverSet = {active nodes in Neighborhood Table};

13: end if

14: end if

15: coveredArea = 0;

16: desiredCover ¼ dr � pR2
s ;

17: for each node i in coverSet do

18: coveredArea = coveredArea [ SensingArea(i);

19: if coveredArea C desiredCover then

20: return TRUE;

21: end if

22: end for

23: return FALSE;

If the node decides to use the nodes in two and three

hops in coverage check, it needs to update the status

information of these nodes. The node creates a StatusQuery

message and broadcasts it with a TTL value which is set to

1 if the node wants to learn the updated status of 2-hop

neighbors, and to 2 if the node wants to learn the status of

3-hop neighbors. A node receiving a StatusQuery message

decreases the TTL value by 1. If TTL becomes zero after

decrementing, the node replies back with a StatusReply

message which contains the updated status of 1-hop

neighbors in the Neighborhood Table of the node. Other-

wise, the StatusQuery message is forwarded to other nodes.

Moreover, when Rt/Rs is greater than 2, the algorithm

defines the coverSet as the set of 1-hop neighbors because

only they may have an overlapping area with the node.

It is important to note that our protocol never causes

under coverage (i.e. coverage below the desired ratio). In

Algorithm 1, using the Expected Overlap Table we find the

upper hop level of the members of coverSet which will be

used in coverage check algorithm. Once we have decided

the coverSet, we do a real coverage check using only the

information of nodes in coverSet (lines 18–23). Here, note

that, expectedly the neighbors in coverSet may provide a

higher overlap than the desired ratio but when the node

performs the real coverage check using the locations of

only these neighbors in coverSet, it may result that the

sensing area of the node is not covered sufficiently by these

neighbors so that the node decides to be in active mode.

The reverse case is also possible: even if the coverSet with

all neighbors in Neighborhood Table (all active neighbors

up to three hops) does not provide the desired coverage

expectedly, the real check may result in that the desired

ratio of the node’s sensing area is covered. But whatever

the case is, a node is not put into sleep mode without a real

coverage check. The most important benefit of using this

coverSet and Expected Overlap Table idea is to save from

unnecessary control messages. Although our protocol may

result some nodes to be in active mode due to the differ-

ence of real coverage check and expected ratio, it achieves

same or better performance (as it is shown in simulations)

as the protocols updating the status of all hop neighbors

continuously and it achieves this with less energy con-

sumption by eliminating unnecessary control messages.

Moreover, in real sensor network applications, some-

times a node may not receive status information of some of

its 2- and 3-hop neighbors due to transient link failures. In

those cases, the node assumes that such neighbors are in

DEEP-SLEEP mode during a round. Note that, this does

not affect the regular running of our scheme and also it

does not increase the cost of the protocol. But it can affect

the number of neighbor nodes used in the coverage eligi-

bility check of a node (coverSet in Algorithm 1 may

change) and this may cause that node to select different

modes.

4.3.3 Connectivity eligibility check

If a sensor node passes coverage check, it runs connectivity

check algorithm as the next step of the mode selection

phase. Even the sensing area of a sensor node is covered by

its neighbors desirably, the node may be vital for the

connectivity of other nodes. The active nodes (ON-DUTY
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or TR-ON-DUTY) in a sensor network must be connected

to be able to send their data to the sink node.

A node can be turned off without harming connectivity,

if and only if its 1-hop active neighbors can send their data

to sink over a path that does not contain this node. Hence

the node should check if its 1-hop neighbors consider itself

as the next-hop node (i.e. parent) in the route to the sink. If

a node passes coverage check, it first changes its mode to

a temporary mode called READY-TO-OFF and informs its

1-hop neighbors via Status Update messages. Then each

1-hop neighbor evaluates its current condition as follows

and sends a reply message to the questioning node.

If the parent node of the neighbor node is not the

questioning node, it sends a Connectivity-Ok message,

since it does not need the questioning node for sending its

data to the sink. Otherwise, the node looks for another

possible parent (PP) among its neighbors. It sends a Tier-

Query message asking their tier numbers to its 1-hop

neighbors. According to the TierReply messages, it creates

the set of PP nodes which have one less tier number than

its tier number. If PP set is not empty, the node selects one

of them as a new parent node and sends a Connectivity-Ok

message to the questioning node. Otherwise it sends back a

Connectivity-Not-Ok message, because there is no way to

send its data to the sink node without using the questioning

node and without possibly making the path longer.

After waiting sufficient time for the operations above,

the questioning node checks whether it has received a

Connectivity-Not-Ok message or not. If it is the case, it

changes its mode to TR-ON-DUTY mode, otherwise it

passes the connectivity check as well and goes into

DEEP-SLEEP mode. Additionally, the node informs its

1-hop neighbors about its new mode via a StatusUpdate

message, so that they can update their Neighborhood

Tables.

In each round, the connectivity eligibility check algo-

rithm is executed as part of mode selection. While putting

some nodes into sleep and modifying the paths due to this,

the connectivity check algorithm does not make the paths

longer, since it selects a new parent that has one less tier

number. If such a new parent can not be found for at least

one child, the communication unit of the node is not turned

off.

4.4 Operation phase

After mode selection phase is over, each sensor node has its

mode determined for the operation phase, hence for the rest

of the round. The node stays at that mode until that round

finishes. When the round finishes and next round starts, all

sleeping nodes (nodes in DEEP-SLEEP) wake up and start

in TR-ON-DUTY (semi-active) mode. They again enter the

mode selection phase and select a mode for the new round.

4.5 Handling network dynamics

The proposed scheme is designed to handle also some

common sensor network dynamics to a certain degree such

as transient and permanent node failures (due to hardware/

software problems or energy depletion), transient and

permanent link failures (due to obstacles, interference,

fading, or relocation), and new node additions.

To detect transient link failures between nodes, our

protocol requires each node to broadcast a Hello message

to its 1-hop communication neighbors at the beginning of

each round. Then, if a node i cannot receive a Hello

message from one of its 1-hop neighbors (let’s call that

neighbor as node j) due to the failure of the wireless link

in-between, it assumes that the node j will stay in DEEP-

SLEEP mode during that round2. Therefore, node i decides

its mode for the current round without considering the

existence (so the status) of node j (hence the protocol

behaves conservatively).

If, however, node i’s current parent is j, node i needs to

find a new parent node. In such a case, node i looks for a

new parent node among its 1-hop neighbors. First, it

searches for a neighbor having the same tier number with

its previous parent (so that it can connect to that node

without changing its tier number and without making the

path to the sink node longer). If there is no neighbor with

the same tier number, a non-child neighbor that has the

smallest tier number (if exists any) is selected as the parent.

This will cause the node i to change its tier number.

Additionally, in this case, node i will instruct its children

to update their tier numbers as well by broadcasting a

LocalTierUpdate message in its subtree.

In some cases, a node i may not find a new parent to

connect to among its 1-hop neighbors. In this case, node

i sends a LocalFindParent message to its subtree (its

descendants) and wants them to find a parent node which is

not in this subtree. The first child node finding such a

parent becomes the new root of this subtree. Then it starts a

local tier update procedure by broadcasting a LocalTi-

erUpdate message to the other nodes in this subtree.

It is important to not trigger the parent finding and tier

update procedure (i.e. local recovery) for short durational

failures. For this we can use a threshold time to trigger

local recovery. That means, local recovery will be triggered

only when the failure duration is longer than the threshold.

Otherwise, local recovery is not triggered. Some data

messages may be lost during this time. This is acceptable

for link layers that are not designed to be totally reliable.

2 We consider the links between nodes individually. If other

neighbors of node j can receive Hello message from j (that link

may not fail) even though node i can not receive it, they continue with

the regular procedure and consider node j’s status while deciding their

own status.
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We suggest the value of the threshold-time to be in the

order of at least a certain fraction of one-round-duration.

Note that, while nodes continue to die, network may

become disconnected after some time and in this case it

may not be possible to find an alternative parent even from

the nodes in the subtree, i.e. even LocalFindParent mes-

sage does not work. No recovery can be done when net-

work becomes physically disconnected.

In the above procedure, the probability that a node i may

find a new parent among its 1-hop neighbors depends on

the density of the network. Hence if the network is dense

enough, then an alternative parent can be found instantly

most of the time. However, depending on the tier of the

new parent, we still may need to update the tiers in the

subtree. We next show the relationship between the prob-

ability of finding a new parent among 1-hop neighbors, the

density of the network, and link-failure probability.

Let ni and ci denote the number of neighbors and the

number of children of a node i, respectively. Assume that

node i’s link to its parent has failed and node i is looking

for a new parent node. The number of possible parents for

i among its 1-hop neighbors is Pi = ni - ci - 1 (i.e. all

neighbors except the children and the previous parent).

Then, assuming that the average number of neighbors of a

node is d and the total node count in the network is N, the

average value of such possible parents for any node, Pavg,

becomes:

Pavg ¼
Pi¼N

i¼1 ni � ci � 1

N
¼ Nd � N � N

N
¼ d � 2

Here, note that a node can be the child of only one node

in the network at a given time. Therefore, the sum
P

ci is

equal to N. As a result, the above formula states that a node

can select one of the d - 2 neighbors as its new parent

node on the average.

However, the link between a node i and its possible

parent node may fail for some time. Assume the failure

probability for such a link is pf. Then, the probability of

finding a new parent Pparent, becomes 1� pf
d�2. In Fig. 11,

we show the computed values of Pavg for different pf and

d values. Clearly, as pf decreases and d increases, Pavg

increases.

In many real applications of sensor networks, d = 4 - 5

is assumed to be a reasonable average neighbor count.

Moreover, although it can change with respect to the sensor

types, environment and hardware/software, etc., in some

recent papers such as [24] and [25], the average link failure

rate in sensor networks is assumed to be 15%. Hence, when

d = 5 and pf = 0.15, Pparent is 99.66%, which is a very high

average probability. Therefore we can say that most of the

time a node can instantly find a new parent among its 1-hop

communication neighbors so that not much extra messaging

will be required while searching for an alternative parent.

Above, we explained how the proposed scheme handles

link failures. The failure of a node can simply be consid-

ered as the failure of all links from the node to its neigh-

bors. Then the same procedure described above can be used

to handle node failures. If a node failure occurs unex-

pectedly, some data can be lost until the situation is han-

dled. But if the node failure happens due to the battery

exhaustion, proactive rerouting may be performed before

the node dies, and in this way data packet losses can be

minimized. In our protocol, if a node notices that it will

soon die due to very low remaining energy in its battery, it

informs its 1-hop neighbors via a Bye message and asks

them to find new parents and bypass itself while routing

their messages towards the sink. Then each child of the

dying node tries to find a new parent node similar to the

procedure described above.

Note that, as nodes die and the number of nodes in the

network decreases, one may think that the local parent

search procedure done on the subtree (initiated by Local-

FindParent messages) will be invoked more frequently and

therefore the messaging cost will increase. However, our

simulation results show that even nodes continue to die, the

local parent search is invoked very infrequently. In a net-

work of 100 nodes with Rt = Rs = 10 m on 50 m by 50 m

region, on the average 60.6 nodes die before the total

sensing coverage of connected nodes (with sink) becomes

below 20% of whole network region. Of these 60.6 dead

nodes, in the death of only 1.2 of them, the children of

dying node cannot find a node to assign as a new parent

from their neighbors so that they want help from the nodes

in their own subtrees by LocalFindParent messages.

Besides, the average number of nodes in such a subtree is

18.3, which is much less than the total node count in the

network.

Moreover, our protocol can handle new node arrivals

due to new node deployments or due to infrequent node
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neighbors vs. average neighbor count with different link failure (pf)
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relocations. A newly arriving node will not have a parent

assigned or it will not be able to find its parent in its new

neighborhood. Therefore, the new node, after detecting its

new neighbors, will select one of them as its new parent

and will set its tier number accordingly. The neighbors that

will detect this new node will also update their neighbor list

(at the beginning of the round when Hello messages are

received) and if selecting this new node provides smaller

tier number, they will also update their own tier numbers

and tier numbers of their descendents.

5 Performance evaluation

To evaluate our algorithm, we implemented a visual sensor

network simulator in Java. The reason why we used a self-

constructed custom simulator rather than a well-known one

such as ns2 is, by this way, we could test our algorithm

visually (nodes’ locations and status after and before

running our scheme) and skipped dealing with the unnec-

essary layers of nodes and protocol stack.

We assume that nodes are randomly and uniformly

deployed (as it is assumed in [8, 16, 17]) and the sink node

is located at the center of the region. We performed two

types of simulations: (1) coverage performance tests to see

the performance of our coverage check algorithm; and (2)

system lifetime tests to see the extension of network life-

time with our solution.

5.1 Coverage performance tests

In this part of simulations we wanted to see what percent of

nodes can be put into sleep mode by our algorithm main-

taining the initial coverage and connectivity. We used a

sensor network model similar to the one used in CCP [17].

We deployed 100 static nodes into 50 m by 50 m region

with 10 m of Rs and Rt values. The coordinates of nodes are

determined in a random manner at each run of the
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simulation experiments. The reported results in the graphs

are obtained as the average of 100 different runs.

Figure 12a and b show the active node count for dif-

ferent number of nodes in the network when Rt/Rs is 1 and

1.5, respectively (we set dr = 100%). Both graphs show that

our algorithm needs less number of nodes than CCP-SPAN

algorithm and nearly the same number of nodes as CCP-

SPAN-2Hop algorithm. However, the number of working

nodes needed in our algorithm include both ON-DUTY and

TR-ON-DUTY nodes. Figure 12c shows the number of

TR-ON-DUTY and ON-DUTY node count for the case in

Fig. 12a. As it is stated before, the nodes in TR-ON-DUTY

mode turn off their sensing units hence their energy con-

sumption is less than the nodes in ON-DUTY mode in

which all units are turned on.

We also did simulations to see the effect of Rt/Rs ratio

on the number active nodes. This time, we have decreased

the value of Rs to 6.25 m to see the difference more clearly

when Rt/Rs ratio is bigger. The number of deployed nodes

is 800 when the Rt/Rs ratio is 0.5, and 200 in all other

ratios.

Figure 13 shows the number of working node count for

different Rt/Rs ratios. Our algorithm needs less number of

nodes than CCP-SPAN algorithm for all ratios. On the

other hand the difference in the number of working nodes

needed by our algorithm and CCP-SPAN-2Hop algorithm

is very small for all ratios; our algorithm needs a little less

number of nodes. When the Rt/Rs ratio is 0.5 the difference

is the biggest. This is due to our predictive coverage check

algorithm which gives better results for small Rt/Rs ratios.

While in CCP algorithm nodes always update the status

of their 1-hop neighbors via HELLO messages, in CCP-

2Hop algorithm, nodes also update the status of their 2-hop

neighbors. When they are combined with SPAN algorithm,

each node needs to update their 2-hop neighbors because

SPAN needs them for the coordinator announcement rule.

However, in our algorithm, at first we only know the status

of 1-hop neighbors and whenever it is needed, we update

the status of 2- and 3-hop neighbors.

We wanted to compare the overhead due to these kinds

of messages used by our algorithm and CCP-SPAN and

CCP-SPAN-2Hop algorithm. Figure 14 shows the total

number of neighbors whose information is used by nodes to

perform their coverage check. Our algorithm uses slightly

more nodes than CCP-SPAN algorithm; however, it uses

remarkably less number of nodes than CCP-SPAN-2Hop

algorithm. It achieves the same number of working nodes

as CCP-SPAN-2Hop algorithm while using less number of

neighbors in coverage check. This figure only shows the

total number of neighbors used in coverage check, but if

we consider the messaging cost, our algorithm needs less

messaging than both algorithms due to 2-hop neighbor

updates required by SPAN algorithm. Besides, the more

neighbors are used, the more messaging cost is incurred,

since the status of neighbors need to be updated.

Furthermore, we also did simulations to show the cov-

erage conservative behavior of our algorithm. We ran the

two algorithms on a network with 100 nodes (Rt = Rs) and

computed the percentage of each k-covered area within the

whole network region. We set dr = 90% in these simula-

tions. In Fig. 15, we show the working nodes and their

coverages in the initial network (Fig. 15a), in the net-

work formed after running CCP-SPAN-2Hop algorithm

(Fig. 15b) and in the network after running our algorithm

(Fig. 15c). Moreover in Fig. 15d, we show the computed

average number of nodes covering each point in the whole

network region (it is computed as
Pn

k¼1 pkk, where pk is the

percentage of k-covered regions within the whole network

region, and n is the number of nodes in the network). Both

our algorithm and CCP-SPAN-2Hop algorithm keep more

than 90% of the area covered (i.e. 99 and 98%, respec-

tively). However, the redundant coverage resulted by CCP-

SPAN-2Hop algorithm is significantly more than the

redundant coverage resulted by our algorithm as shown in

Fig. 15d (our algorithm achieves this by shutting down the
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sensing units of some unnecessary nodes). In Fig. 15d, with

the second vertical bar, we also show the average number

of nodes covering each point in case of using all 3-hop

neighbors in coverage check eligibility rule (we call it as

AlgoReal) of our algorithm (normally, we use them if

expected coverage ratio is not bigger than desired ratio). In

other words, nodes do not consider the Expected Overlap

Tables and always use information of active 2- and 3-hop

neighbors, which requires continuous status update process

for those nodes. From the figure, we observe that using

(a) (b) (c)
Ideal AlgoReal Our Algorithm CCP−SPAN−2Hop

0

0.5

1

1.5

2

2.5

3

3.5

(d)

Fig. 15 Sample network snapshots before and after running two algorithms
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expected values causes an insignificant redundant coverage

over AlgoReal, but on the other hand, it achieves a great

saving in control message overhead.

5.2 System lifetime tests

In this part of the simulations, we evaluated the energy

efficiency and sensing coverage performance of our algo-

rithm. In most of the early studies, only the energy spent in

communication unit is considered. However, sensor nodes

also consume energy in sensing and processing units. Since

the energy consumed while processing data is very small

compared to the energy consumed in other units, it is

generally ignored. However, in some simulations authors

also ignore the energy consumption in sensing unit. But

according to [2] and [26], the energy dissipated for sensing

one bit of information is approximately equal to the energy

dissipated in receiving a bit. Therefore, in our simulations

we consider the energy consumptions in both sensing and

communication units.

In the communication unit, we use the following energy

consumption model for a node i in a network that applies a

tree-based routing scheme. This is the model used in [27].

We also assume that the sensor nodes in the network per-

form data aggregation while forwarding their data.

Ei;Communication ¼ EReceiving � ni þ ESending ð2Þ

A node spends energy while receiving data from its ni

children and while sending the aggregated data packet to its

parent. The constants EReceiving and ESending depend on the

communication technology. Some studies assume they are

equal [27], and some others consider ESending to be slightly

larger than EReceiving [28, 29]. We assume a ratio of 2/2.5

for EReceiving/ESending. Besides, we also consider the energy

consumption in sensing unit. According to [2] and [26],

EReceiving is equal to ESensing for a bit worth of information.

Therefore, we assume energy consumption ratio while

sensing, receiving and sending data as 2:2:2.5,

respectively. Moreover, if the size of a data message is

q times the size of a StatusUpdate message, we assume that
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q is 20 in all simulations. However, we also made a

simulation experiment showing the effect of the q constant.

For energy and coverage performance experiments, we

set Rs = 10 m and dr = 90%. Besides, to see the effect of

range ratio, we performed three different simulations for

ratios 0.5, 1.0 and 1.5. The number of deployed nodes are

300, 150 and 80, respectively. The region is a square of 50

m 9 50 m. The base station is located at the center of the

region. Initially, each node is assumed to have 100 units of

energy. In each round of communication, each node senses

the environment multiple times, packetizes the informa-

tion, and sends it towards the sink. The system is simulated

until the coverage becomes very low.

Figure 16 a, b and c show the coverage percentage,

number of still alive nodes, and total remaining energy in

nodes respectively. The range ratio is set to 0.5, that is,

Rt = 5 m and Rs = 10 m. Here, coverage percentage is

calculated considering only the coverages of nodes which

can reach the sink node, i.e. which can send data to the sink

node. From Fig. 16a, we observe that our algorithm

maintains better coverage percentage in the later times of

the network lifetime than CCP-SPAN-2Hop algorithm.

This is mainly achieved by a quite distributed selection of

active nodes in each round and the putting each unit of the

sensor nodes into sleep separately. The higher number of

alive nodes shown in Fig. 16b and the higher total energy

in the nodes shown in Fig. 16c are also the consequences of

these properties of our algorithm.

Figure 17 a, b, and c show the same metrics when the

Rt/Rs ratio is 1 and Fig. 18a, b, c show them when range

ratio is 1.5. Note that as Rt/Rs ratio increases, the perfor-

mance of CCP-SPAN-2Hop algorithm gets closer to our

algorithm due to the decreasing messaging cost of CCP-

SPAN-2Hop. We also observe this fact in Fig. 14.

We also simulated the effect of changing q value. Figs. 19

a, b and c show the remaining energy of nodes in a sample

network (with nodes having the same Rs and Rt) when CCP-

SPAN-2Hop and our algorithm are applied, and when q is

equal to 10, 20 and 50, respectively. Note that, when

q increases, the energy consumption in CCP-SPAN-2Hop

0 100 200 300 400 500

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time units

C
ov

er
ag

e 
P

er
ce

nt
ag

e

No Sleeping
CCP−SPAN−2Hop
Our Algorithm

0 100 200 300 400 500

20

30

40

50

60

70

80

Time units

N
um

be
r 

of
 A

liv
e 

N
od

es

No Sleeping
CCP−SPAN−2Hop
Our Algorithm

0 100 200 300 400 500

1000

2000

3000

4000

5000

6000

7000

8000

Time units

T
ot

al
 E

ne
rg

y

No Sleeping
CCP−SPAN−2Hop
Our Algorithm

(a) (b)

(c)

Fig. 18 Network statistics from a sample run when Rt/Rs = 1.5

Wireless Netw (2011) 17:19–40 37

123



and our algorithm get closer to each other. Our algorithm

reduces the amount of messages for maintenance and redu-

ces the effect of these messages in energy consumption.

However, if the size of these messages gets smaller with

respect to data messages, then performance of our algorithm

and CCP algorithm get closer.

6 Conclusion

In this paper, we investigated the sleep scheduling prob-

lem for energy conservation in wireless sensor networks.

We first analyzed the coverage of a node’s sensing area,

and we found out that a sensor node can find the expected

coverage ratio of its sensing area by knowing the trans-

mission/sensing range ratio and the number of its 1-hop

and 2-hop neighbors assuming uniform node distribution.

Based on this analysis, we proposed a method to find out

expected coverage that can be used in various problems as

well.

As the second contribution of the paper, we provide a

combined sleep scheduling and routing scheme that pre-

serves connectivity and coverage with predictive coverage

and multiple mode selections. In our solution, a sensor

node can be in one of the three different modes. In

ON-DUTY (full-active) mode, the sensor node has both its

sensing and communication units turned on. In TR-ON-

DUTY (semi-active) mode, the sensor node has the com-

munication unit turned on, but the sensing unit turned off.

In SLEEP (inactive) mode, the sensor node has both the

sensing and communication units turned off. This is dif-

ferent than previous studies which only consider a sensor

node as either active or sleeping.

Our algorithm is also flexible in terms of the transmis-

sion and sensing range ratio. That is, we do not assume a

certain range ratio. This is also different from most of the

previous studies which provide a solution for only a certain

ratio. Our solution preserves a desired coverage and con-

nectivity independent of this range ratio. Furthermore, our

algorithm also reduces the number of control messages that
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update the information about the states of the sensor nodes

in the network. We use the update messages whenever they

are required. The simulation results show that our scheme

can be effectively used in dense sensor networks for energy

efficient sleep scheduling while preserving connectivity

and coverage with low control messaging overhead.
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