
ARTICLE IN PRESS

Computers & Graphics 34 (2010) 136–144

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository
Contents lists available at ScienceDirect
Computers & Graphics
0097-84

doi:10.1

� Corr

E-m

akaydin

turker.y

gudukb
journal homepage: www.elsevier.com/locate/cag
Technical Section
Emergency crowd simulation for outdoor environments
Oğuzcan Oğuz, Ates- Akaydın, Türker Yılmaz, Uğur Güdükbay �

Bilkent University, Department of Computer Engineering, Bilkent, 06800 Ankara, Turkey
a r t i c l e i n f o

Article history:

Received 1 July 2009

Received in revised form

12 October 2009

Accepted 16 December 2009

Keywords:

Emergency

Crowd simulation

Occlusion culling

Outdoor environments
93/$ - see front matter & 2009 Elsevier Ltd. A

016/j.cag.2009.12.004

esponding author. Tel.: +90 312 290 1386; fa

ail addresses: oguzcan@cs.bilkent.edu.tr (O. O

@cs.bilkent.edu.tr (A. Akaydın),

ilmaz.trk@gmail.com (T. Yılmaz),

ay@cs.bilkent.edu.tr (U. Güdükbay).
a b s t r a c t

We simulate virtual crowds in emergency situations caused by an incident, such as a fire, an explosion,

or a terrorist attack. We use a continuum dynamics-based approach to simulate the escaping crowd,

which produces more efficient simulations than the agent-based approaches. Only the close proximity

of the incident region, which includes the crowd affected by the incident, is simulated. We use a model-

based rendering approach where a polygonal mesh is rendered for each agent according to the agent’s

skeletal motion. To speed up the animation and visualization, we employ an offline occlusion culling

technique. We animate and render a pedestrian model only if it is visible according to the static

visibility information computed. In the pre-processing stage, the navigable area is decomposed into a

grid of cells and the from-region visibility of these cells is computed with the help of hardware

occlusion queries.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Crowd animation is a crucial problem in computer graphics
since the crowds are a major component of a virtual scene. It is so
important that without crowd animation or with an improper
application, a virtual scene would not be realistic at all, regardless
of the qualities of the other components. Many applications of
computer graphics, such as computer games, virtual reality
applications and animated films, require high quality crowd
animation. Physically correct crowd simulations also have other
application areas, such as psychology, transportation research,
and architecture.

The requirements of a crowd simulation might be application-
specific. For instance, computer games require a crowd simulated
in real time, and so they would sacrifice some of the character-
istics of the crowd animation that affects realism, whereas the
film industry uses sophisticated and computationally-costly
techniques to produce more realistic animations. In both of these
diverse areas, crowd animations need to be controllable:
animated crowds should exhibit the intended behavior. Other
types of information may also be incorporated like statistical data,
in order to realistically perform simulations as in transportation
research.

Almost all the techniques to animate crowds are agent-based.
In agent-based approaches, every single agent has its own
computation of future behavior. Path planning and collision
ll rights reserved.

x: +90 312 266 4047.

ğuz),
avoidance are performed for each agent in the scene. This
approach is the most natural one since it is the way that real
crowds behave: each human makes her/his own motion decisions
according to the information s/he has, such as visibility, informa-
tion about the destination, and proximity. However, this approach
has the disadvantage that when animating a large group of
people, it requires large computational time. Agent-based models
have the flexibility to add any intended variation to the animated
crowd, since each agent can be modeled differently but it needs
expertize to model every agent consistently.

Recently, another approach to crowd animation problem has
been proposed that is inspired by continuum mechanics. This
approach treats the crowd as a continuum and animates the
crowd flow by the help of a set of equations tailored to simulate
crowd motion realistically. Continuum perspective unifies global
path planning and collision avoidance since the continuum
equations take the goals, obstacles and other agents into account
when predicting the motion of an agent.

One of the application areas of crowd simulation is simulating
emergency behavior of crowds. Emergency situations frequently
arise in cities. Incidents, such as fires, explosions, or terrorist
attacks, can stagger emergency situations. Training animations,
video games, and animated movies can make use of emergency
simulations. If the emergency simulations are realistic and
flexible enough, then foreseeing the possible problems that may
arise in an emergency situation will be possible.

For the case of outdoor environments of a city, an emergency
situation causes the nearby crowd to panic and behave different
than normal. During an emergency situation, decisions of people
are mostly reflex-based and do not vary greatly from a person to
another; most people try to run away and hide in reaction to the
incidents. Thus, in contrast to the simulation of a normal crowd

https://core.ac.uk/display/52922863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2009.12.004
mailto:oguzcan@cs.bilkent.edu.tr
mailto:akaydin@cs.bilkent.edu.tr
mailto:turker.yilmaz.trk@gmail.com
mailto:gudukbay@cs.bilkent.edu.tr
mailto:gudukbay@cs.bilkent.edu.tr
mailto:gudukbay@cs.bilkent.edu.tr


ARTICLE IN PRESS

O. Oğuz et al. / Computers & Graphics 34 (2010) 136–144 137
behavior, the simulations aiming emergency situations require an
approach that directly supports the simulation of homogeneous
behavior.

In this work, we take a continuum perspective to simulate the
crowds during emergency situations. In a large virtual city, we
only simulate agents that are in the region of interest defined
around the viewer’s location. When there is no incident in the
scene, crowd is simulated to exhibit normal behavior: agents walk
and try to reach their goals. When an incident is introduced, the
agents that are aware of the emergency situation switch to the
panic behavior: they try to run away from the incident. The agents
that are not aware of the emergency situation still try to walk
their goals but they avoid incident region this time. An agent
becomes aware of the emergency when the information radiating
from the incident reaches at the position of the agent or when the
agent is caused to panic by another agent that is already aware of
the emergency situation. We represent the incidents as discom-
fort regions with discomfort values decreasing as the distance of
the cells to the incidents increases.

We model each pedestrian as an articulated body with links
and joints and the whole body is a polygonal model. Each
pedestrian is capable of making realistic motions. This increases
the realism of the rendered crowds but a lower number of
pedestrians could be rendered with this approach as compared to
the state-of-the-art approaches using impostors.

We employ an occlusion culling technique to cull the occluded
agents. Culling the occluded agents is essential for speeding up
the simulations in virtual cities since there would be a large
number of agent models to draw at each step of an animation and
most of the agents would not be visible to the view-point. The
details of the occlusion culling technique used can be found in [1].
By extending the occlusion culling to navigable areas, we became
able to render the agents only if they are actually visible with
respect to the contemporary view-cell of the user. Static cell-to-
cell visibility is computed in the preprocessing phase by shrinking
the occluders and computing visibility information using hard-
ware occlusion queries. The resulting system is able to realisti-
cally simulate a significant number of agents in emergency
situations with high frame rates. The main contributions of this
work can be summarized as follows.
�
 A continuum dynamics-based crowd simulation framework
that is specifically designed to simulate and visualize crowds
for emergency situations in outdoor urban environments.

�
 An offline occlusion culling technique to cull the occluded

agents. Cell-to-cell visibility is computed in the preprocessing
phase using occluder shrinking and hardware occlusion
queries.

2. Related work

Most of the work about crowd animation is agent-based in
which each agent plans its motion individually. The agent-based
approaches could get quite complex, and thus computationally
demanding, when one wants to consider cognitive aspects, such
as knowledge, learning and emotional states [2–4]. The visibility
and path planning is added to the Funge’s work by Terzopoulos
and Shao [5]. Massive Software, a production quality tool, gives
the animator full responsibility to define each agent’s behavior
[6]. However, Massive Software requires considerable effort to
come up with sufficiently realistic simulations of large groups of
people. Legion [7] and Simulex [8] software aim analysis and
design of crowd dynamics, and require expertize to come up with
crowd simulations.
Luo et al. propose a human behavior modeling framework that
naturally reflects human decision-making process [9]. The
proposed framework adopts a layered architecture to imitate a
person’s awareness of the situation and consequent changes on
the internal attributes defining individual and crowd behaviors.
The framework is generic and shown to realistically simulate a
small crowd of people under user defined conditions.

Pettré et al. represent navigable regions for crowd simulation
with circles of variable radius [10]. Agents are assigned various
paths between two distant circles, where each path consists of a
series of connected circles. With the help of multiple simulation
and visualization levels, on not too complex environments, this
framework is able to simulate and visualize thousands of agents.
In contrast to our work, agents are assigned static paths in their
work.

Pelechano et al. simulate the agents in a continuous space with
a forces model; the movement of the agents are driven by a set of
attractors while the agents avoid the obstacles and the other
agents in the scene [11]. In their model, agents may have varying
personalities and roles, and the communication between the
agents provide information sharing about the hazards and exit
routes in the building. Their work is mainly developed for indoor
emergency evacuation scenarios.

Particle-based approaches are more suitable for simulating
large crowds because the computational cost for each individual
is much less than the one in agent-based approaches. Helbing
simulates the crowd as a self-driven many-particle system [12].
In this model, crowd dynamics of pedestrians are driven by a
mixture of psychological and physical forces.

Chenney defines flow tiles for representing and designing
velocity fields easily [13]. Once the flow tiles are defined between
the buildings, congestion avoidance can be achieved easily since
the flow tiles are divergence free. However, the flow tiles
approach does not address all the concerns of a crowd animation;
for example, we cannot assign goals to a single pedestrian or a
group of pedestrians.

Hughes is the first one to view a crowd as a continuum and
derive the set of equations to simulate large crowds [14]. Hughes
defines the crowd as a density field and uses differential
equations to derive the motion of the crowd. The density field is
driven towards the goal by the help of a potential function;
density follows the direction of gradient vector of the potential
function. The model proposed by Hughes is confirmed with real
crowd data [15].

An inspiration from Hughes’ model resulted in continuum
crowds [16]. Continuum crowds approach makes the simulation
of crowd flows possible by transforming Hughes’ continuous
crowd field into a particle representation. Treuille et al. make
numerous improvements to Hughes’ model to make the simula-
tion able to exhibit a number of visually interesting and
empirically proven behavior.

AMD Froblins demo demonstrates a different use of continuum
crowds approach [17]. Global path planning is done by the
continuum approach in coarse resolution and local path planning
is handled differently. Their justification for this combination is
that solving the Eikonal equation at a high resolution to perform
local and global path planning for large numbers of agents is
prohibitively expensive for a real time application. So they
augment the global Eikonal solution with a local avoidance model
that resolves the fine-grained obstacles. Local path planning is
typically handled by a continuous cycle of examining the nearby
environment and reacting based on the discovered information.
The system is implemented on CPU and GPU. The parallelization
enabled by the GPU performs very well: nearly 65 000 agents are
simulated and rendered in real time with simple cylindrical agent
models. The main bottleneck is said to be rendering. However, the



ARTICLE IN PRESS

O. Oğuz et al. / Computers & Graphics 34 (2010) 136–144138
performance is higly dependent on the GPU power and the GPU
implementation is not very straightforward.

Tecchia et al. propose a framework for the simulation of virtual
crowds with an emphasis on visualization [18]. Crowd behavior is
simulated by placing a 2D grid containing four layered behavioral
information on the environment and moving the agents according
to the behavior data stored on the grid. Complex behaviors
can be achieved but the resulting behaviors are static for a specific
simulation. They use an image-based rendering approach where a
set of pre-computed textures are displayed on impostors accord-
ing to the viewpoint and the frame of animation.

Social psychologists have carried out extensive research on
pedestrian behavior in reaction to an emergency situation [19,20].
Panicking people have found to show maladaptive escaping
behaviors different than normal socially-controlled behaviors
[21]. In the case of bottlenecks, such as doors and exits for a
building, panic behaviors cause jamming and overcrowding [20].
3. Emergency crowd simulation for outdoor urban
environments

The agent-based approach to crowd simulation is an approx-
imation to the real life crowds and so it is a more natural way of
simulating a crowd than particle-based approach. In an agent-
based crowd simulation, each agent can behave and react
uniquely as its artificial intelligence model may be driven by its
unique parameters. Each agent can have its own decisions and
reactions, pursue its goals and interact with the other agents.
However, in an emergency situation, people generally show more
homogeneous behaviors: they all try to escape some way. There
would be fewer interactions between the agents if the incident
occurs outside, as in a building, people may show a more
organized behavior due to the past evacuation practices. For
these reasons, we take a continuum dynamics-based approach
[16]. In a 2D grid, the agents are considered to be particles and
their flow is driven by dynamic vector fields. Crowd can be
divided into a small number of behavior groups; the vector fields
of each group are computed based on minimizing a potential
function at every time step. Computational cost is mainly
dependent on the grid size and the number of groups. Since we
compute a vector field for each group at each time step and move
all the agents in the group accordingly, the cost per agent is
amortized.

The crushing of people during emergency situations is less
crucial in outdoor environments than it is in indoor environ-
ments; it does not severely affect the way individuals move. To
this end, we do not compute any interaction forces between
individuals. We do not perform any collision detection since the
continuum approach takes care of collisions of agents as far as the
resolution of the grid permits.

3.1. Navigable space extraction

To employ continuum approach on a city environment, we
need a distinction between the navigable and the non-navigable
grid cells. Non-navigable cells can be the cells occupied by a
building or a road. Agents cannot penetrate to non-navigable cells
so we do not need potential functions to be computed for non-
navigable cells. By excluding non-navigable cells from computa-
tion of potential functions, we prevent continuum flow from
going through the boundary cells; this saves the need for collision
detection against static structures.

Navigable space needs to be extracted as accurate as possible.
However, the accuracy of extraction is determined by the
resolution of the grid since we must define a cell either as
navigable or not [22]. To get the ground level cells that intersect
with a building, we test each cell against all the primitives of the
buildings. Redundant tests are avoided by testing a cell only
against the buildings whose bounding boxes intersect the tested
cell. After these tests are performed, only the cells that intersect
the primitives defining the surfaces of the buildings are extracted.

3.2. Local continua using active grid

In the continuum crowds approach, the cost of computing a
potential function that is specific to a group of agents is only
dependent on the resolution of the 2D regular grid. The potential
function is computed everywhere on the grid, and all of the agents
are moved according to the gradient of the potential function. If
we have a large grid that covers the entire city area or a large
portion of the city area, then it would be too costly to compute
potential functions for all the groups across the grid. In an urban
environment, a viewer can only see a tiny portion of the whole
city due to the occlusion caused by the nearby buildings. Thus,
computing the potential functions everywhere would be redun-
dant. The viewer would not see the simulated agents out of
interest area. To avoid high computational cost and redundancy to
simulate crowds in the whole city area, we only care about the
grid that covers the interest area. That is, the potential functions
are computed and the agents are simulated only in a small part
which we call the active grid.

Due to aligned streets in a city, the grid portion that covers all
the regions that can be seen from a view point can be huge; so, the
active grid cannot be defined to cover all the visible regions.
Instead, we define the active grid as a fixed-size rectangular grid
that has the viewpoint at its center. This definition has some
drawbacks. Not simulating the agents that are out of the active
grid degrades the continuity: the user cannot follow and view an
agent if the agent leaves the active grid. Since we aim to simulate
and demonstrate the behavior of the crowd during emergency
situations, the travel of a single agent is not crucial. Another
drawback is that we can only animate and render the simulated
agents so the agents that enter or leave the active grid would pop
in or pop out. If the viewer is located on the ground, the viewer
would be surrounded by agents and if the active grid is large
enough, the user would not notice popping artifacts since they
would be far and occluded. In the case of fly-through scenarios,
the active grid needs to be defined large enough to cover whole
region that can be seen.

3.3. Normal crowd behavior before the incident

To demonstrate the effect of an incident on the surrounding
crowd, we need to simulate the normal crowd behavior before the
incident. This simulation may span a small period of time and the
crowd switches to the emergency behavior when the incident
occurs. Since we have an active grid of fixed size and we only
simulate the agents in it, we need to maintain a pedestrian flow
inside the active grid. New agents are continuously added to the
active grid to prevent the grid from becoming empty as some
agents leave the grid. We set the goals for an agent as the cells
that are distant to the cells to which the agent is added, so that
the agent travels through most of the active grid. To minimize
pop-in and pop-out artifacts, we add new agents at the border
cells of the grid and direct them to some distant border cells.

3.4. Emergency behavior

In our system, agents try to get away from the incident region
in reaction to the incident. Since the active grid can be placed



ARTICLE IN PRESS

O. Oğuz et al. / Computers & Graphics 34 (2010) 136–144 139
anywhere on the city, the orientation of the navigable and non-
navigable cells inside the active grid tends to differ greatly. This
structure inside the active grid affects the behavior of the people.
For instance, if we place the active grid in an open space in the
city, everywhere would be navigable and people could run to any
direction. In contrast, if the incident occurs in a street, people
would try to get away by running to either ends of the street. To
adapt to different structural variations, we place the goals for the
escaping groups only at the navigable border cells of the active
grid. In this way, the agents try to find their way out of the active
grid. However, this behavior is not sufficient since an agent may
run through the incident region to minimize the potential
function when it is less costly to take a path going through the
incident region (see Fig. 1(a)). This configuration only makes
sense if the incident is placed at the center of the active grid. For
this reason, we take the position of the incident into account and
assign the cells surrounding the incidents with appropriate
discomfort values. Assigned discomfort value for a cell decreases
as the distance of the cell to the incident location increases. So we
define an incident point as a local maximum inside the active grid.
In Fig. 1(b), we want the agents to follow the vectors; moving
outwards from the incident. The discomfort field for each incident
Fig. 1. (a) The vector field that the agents would follow if the border cells are

defined to be goals. Some agents would go through the incident region (filled

circle) in order to take the shortest path to a border cell. (b) The ideal vector field

that the agents should follow when an incident occurs at the filled circular region.
i is defined as

diðxÞ ¼
di;max�jdi;max�di;minj �

Jx�piJ

ri

� �k

if Jx�piJori

0 otherwise

8><
>: ð1Þ

where pi is the position of the incident i, ri is radius of the region
that can be affected by the incident and, di;max and di;min are the
maximum and minimum discomfort values caused by incident i,
respectively, and k is a positive constant. The total amount of
discomfort value at a cell is computed by summing discomfort
contributions of all the incidents:

dðxÞ ¼
X

i

diðxÞ: ð2Þ

When an emergency situation arises, the maximum traveling
speed ðfmaxÞ of the agents increases and their tolerance to
discomfort is increased by scaling g in the unit cost definition
[16].

3.4.1. Smoothing agent paths

Computation of the potential fields for the agent groups is the
most costly operation in the simulation process [16]. This cost
increases dramatically as the number of agent groups within the
system increases. Therefore, to achieve real-time simulation rates,
we decouple the renderer from the dynamic computation of
group potential fields. In our current implementation, we have
four directional agent groups (north, south, east, west) to
populate the area specified by the active grid. We also have a
fifth emergency group, which is populated when an emerging
incident is introduced within the system. Thus, the simulator has
five group steps plus one short idle step for handling minor
operations, like agent exchanges between groups.

Upcoming position and velocity vectors for the agents will only
be available (to be used in interpolation) after the six steps in the
simulator algorithm are completed. At each step for a group, only
the potential field of this subject group is evaluated. In addition to
this, the actual positions and velocities of all agents in the system
are evaluated at each simulator step by interpolating the previous
and the current navigational information available. At the same
time, the upcoming navigational information is computed using
the current values. We use Hermite cubic spline interpolation
scheme to compute the inbetween values of the agent positions
and spherical linear interpolation to compute the inbetween
agent directions at each step. In this way, we also smoothen the
agent paths in a less costly manner.

3.4.2. Propagation of panic

When an incident occurs, all of the surrounding agents would
not be aware of the emergency situation instantly. We define an
awareness regions around the incident regions that get larger
with time; and so, it takes longer to farther agents switch to
emergency behavior. However, the agents that cannot see the
incident, are not affected by this awareness region. To check that
if an agent is able to see the incident, we use the precomputed
visibility information, which is explained in the next section. In
addition to the awareness region, we also use a panic field to
model the behavior of agents being affected by scared agents
nearby. At each frame, each agent in the emergency group applies
a panic value to the neighboring grid cells with respect to the
agents’ position on the grid. For a particular grid cell, the panic
value may stack if there are several agents nearby. And if an agent
behaving normally happens to enter one of these cells with
applied panic (exceeding a specified threshold), then this agent
will join the emergency group as well. It is natural though for this
panic field to dissipate over time. At each frame we dampen out
the remaining panic in unpopulated cells by multiplying the panic



ARTICLE IN PRESS

For each timestep:

1. If the view points distance to active grids center is above some threshold:

1.1 Reposition the active grid according to the view point.

1.2 For each group:

1.2.1 Clear all the goals.

1.2.2 Update the goals with the navigable border cells of the active grid.

2. If any new incident is to be added, add it.

3. For each incident:

3.1 If the incident’s lifetime is over, remove the incident and clear its effects.

3.2 Dissipate awareness area caused by the incident.

3.3 Dissipate discomfort values caused by the incident.

4. For the emergency group, dissipate panic field caused by the panicking agents.

5. For each of the normal behavior groups:

5.1 Add new agents at the navigable border cells of the active grid.

5.2 Move the agents that switch to emergency behavior, to the emergency group.

6. Convert the crowd to a density field.

7. For each group:

7.1 Construct the unit cost field.

7.2 Construct the potential field and its gradient.

7.3 Update the agents locations.

Fig. 2. The simulation algorithm executed for each time step.

O. Oğuz et al. / Computers & Graphics 34 (2010) 136–144140
value in these cells with a specified constant between 0 and 1. The
panic in these cells are set to 0 when they become lower than a
specified low-threshold. Only the cells within the active grid are
applied panic dampening to reduce the computational cost. The
emergency crowd simulation algorithm is given in Fig. 2.
4. Crowd rendering

In our system, we use Cal3D skeletal animation library [23] to
animate the agents. For each agent to be drawn, a pose is computed
and the resulting mesh is rendered. However, not all the agents are
seen by the user: a simulated agent may be occluded by buildings or
it may be out of the view frustum. At a frame, if an agent is not
visible to the view point, we do not only avoid the rendering
computation but also the pose update computation.

4.1. Occlusion culling

The simulation happens in a city so there would be lots of
buildings that may cause a great amount of occlusion, especially
at the ground level viewing positions. In contrast, the occlusion of
an agent by the crowd is not crucial except for very dense regions;
thus, we only care about the buildings as occluders. Since all the
buildings are static, their occlusion effect can be computed offline.
Offline computation of visibility requires a from-region visibility
approach in which the scene is decomposed into a number of
view cells at which the view point can be located. Since it is more
like an open space, we prefer a uniform grid of view cells at the
outdoor environments, whereas it is more appropriate to define
the rooms as the view cells connected to each other with portals
in a building. The visibility information for each navigable view
cell is pre-computed; that is, all the objects seen at every point in
the view cell is extracted and stored [1]. However, we aim to
compute visibility of the agents that are dynamic and their
position cannot be known for sure. Unlike what a regular
occlusion culling algorithm does, we choose to cull other
navigable cells so as to determine the cell to cell visibility for
the outdoor environment. We define a uniform grid of target cells,
which are essentially 3D boxes with the height of an agent and
placed at the ground level. Visibility information of a target cell
for a view cell can be used as follows: the skeleton pose is
computed for an agent and the resulting mesh is rendered, only if
the agent is in a target cell that is visible to the view cell in which
the view point resides.

A view cell theoretically includes infinite number of view
points so it is impossible to sample the visibility at every point
inside a view cell. There has been several geometric and image-
based solutions proposed for this [24,25]. The approach we take is
based on the notion of occluder shrinking [26]. By shrinking the
occluders present in the scene and sampling the visibility at the
center of the view cells, conservative occlusion culling can be
achieved. Once the shrunk version of every occluder in the scene
is computed, we need to check the visibility of every navigable
target cell for each navigable view cell. In this process, we make
use of hardware occlusion queries. For a navigable view cell, a
target cell is tested against all the buildings by drawing the
shrunk versions of the buildings first and then issuing an
occlusion query for the target cell. Since all the shrunk buildings
are drawn prior to the occlusion query, occluder fusion is
achieved. Visibility information calculated by using hardware
occlusion queries is certainly conservative for the configuration in
which hardware occlusion query is issued. However, hardware
occlusion queries are dependent on the limited viewport resolu-
tion and prone to sampling and precision errors. The calculated
visibility can be erroneous for a different configuration in which
the clipping window covers a smaller area of the scene. For a
different configuration, a far away target cell that did not generate
a fragment before may generate a fragment, and so, it may
become visible. Additionally, due to sampling and the limited
viewport resolution, a target cell that was completely occluded
before may become visible. In order to get a visibility information
as precise as possible, the viewing parameters are adjusted during
the visibility computation for a target cell so that the target cell is
zoomed to the maximum extent to create a greater resolution
during occlusion culling and prevent errors.



ARTICLE IN PRESS

Fig. 3. Top view of the scene. The viewer is located at the red colored region. The

portions of the active grid that are occluded by the buildings are colored in purple.

The agents in the purple colored regions are culled. (For interpretation of the

O. Oğuz et al. / Computers & Graphics 34 (2010) 136–144 141
Due to the structure of a city, nearby buildings would occlude
most of the target cells for a view cell. In the light of this fact,
the number of occlusion queries issued for a view cell can
be reduced by computing visibility information for a coarser-
grained grid first. We make use of region quadtrees for this
purpose.

Once the visibility information is computed, the extracted
information need to be stored in main memory during runtime. If
we store the visibility of every target cell for every view cell, the
memory space needed to store the visibility information would be
on the order of Yðv2 � t2Þ, where v is the number of view cells and
t is the number of target cells. Even though it is enough to store a
byte for each view cell-target cell pair and we only store visibility
information for navigable view cells, the required memory space
can be huge, depending on the resolutions of the view cells and
target cells grids. For this reason, we store the quadtree, which is
used in the visibility calculation, for each navigable view cell, and
we store the visibility information for target cells in the visible
leaves of the quadtree. We also perform view-frustum culling. If
an agent is visible, then its bounding box is tested against the
view frustum. For every agent, three levels of detail of the mesh
geometry are pre-computed and stored [23]. Depending on the
distance between the camera and an agent, one of the three levels
of detail is used to render the agent.
references to color in this figure legend, the reader is referred to the web version of

this article.)
5. Results

The proposed algorithms were implemented using Cþþ
Programming Language. The simulated crowd and the city
environment are visualized using OpenGL. Hardware-based
occlusion culling is performed with the help of GL_NV_occlusion_-
query extension of OpenGL, provided by NVIDIA Corporation [27].
Skeletal animation of the simulated pedestrians are computed
using Cal3D. In order to get a higher performance for the priority
queue used in the potential function computation, we use the
p_queue structure of LEDA [28]. The test platform is a personal
computer with Intel 2 GHz Centrino Duo processor, 2 GB RAM, and
an NVidia GeForce Go 7400 graphics card. The city model used is
the Vienna2000 Model. The city model is composed of 805
buildings and a total of 23 K triangles. The extracted navigable
space at the ground level is defined on a grid of 1000� 817 cells.

The size of the view cells to be used in from-region occlusion
culling is not dependent on the cell size of the simulation grid. The
view cell size need to be defined according to the size of the
occluders in the scene. If the view cell is set to be too large, then
the occluders would be shrunk extensively and their occlusion
effect would be mostly lost. On the other hand, if we set the view
cell size to be too small, then the preprocessing to compute from-
region visibility information would take too long, and the memory
space requirement to store the visibility information would be too
high.

The size of the target cells should be defined according to the
structure of the urban environment. We either cull or process all
the agents inside a target cell according to the visibility of the
target cell. Large target cells would preclude fine occlusion
culling. On the other hand, too small target cells would result in
a higher number of target cells, and thus requiring longer
preprocessing time and larger memory space requirement.
Making the target cells too small would also waste the benefits
of spatial coherence of visibility. In our tests, the resolutions of the
view cell grid and the target cell grid are both set to 170� 130.
Cell-to-cell visibility computation for this configuration take less
than 20 min. The memory space required to store the visibility
information is 48 MB. The use of calculated visibility information
is depicted in Fig. 3.
We ran a series of simulations with varying active grid size.
The simulations are initiated without any emergency situations.
Until an emergency situation is introduced, normal crowd
behavior is simulated. When an emergency situation happens,
the agents that become aware of the incident switch to
emergency behavior. Fig. 4 illustrates the agents seen before
and after the occurrence of the incident.

Fig. 5 shows stacked graphs of number of agents during the
simulations. All the simulations are run with the same camera paths.
The total number of agents may change during a simulation since
some agents may leave the active grid; the graphs show the total
number of agents in the active grid. The similarity of the graphs is an
indication of the scalability of the proposed occlusion culling
technique. Table 1 presents the average frame rates for crowd
simulations, which are run with and without occlusion culling, with
different number of agents. The speed-up due to occlusion culling
increases with the crowd size since the ratio of the occluded agents
to the visible agents would be higher in large crowds. This indicates
that the occlusion culling for crowd rendering is more effective and
essential when visualizing large number of agents. The highest level
of detail for the male and female models are composed of 424 and
350 polygons, respectively. The medium and the lowest levels of
detail contain approximately 65% and 45% of the polygons in the
highest level of detail version for both male and female models. The
frame rates change according to the number of agents rendered for a
particular viewpoint; the frame rates are higher at the regions where
more agents are occluded.

The number of frames are not equal to the crowd simulation
steps taken, since we decouple the renderer from the crowd
simulator. The renderer interpolates the pose and the velocity of
the agents between the two adjacent simulation steps. For each
simulation step, six interpolated frames are drawn. It should be
noted that the frame rates for the simulations are affected by the
time required to draw the geometry of the urban scene. In order
to reduce this effect, we use a city model with a simple geometry.
Furthermore, the visualization of the geometry of the city
incorporates a high level of occlusion culling for the building
models.



ARTICLE IN PRESS

Fig. 4. Still frames from a crowd simulation in an urban environment: (a) and (b) show normal crowd behavior; (c), (d), (e), and (f) show emergency crowd behavior. The

grid on the floor in part (f) shows the panic field spread out by the escaping agents.

O. Oğuz et al. / Computers & Graphics 34 (2010) 136–144142
We also performed simulation tests using simple boxes for the
body parts of the agents. In these tests, models are rendered in
wireframe without any texturing. Table 2 presents the average
frame rates for these simulations. The results given in Table 2 are
an indication of the rendering performance when simple
geometric or impostor based models are used, which are less
costly than the detailed models that include complex geometry
for the body parts and texturing.

In the simulation tests of emergency behavior, we observed
that the agents follow smooth and efficient paths while escaping
from the incident. In some configurations of the nearby structures
and the crowd distribution, complex behaviors emerge. For
instance, escaping agents do favor but do not always take the
paths that are composed of the points that are strictly growing
away from the incident region. This behavior is more frequent at
the regions that are far away from the incident since coming
closer to the incident is harder in the close proximity of the
incident due to higher discomfort values near the incidents.
6. Conclusion

We propose a framework to simulate and visualize pedestrian
crowds in emergency situations. The proposed crowd animation
system simulates the agents with a continuum dynamics-based
approach applied to the crowd model of Hughes [14,16]. During
outdoors emergency situations, people are coarsely distributed
and show homogeneous behaviors. The taken continuum-ap-
proach is able to simulate a number of agent groups up the
resolution of the simulation grid, and the cost per agent is
amortized for each group of agents. Thus, the continuum-based
approach is more suitable for outdoors emergency simulations, as
opposed to the computationally-demanding agent-based ap-
proaches. We represent the pedestrian crowds in the emergency
situations by a number of behavior groups. At each step, the
potential function is computed for each behavior group, and the
positions of the agents are updated accordingly. For the city
model in which the simulation takes place, we first extract the
navigable space and render all the cells occupied by the buildings
as non-navigable for the agents. In a large city model, we only
simulate the near proximity of the viewer by defining and
maintaining an active grid around the view point. The active grid
provides a good way to simulate the crowd in the local proximity
of the viewpoint. One disadvantage of using such a local grid is
that, in some cases, the potential function and the paths of agents
may show steep changes. This is because the goals of the behavior
groups are defined on the navigable borders of the active grid and
the navigability of the borders could show steep changes when



ARTICLE IN PRESS

Fig. 5. The effects of occlusion culling and view frustum culling on crowd rendering. The stacked graphs depict the total number of agents, the number of rendered and

culled agents, and the number of rendered agents for crowd populations of (a) 400, (b) 1000, (c) 4000, and (d) 8000 agents. Blue region indicates the number of culled

agents due to occlusion whereas red region indicates the culled agents due to view frustum. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Table 1
The average frame rates (frames per second) for crowd simulations that are run

with different number of agents are shown.

Number of

agents

Average fps without

occlusion culling

Average fps with

occlusion culling

Speed-

up

400 38.64 45.76 1.18

1000 21.99 31.32 1.42

2000 14.11 18.98 1.35

4000 8.20 12.27 1.50

8000 4.49 7.09 1.58

Simulations are run with and without occlusion culling. The performance gain due

to occlusion culling can be seen on the speed-up column.

Table 2
The average frame rates (frames per second) for crowd simulations with simple

geometric models for agents.

Number of agents Average fps with simple

geometric models

400 57.67

1000 48.20

2000 29.98

4000 23.79

8000 13.95

During the simulations, occlusion culling is employed.

O. Oğuz et al. / Computers & Graphics 34 (2010) 136–144 143
the viewpoint is moved. However, if the active grid is chosen to be
large enough, the changes in the environment while the active
grid is moving will not affect the potential fields and the agents
flow significantly. The emergency behavior in reaction to the
incidents inside the active grid is achieved by placing the goals for
the escaping crowd at the navigable border cells of the active grid.
In order to achieve a crowd flow radiating outwards from the
incident points, for each incident, we define a Gaussian-like
discomfort field centered at the incident region. Thus, when the
simulation is running with the proper discomfort values set at
the cells surrounding the incidents, the crowd would move in the
direction of the gradients of the contours that are radiating from
the incident points. In our simulation tests, we observed that the
agents escape from the introduced incidents in a sensible way.
The agents find escape paths through the streets and the spaces in
the city avoiding the incident regions.

We also propose an extension to the previous work, a from-
region occlusion culling method to avoid the animation and
rendering costs of the simulated pedestrian models that are
occluded by the buildings. First, we decompose the space where
the view point can be located into a uniform grid of view cells.
Then, another uniform grid of target cells in which the agents
could reside is formed. The cell-to-cell visibility between the view
cells grid and the target cells grid is computed with the help of the
hardware-based occlusion queries. We query the visibility of each



ARTICLE IN PRESS

O. Oğuz et al. / Computers & Graphics 34 (2010) 136–144144
target cell for each view cell. By shrinking the occluders in the
scene by the maximum distance traveled in a view cell, and
sampling the visibility at the center of the view cells, conservative
occlusion culling is achieved. During the simulation, the pose of
the pedestrian model is computed and the resulting mesh is
rendered only if the target cell that contains the agent is visible to
the view point. Used together with view frustum culling, the
proposed occlusion culling method enables animation of the
simulated crowd at high frame rates, with detailed pedestrian
models. The technique is effective while rendering large number
of agents in a city like environment; most of the agents in the
scene would be occluded due to the nearby occluders. The
effectiveness of the technique would be higher if there are a large
number of pedestrians in the scene and the pedestrian models are
detailed. This technique is not suitable if the simulations are run
in an open environment or there are a small number of
pedestrians with simple geometric models.

In the future, we plan to behaviorally diversify the simulated
crowd by adding new behavior groups. The new behavioral
groups would compose of the agents that try to hide in buildings
or try to intervene the incident during emergency situations. To
make the active grid adaptive to the nearby structures would
represent better the interest area of the viewer. In addition, using
parallel algorithms for level set formulations [29], a substantial
speedup might be achieved if the simulation process can be
extended to parallel domains, such as GPU or multi-core domains.
In the current implementation, the view cells’ grid is placed on the
ground level. The culling approach can be extended to fly-through
scenarios by defining a view-cells grid for each height level in
which the view position can be located.
Appendix. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.cag.2009.12.004.
Acknowledgements

The work described in this paper is supported by the Scientific
and Research Council of Turkey (TÜB_ITAK) under Project Code
EEE-AG 104E029. The Vienna2000 Model is courtesy of Peter
Wonka and Michael Wimmer.

References

[1] Yılmaz T, Güdükbay U. Conservative occlusion culling for urban visualization
using a slice-wise data structure. Graphical Models 2007;69(3–4):191–210.
[2] Funge J, Tu X, Terzopoulos D. Cognitive modeling: knowledge, reasoning and
planning for intelligent characters. In: ACM Computer Graphics (Proceedings
of SIGGRAPH ’99), 1999. p. 29–38.

[3] Shendarkar A, Vasudevan K, Lee S, Son Y-J. Crowd simulation for emergency
response using BDI agent based on virtual reality. In: Proceedings of the
winter simulation conference, 2006. p. 545–53.

[4] Nguyen Q.-A.H, McKenzie FD, Petty MD. Crowd behavior cognitive model
architecture design. In: Proceedings of the conference on behavior repre-
sentation in modeling and simulation (BRIMS), 2005. p. 55–64.

[5] Shao W, Terzopoulos D. Autonomous pedestrians. In: Proceedings of the ACM
SIGGRAPH/Eurographics symposium on computer animation, 2005. p. 19–28.

[6] Massive Software - Artificial Life Solutions. /http://www.massivesoftware.
comS, Accessed at June 2009.

[7] Legion Sofware. /http://www.legion.comS, Accessed at June 2009.
[8] Simulex Software. /http://www.crowddynamics.com/egress/simulex.htmlS,

Accessed at June 2009.
[9] Luo L, Zhou S, Cai W, Yoke Hean Low M, Tian F, Wang Y, et al. Agent-based

human behavior modeling for crowd simulation. Computer Animation and
Virtual Worlds 2008;19(3–4):271–81.

[10] Pettré J, de Heras Ciechomski P, Maı̈m J, Yersin B, Laumond J-P, Thalmann D.
Real-time navigating crowds: scalable simulation and rendering. Computer
Animation and Virtual Worlds 2006;17(3–4):445–55.

[11] Pelechano N, Allbeck JM, Badler NI. Controlling individual agents in high-
density crowd simulation. In: Proceedings of the ACM SIGGRAPH/
Eurographics symposium on computer animation (SCA ’07), 2007. p. 99–108.

[12] Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic.
Nature 2000;407:487–90.

[13] Chenney S. Flow tiles. In: Proceedings of the ACM SIGGRAPH/Eurographics
symposium on computer animation, 2004. p. 233–42.

[14] Hughes RL. A continuum theory for the flow of pedestrians. Transportation
Research, Part B: Methodological July 2002;36(6):507–35.

[15] Hongwan L, Wai FK, Chor CH. A study of pedestrian flow using fluid
dynamics. Technical Report, 2003.

[16] Treuille A, Cooper S, Popović Z. Continuum crowds. ACM Transactions on
Graphics (Proceedings of SIGGRAPH ’06) 2006;25(3):1160–8.

[17] Shopf J, Barczak J, Oat C, Tatarchuk N. March of the froblins: simulation and
rendering massive crowds of intelligent and detailed creatures on GPU. In:
ACM SIGGRAPH ’08 classes; 2008. p. 52–101.

[18] Tecchia F, Loscos C, Chrysanthou Y. Visualizing crowds in real-time.
Computer Graphics Forum 2003;21(4):753–65.

[19] Canter D. Fires and human behaviour, 2nd ed. David Fulton Publishers, Ltd;
May 1990.

[20] Elliott D, Smith D. Football stadia disasters in the United Kingdom: learning
from tragedy?. Organization Environment 1993;7(3):205–29.

[21] Miller DL. Introduction to collective behavior and collective action, 2nd ed.
Waveland Press; February 2000.

[22] Yılmaz T, Güdükbay U. Extraction of 3D navigation space in virtual urban
environments. In: Proceedings of 13th European signal processing conference
(EUSIPCO ’05), 2005.

[23] CAL3D Character Animation Library. /http://home.gna.org/cal3d/S, Accessed
at June 2009.

[24] Bittner J, Prikryl J, Slavik P. Exact regional visibility using line space
partitioning. Computers & Graphics 2003;27(4):569–80.

[25] Nirenstein S, Blake EH, Gain JE. Exact from-region visibility culling. In:
Proceedings of the 13th Eurographics workshop on rendering (EGRW ’02),
2002. p. 191–202.

[26] Décoret X, Debunne G, Sillion F. Erosion based visibility preprocessing. In:
Proceedings of the Eurographics workshop on rendering, 2003. p. 281–8.

[27] NVIDIA, NV_occlusion_query. /http://www.opengl.org/registry/specs/nv/oc
clusion_query.txtS, Accessed at June 2009.

[28] Algorithmic Solutions Software GmbH, LEDA. /http://www.algorithmic-solu
tions.com/index.htmS, Accessed at June 2009.

[29] Weber O, Devir YS, Bronstein AM, Bronstein MM, Kimmel R. Parallel
algorithms for approximation of distance maps on parametric surfaces.
ACM Transactions on Graphics, 27(4):Article no. 104, 2008.16 pp.

10.1016/j.cag.2009.12.004
http://www.massivesoftware.com
http://www.massivesoftware.com
http://www.legion.com
http://www.crowddynamics.com/egress/simulex.html
http://home.gna.org/cal3d/
http://www.opengl.org/registry/specs/nv/occlusion_query.txt
http://www.opengl.org/registry/specs/nv/occlusion_query.txt
http://www.algorithmic-solutions.com/index.htm
http://www.algorithmic-solutions.com/index.htm

	Emergency crowd simulation for outdoor environments
	Introduction
	Related work
	Emergency crowd simulation for outdoor urban environments
	Navigable space extraction
	Local continua using active grid
	Normal crowd behavior before the incident
	Emergency behavior
	Smoothing agent paths
	Propagation of panic


	Crowd rendering
	Occlusion culling

	Results
	Conclusion
	Supplementary data
	Acknowledgements
	References




