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This study considers a two level supply chain in a newsboy setting with two substitutable
products. Demands for the two products are assumed independent as long as both are
available. If, however, a product stocks out, some of its demand is transferred to the avail-
able one with a known probability which ultimately creates a dependence on the amount
of purchased items. The retailer is allowed to return some or all of the unsold products to
the manufacturer with some credit. The expected chain profit, the retailer’s and the man-
ufacturer’s profit expressions are derived under general conditions. Special cases are
inspected to investigate the conditions under which channel coordination is achieved. It
is demonstrated that channel coordination can not be achieved if unlimited returns are
allowed with full credit, a result that agrees with the findings of Pasternak [B.A. Pasternack,
Optimal pricing and return policies for perishable commodities, Market. Sci. 4 (1985) 166–
176] for the single item case. For the cases of unlimited returns with partial credit, the con-
ditions for coordination are derived for one way full substitutions. For exponential demand
explicit expressions for the channel and retailer’s expected profit functions are provided.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Supply chain management and contracts between levels of a supply chain have gained considerable attention in the last
decade.

In supply chains, uncertainties arising from factors such as market demand, process yield, product quality, competition
and promotions introduce risks to both the manufacturers and the retailers. In order to increase the performance of the sys-
tem by sharing the risks involved, contracts that include specifications regarding the quality, quantity, return rates and
wholesale prices are undertaken between the manufacturer and the retailer with the purpose that such agreements would
be beneficial to both parties. Most commonly studied examples of contracts are sales rebate, quantity flexibility, wholesale
price, buyback and revenue sharing contracts, each of which provides the retailer with different incentives to make them
order more than they would with only a wholesale price scheme. Quantity flexibility contracts provide some refund to
the retailer when demand is lower than the order quantity, whereas the sales rebate contracts offer the retailer some incen-
tive when demand is greater than a threshold, so that the retailer pays less for the units sold beyond this threshold. In rev-
enue-sharing contracts, the manufacturer gets some credit per unit sold to the retailer in addition to a percentage of the
retailers revenue. In buyback contracts, all or some of the unsold products are returned to the manufacturer for some credit.

Coordination among the retailer and the manufacturer is an important issue in designing contracts. In channel coordina-
tion, the objective is to bring the decentralized expected profit closer to the centralized expected profit and if they are equal,
channel coordination is achieved.
. All rights reserved.
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In this study, we consider a two level supply chain with a retailer and a manufacturer, for two substitutable products
where the retailer is allowed to return some unsold products to the manufacturer. It is assumed that substitution takes place
only at stockout situations. General expressions are derived for the expected total profit of the supply chain, the expected
profit of the retailer and the expected profit of the manufacturer. Some special cases, regarding the substitution probabilities
and return proportions are considered to obtain the necessary conditions for channel coordination. It is found that contracts
that allow for unlimited returns with full credit can not coordinate the system, whereas unlimited returns with partial cred-
its allow for coordination under one way or two way full substitution. These findings agree with the early work of [1] with
single product, in that unlimited returns with full credit does not coordinate the system. Furthermore if one way substitution
is in effect, the demand distribution for the stock-out product has an impact on the coordinating parameters. It is also ob-
served that substitution dynamics have significant effect on the conditions under which coordination is achieved. The main
contribution of this study is twofold: derivation of the expected profit functions of both parties in a two level chain with two
substitutable products under a buyback contract; and the identification of the cases where the coordination is achieved.

A vast literature has accumulated about contracts and coordination in the last years, where an excellent review can be
found in [2]. We briefly review below some work related to our study.

One of the earliest studies about channel coordination and buyback contracts is provided by Pasternack [1] for a newsboy
setting where the retailer is allowed to return some or all of the unsold items to the manufacturer with some credit. Paster-
nack [1] found that neither a policy that allows for unlimited returns at full credit, nor the one that allows for no returns can
achieve channel coordination, whereas coordination is achieved by a buyback contract with full returns at partial credit. An
important finding was that the channel coordinating parameters were independent of the demand distribution, which facil-
itates the task of the manufacturer to design a contract. In another study, [3] consider a manufacturer that uses a buyback
contract to manipulate the competition between the retailers. Buyback contracts intensify the degree of competition be-
tween the retailers. More intense retail competition means lower retailer prices and greater sales which results in larger
profits for the manufacturer. Emmons and Gilbert [4] study buyback contracts where the retailer commits to both a stocking
quantity and a selling price and Donohue [5] studies buyback contracts in a model with multiple production modes that al-
lows for forecast updating. In another related work, manufacturer’s pricing and return policies are studied by Lau and Lau [6].
In traditional studies, the retailer can order any quantity from the manufacturer at any time. However, this is undesirable
from the manufacturer‘s point of view mostly due to the bullwhip effect which increases demand variance. To avoid the in-
creases in demand variability, minimum purchase agreements are suggested as studied by Anupindi and Akella [7]. The
advantages and limitations of revenue sharing contracts, where the retailer pays the manufacturer a percentage of the rev-
enue he generates in addition to the wholesale price, is studied by Cachon and Lariviere [8].

Although contracts and coordination issues for supply chains have been investigated extensively as briefed above, there
has been very limited work considering contracts with multiple products. To the best of our knowledge the only work with
multiple products (no substitution) is by Anupindi and Bassok [9], who consider contracts for multiple products when the
supplier offers business volume discounts. They argue that the optimal policy structure is complex and provide approxima-
tions based on the optimal policy of a similar contract with a single product.

Regarding the inventory control of multiple products with substitution, one of the early works is by Ignall and Veinott
[10] who studied the conditions under which myopic solution is optimal in the long run. McGillivray and Silver [11] inves-
tigated the effects of the substitutability on stock control rules and inventory costs. Their model assumed that if an item is
out of stock there is a fixed probability of the customer to substitute another available item. They considered the case of total
substitutability (probability of substitution equaling one) and compared this with the case of no substitutability to obtain
limits on the potential benefits achievable from substitution. Their results indicate that full substitution results in a decrease
in the total optimal order quantity and substitution is less effective if the stock levels and substitution probabilities are low.
Parlar and Goyal [12] studied a two product single period inventory model in which substitution occurs with a known prob-
ability. They showed that the total profit function is concave for a wide variety of problem parameters and developed nec-
essary conditions for an optimal solution. In another study, Parlar [13] used a game theoretic approach to model two
independent decision makers whose products can be substituted if one becomes out of stock. He showed that there exist
a Nash equilibrium solution. See also Pasternack and Drezner [14] and Drezner et al. [15] for models with two substitutable
products and Gurnani and Drezner [16] for a deterministic nested substitution problem with multiple substitutable prod-
ucts, and Ernst and Kouvelis [17] for a problem with three substitutable products where the objective function is shown
to be jointly convex. Bassok et al. [18] consider a multiproduct single period inventory problem with downward substitution
and show that the benefits of considering substitution in ordering decisions are higher with high demand variability, low
substitution costs and low price to cost ratios. Smith and Agrawal [19] developed a probabilistic demand model capturing
the effects of substitution, where inventory optimization includes both the selection of the set of items to stock and their
stock levels under resource constraints. See also Rajaram and Tang [20] who studied the impact of product substitution
on order quantities and profits. Using a consumer choice model based on utility maximization, Mahajan and van Ryzin
[21] analyze a single period model with dynamic partial substitution. They show that the expected profit is in general
not even quasi concave. Netessine and Rudi [22] consider both centralized and competitive inventory models under substi-
tution with deterministic proportions and Netessine et al. [23] consider a multi-product environment with multivariate de-
mand, allowing one level substitution and elaborate on the impact of correlation. Kraiselburd et al. [24] compare the vendor
managed and retailer managed inventory systems in the substitutable products setting with stochastic demand. Yadavalli
et al. [25] consider a model with two substitutable products, Poisson demands and joint ordering and study the stationary
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behavior of the inventory system. In a recent work, Karakul and Chan [26] consider the joint optimization of the pricing and
procurement decisions for two products when one of the products can be substituted by the other product. Due to the com-
plexity of the objective function, they provide sufficient conditions under which the objective function is unimodal.

Organization of the paper is as follows: In Section 2, the general model is introduced and the expected profit expressions
are provided. In Section 3, special cases are considered and necessary conditions to achieve channel coordination are ob-
tained. Finally, in Section 4 concluding remarks are made and future research directions are stated.

2. Model and analysis

We consider a single period newsboy type inventory problem with two substitutable perishable products in a two level
supply chain, consisting of a retailer and a manufacturer. Among the several contract types that are introduced in the pre-
vious section, we focus on the return contracts, where the retailer is allowed to return some or all of the unsold products to
the manufacturer with partial or full credit. Our set-up is similar to that of Pasternack [1], except that we generalize his study
for two substitutable products.

We first derive the expressions for the total expected channel profit, manufacturers and the retailer’s expected profits
under general model parameters. We then investigate the special cases under which channel coordination is achieved.

For product i ði ¼ 1;2Þ, the following notation is used: the manufacturing cost per item is ci, the wholesale price paid by
the retailer to the manufacturer is di and pi is the selling price of the retailer. We denote the the order quantity of the retailer
and the production quantity of the manufacturer by Qi and the percentage of Q i that the retailer can return to the manufac-
turer is Ri. The credit paid by the manufacturer to the retailer for a returned item is denoted by si. The random demands for
products 1 and 2 are denoted by X and Y , respectively with density (or probability mass) functions f ðxÞ, gðyÞ and distribution
functions FðxÞ, GðyÞ, respectively. A customer will accept a unit of Product 2 when Product 1 is out of stock with probability a
and the probability of substituting Product 1 when Product 2 is out of stock is b. There is no cost for substitution and the
salvage value is zero. For consistency, we assume ci 6 di 6 pi. It is assumed that the demand for the two products are inde-
pendent in order to get more explicit structural results. Although the derivation of the objective function would be straight-
forward, the analysis would be highly complicated for correlated demand, as discussed by Netessine et al. [23]. On the other
hand, substitution dynamics eventually create a dependency between the effective demands of the two products. As to the
realization of demand and substitution, we assume that the demand for both products occur at the beginning of the period
and the original demand to each product is satisfied first. If there is excess inventory from one product and there is excess
demand in the other, some or all of the excess demand is satisfied from the other product according to the probabilistic sub-
stitution behavior.

In the next section we derive the expressions for the expected total supply chain profit, the retailer’s and the manufac-
turer’s expected profits.

2.1. Total supply chain expected profit

Using the notation and the assumptions discussed above, our aim is to derive the expression for the total expected profit
of the supply chain, which will be denoted by EPTðQ1; Q 2Þ, where Q1, Q 2. Total expected profit is obtained assuming that the
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Fig. 1. Six regions giving rise to the total expected profit function.
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producer sells directly to the customer and the derivation is based on the six regions a� f depicted in Fig. 1. Let pi denote the
profit over region i; i ¼ a; . . . ; f , and X ¼ x;Y ¼ y be the realized demands for products 1 and 2, respectively. Suppose the ini-
tial stocks for the products are Q 1, Q 2. In region a, demands for both of the products are less than their stock levels. In region
b, demand for product 1 exceeds its inventory level and the excess demand can be fully satisfied by product 2. In region c,
demand for product 1 exceeds its inventory level but the excess demand can only be partially satisfied by product 2. In re-
gion d, demands for both products are greater than their inventory levels. In region e, demand for product 2 exceeds its
inventory level and the excess demand can only be partially satisfied by product 1. In region f , demand for product 2 exceeds
its inventory level and can be fully satisfied by product 1. A simplified expression for the total supply chain expected profit
expression is obtained by integrating the corresponding profit expressions over their respective regions and adding the cost
of production �c1Q1 � c2Q2 (see also Parlar and Goyal, Eq. (11), p. 5). All the expressions in this section are given in terms of
integrals, which should be replaced by summations for discrete demands.

Proposition 2.1. Total expected profit of the supply chain is given by:
EPTðQ 1;Q 2Þ ¼ �p1

Z Q1

0
FðxÞG Q 2 þ

ðQ 1 � xÞ
b

� �
dxþ p2 � c2ð ÞQ2 � p2

Z Q2

0
GðxÞF Q1 þ

ðQ 2 � xÞ
a

� �
dxþ p1 � c1ð ÞQ 1: ð1Þ
Parlar and Goyal [12] shows that EPTðQ 1;Q 2Þ is jointly concave in ðQ 1;Q 2Þ provided that bp1 6 p2 6 p1=a.
2.2. Retailer’s expected profit

Next we consider the expected profit of the retailer who orders from the manufacturer according to the buyback agree-
ment described above. The retailer orders Q1 and Q 2 items from the two products at the beginning of the period at a cost of
d1Q1 þ d2Q2. Possible realizations of demand and substitutions together with returnable quantities are described in the ele-
ven regions a� k as illustrated in Fig. 2. As before, let X ¼ x and Y ¼ y be the realized demands for the two products.

Let Ri ¼ 1� Ri be the proportion of the order quantity for which return is not allowed for product i. In region a, where
x 6 R1Q1 and y 6 R2Q 2, RiQ i of the unsold items are returned to the manufacturer according to the permitted return percent-
ages. In region b, where x 6 R1Q1 and R2Q2 6 y 6 Q 2, only R1Q 1 of the unsold items of product 1 is returned to the manu-
facturer but all the unsold ones from product 2 are returned since the leftovers are below the allowed return quantity. In
region c, where y P Q 2;Q 1 � ðxþ bðy� Q 2ÞÞ > R1Q 1, demand for product 2 exceeds the available inventory, the excess de-
mand is fully satisfied by product 1 and R1Q 1 units of product 1 is returned to the manufacturer. Similarly, in region d,
y P Q 2;Q 1 � ðxþ bðy� Q 2ÞÞ < R1Q1; xþ bðy� Q 2Þ < Q 1, demand for product 2 exceeds its inventory level, the excess de-
mand is fully satisfied by product 1 and all unsold units of product 1 is returned to the manufacturer. In region f , where
R1Q 1 6 x 6 Q 1 and R2Q2 6 y 6 Q 2, all the unsold items of product 1 and 2 are returned to the manufacturer. In region i, since
x P Q1 and y P Q 2, demands for both products exceed their inventory levels therefore no substitution and returns take
place. Finally in region j, where y P Q 2; xþ bðy� Q2Þ < Q1 and x < Q 1, demand for product 2 exceeds its inventory level,
the excess demand is only partially satisfied by product 1. Retailer’s expected profit expression, EPRðQ 1;Q 2Þ, is obtained
by integrating the profit expressions over their respective regions and adding the cost �d1Q 1 � d2Q 2. The result is given be-
low, the proof of which is given in Appendix.
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Fig. 2. Eleven regions giving rise to the retailer‘s expected profit function
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Proposition 2.2. Under the buyback contract, the retailer’s expected profit is given by:
EPRðQ1;Q 2Þ ¼ �p1

Z Q1

0
FðxÞG Q2 þ

ðQ 1 � xÞ
b

� �
dxþ ðp2 � d2ÞQ 2 þ ðp1 � d1ÞQ 1 � p2

Z Q2

0
GðxÞF Q 1 þ

ðQ 2 � xÞ
a

� �
dx

þ FðQ 1Þs2

Z Q2

R2Q2

GðyÞdyþ GðQ 2Þs1

Z Q1

R1Q1

FðxÞdxþ
Z 1

Q2

Z Q1�bðy�Q2Þ

R1Q1�bðy�Q2Þ
½Q 1 � x� bðy� Q 2Þ�s1dFðxÞdGðyÞ

þ R1Q 1s1

Z Q2þ
ðR1Q1 Þ

b

Q2

FðR1:Q 1 � bðy� Q2ÞÞdGðyÞ þ
Z 1

Q1

Z Q2�aðx�Q1Þ

R2Q2�aðx�Q1Þ
½Q 2 � y� aðx� Q1Þ�s2dGðyÞdFðxÞ

þ R2Q 2s2

Z Q1þ
ðR2Q2 Þ

a

Q1

GðR2Q2 � aðx� Q 1ÞÞdFðxÞ: ð2Þ
The general expression above unfortunately does not allow to derive further insights due to its complexity. Hence we elab-
orate below some special cases.
2.3. Special cases with one-way full substitution

Now we elaborate some special cases with full substitution and/or full return. Note first that when two way full substi-
tution is allowed, the customers would buy the other product with certainty in stock-out cases, and no substitution cost is
incurred. Hence it would be optimal to carry inventory of only the product with higher profit margin, which reduces the
problem to a single product case. Therefore, it is of interest to consider only the cases with one-way full substitution. Below
we introduce three cases with one-way full substitution accompanied with (a) no returns, (b) full returns and (c) full return
with one product and no return with the other.

Corollary 2.1

(a) No returns with one-way full substitution ða ¼ 1; b ¼ 0;R1 ¼ R2 ¼ 0Þ
EPRðQ1;Q 2Þ ¼ �p1

Z Q1

0
FðxÞdxþ ðp1 � d1ÞQ 1 � p2

Z Q2

0
FðQ 1 þ Q 2 � yÞGðyÞdyþ ðp2 � d2ÞQ 2: ð3Þ
(b) Full returns with one-way full substitution ða ¼ 1; b ¼ 0;R1 ¼ R2 ¼ 1Þ
EPRðQ1;Q 2Þ ¼ �ðp1 � s1Þ
Z Q1

0
FðxÞdxþ ðp1 � d1ÞQ 1 � ðp2 � s2Þ

Z Q2

0
FðQ 1 þ Q 2 � yÞGðyÞ�dyþ ðp2 � d2ÞQ 2: ð4Þ
(c) One-way full return with one-way full substitution ða ¼ 1; b ¼ 0;R1 ¼ 1;R2 ¼ 0Þ
EPRðQ1;Q 2Þ ¼ �ðp1 � s1Þ
Z Q1

0
FðxÞdxþ ðp1 � d1ÞQ 1 � p2

Z Q2

0
FðQ 1 þ Q 2 � yÞGðyÞdyþ ðp2 � d2ÞQ 2: ð5Þ
Proposition 2.3. For the special cases given in Corollary 2.1, EPRðQ 1;Q 2Þ is jointly concave in ðQ 1;Q 2Þ, provided that the following
conditions hold in each case:
ðaÞ : p2 6 p1 ðbÞ : ðp2 � s2Þ 6 ðp1 � s1Þ ðcÞ : p2 6 ðp1 � s1Þ
Proof. Directly follows from the concavity result of [12] after observing the similarity of the structures of the profit functions
in (a)–(c) to that of (1) with modified parameters and rewriting the conditions for concavity accordingly with the modified
parameters.

Note that the conditions for the proposition above can be interpreted as the consistency conditions and in all cases
product 2 is substituted for product one. In part (a) returns are not allowed, hence p2, the price of the substituted product is
required to be less or equal p1, price of the first choice product. In part (b) full returns are allowed and in this case it is
required that, the loss due to returns to manufacturer for the substituted product ðp2 � s2Þ is less or equal the loss from the
return of the first choice product, p1 � s1. Finally in (c), the price of the product which is always purchased in place of the
other in case of stock-outs is needed to be less than the loss incurred when the first product is returned to the manufacturer
instead of sold to a customer.

The case a ¼ 1; b ¼ 0;R1 ¼ 0;R2 ¼ 1, which implies that the second product is always substituted for the first one and all
the left overs of the second product are allowed to be fully returned turns out to be more complicated. We first present below
the resulting expression for the expected retailer profit and then present some results to aid in the analysis of specific
cases. h
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Corollary 2.2. Let a ¼ 1; b ¼ 0;R1 ¼ 0;R2 ¼ 1, corresponding to one-way full substitution and full return of Product 2. For this
case,
EPRðQ1;Q 2Þ ¼ �p1

Z Q1

0
FðxÞdxþ ðp1 � d1ÞQ 1 þ ðp2 � d2ÞQ 2 � ðp2 � s2Þ

Z Q2

0
FðQ 1 þ Q 2 � xÞGðxÞdx

� s2

Z Q2

0
½FðQ1 þ Q2Þ � FðQ 1 þ Q 2 � xÞ�xdGðxÞ: ð6Þ
Proposition 2.4. For the special case of Corollary 2.2, let
gðQ 1;Q 2Þ ¼ �ðp2 � s2Þ
Z Q2

0
f ðQ 1 þ Q 2 � xÞGðxÞdx� s2

Z Q2

0
½f ðQ1 þ Q2Þ � f ðQ1 þ Q2 � xÞ�xdGðxÞ: ð7Þ
Also let g1ðQ 1;Q 2Þ � @g1ðQ1;Q2Þ=@Q1, g2Q 1;Q 2Þ � @g1Q 1;Q 2Þ=@Q 2, g12Q 1;Q 2Þ � @2g1Q1;Q2Þ=@Q1@Q 2 and
CðQ 1;Q2Þ ¼ �ðp2 � s2ÞgðQ 2ÞFðQ 1Þ � s2 Q 2f ðQ 1ÞgðQ 2Þ þ ½FðQ 1 þ Q 2Þ � FðQ 1Þ� Q2g0ðQ 2Þ þ gðQ2Þ½ �f g
Then,

(a) the first order conditions are given as
0 ¼ ðp1 � d1Þ � p1FðQ 1Þ þ gðQ 1;Q 2Þ;
0 ¼ ðp2 � d2Þ � ðp2 � s2ÞGðQ 2ÞFðQ 1Þ � s2½FðQ 1 þ Q 2Þ � FðQ1Þ�Q 2gðQ 2Þ þ gðQ 1;Q 2Þ:
(b) Let HðQ1;Q2Þ � fhijg; i; j ¼ 1;2 be the Hessian matrix corresponding to EPRðQ1;Q2Þ. Then we have
h11 ¼ �p1g1ðQ 1;Q 2Þ;
h12 ¼ g2ðQ 1;Q 2Þ;
h22 ¼ g2ðQ 1;Q 2Þ þ CðQ 1;Q2Þ:
Note that if h11 < 0, h22 < 0 and the determinant h11h22 � h2
12 < 0, then EPRðQ1;Q2Þ is jointly concave. This must be

checked for any special application for the unique maximum to exist. The above analysis illustrate the difficulty of obtaining
general results even for some special cases. Nevertheless, to get some further insights, we consider another special case
regarding the demand distributions that allow for explicit expressions for the expected profit functions.

2.3.1. Exponential demand
In this section, we elaborate the case where the demand for both products have exponential distribution with parameters

k and l for products 1 and 2, respectively, with FðxÞ ¼ 1� e�kx and GðyÞ ¼ 1� e�ly. In order to evaluate the expressions for
the total expected profit and the expected profit of the retailer in special cases, define:
Uða;b;Q ; sÞ ¼ ða� bÞQ þ b
s
ð1� e�sQ Þ;

Wða;b;Q 1;Q 2; s1; s2Þ ¼ ða� bÞQ 1 þ b
1
s2

e�s2Q2 ð1� e�s2Q1 Þ þ 1
s1

1� e�s1Q1
� �

� e�s2Q2

s1 � s2
e�s2Q1 � e�s1Q1
� �� �

:

Then, after some algebra, it can be shown that the total expected profit reduces to the following for one way full substitution:
EPTðQ 1;Q 2Þ ¼ Uðp1 � c1; p1;Q 1; kÞ þWðp2 � c2;p2;Q 2;Q1;l; kÞ:
Similarly, the retailer’s expected profit is given as below for the special cases presented in Corollary 2.1:
EPRðQ 1;Q2Þ ¼
Uðp1 � d1;p1;Q 1; kÞ þWðp2 � d2; p2;Q 2;Q 1;l; kÞ for ðaÞ
Uðp1 � d1;p1 � s1;Q 1; kÞ þWðp2 � d2; p2 � s2;Q2;Q 1;l; kÞ for ðbÞ
Uðp1 � d1;p1 � s1;Q 1; kÞ þWðp2 � d2; p2;Q2;Q 1;l; kÞ for ðcÞ:

8><
>:
Example 1. Suppose the demand for the products are independent exponential, with k ¼ 0:02 and l ¼ 0:05. As will become
clear in the next section, if the manufacturer allows no returns or allows full returns with full credit, the two parts of the
supply chain do not coordinate. Therefore in this example we consider one way full substitution ða ¼ 1; b ¼ 0Þ, full return
ðR1 ¼ R2 ¼ 1Þ case with partial credit. For Product 1, the system parameters are set to c1 ¼ 2:00, d1 ¼ 4:2, p1 ¼ 7:0 and
s1 ¼ 3:0; and for Product 2 c2 ¼ 3:00, d2 ¼ 5:2, p2 ¼ 7:0 and s2 ¼ 3:3.

Fig. 3a depicts the total channel profit and b the expected profit of the retailer when partial credit for the returned items
are offered as above. We find that if substitution was not allowed, the news vendor values for Product 1 and 2 would be
Q1 ¼ 62 and Q2 ¼ 16. When coordination issues are not considered, if the manufacturer directly sells to the market, his
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Product 2, c2;d2;p2; s2 are 3.0, 5.20, 7.0 and 3.30.
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optimal production quantities would be 49 and 30, respectively with an optimum profit of 170.1. On the other hand with s1

and s2 as given above, the retailer’s optimum order quantities would be 53 and 22, respectively, resulting in an expected
profit of 84.2. We observe that the manufacturer and retailer can not coordinate the channel with the above choices of di’s
and si’s. In the next section we will see how these parameters should be modified to achieve channel coordination.

Example 2. To illustrate how the expected profit expressions react to the changes in system parameters, we consider
another example. Now set c1 ¼ 2:0, d1 ¼ 4:0, p1 ¼ 7:0 and s1 ¼ 3:0; and for Product 2 c1 ¼ 3:00, d1 ¼ 4:5, p1 ¼ 7:0 and
s1 ¼ 4. We again have the optimum channel quantities as 49 and 30 resulting in a profit of 170.1 (since the profit margin
has not changed). However the retailer’s optimal order quantities has changed to 32 and 84, respectively yielding a profit
of 135. The general shape of the profit functions are as given in the previous figure.
2.4. Manufacturer’s expected profit

We simply obtain the manufacturer’s expected profit by noting that EPTðQ1;Q2Þ ¼ EPRðQ1;Q2Þ þ EPMðQ 1;Q 2Þ. However,
for the purpose of completeness, we provide below the resulting expression.

Proposition 2.4. The manufacturer’s expected profit is given by:
EPMðQ 1;Q 2Þ ¼ ðd1 � c1ÞQ 1 þ ðd2 � c2ÞQ 2 � FðQ1Þs2

Z Q2

R2Q2

GðyÞdðyÞ � GðQ 2Þs1

Z Q1

R1Q1

FðxÞdðxÞ

�
Z 1

Q2

Z Q1�bðy�Q2Þ

R1Q1�bðy�Q2Þ
½Q 1 � x� bðy� Q2Þ�s1dFðxÞdGðyÞ

� R1Q 1s1

Z Q2þ
ðR1Q1 Þ

b

Q2

FðR1Q1 � bðy� Q 2ÞÞdGðyÞ

�
Z 1

Q1

Z Q2�aðx�Q1Þ

R2Q2�aðx�Q1Þ
½Q 2 � y� aðx� Q 1Þ�s2dGðyÞdFðxÞ

� R2Q 2s2

Z Q1þ
ðR2Q2 Þ

a

Q1

GðR2Q 2 � aðx� Q 1ÞÞdFðxÞ: ð8Þ
3. Channel coordination

We next consider several special cases regarding the substitution probabilities and return percentages, and investigate
the conditions under which channel coordination is achieved. Concavity of the total profit function EPTðQ 1;Q 2Þ is proved
by Parlar and Goyal [12] under general conditions, from which the concavity of the EPRðQ 1;Q 2Þ follows as discussed in
the previous section. Hence, there exist unique inventory levels for both products that maximize the expected channel profit



546 Ü. Gürler, A. Yılmaz / Applied Mathematical Modelling 34 (2010) 539–551
as well as the expected profit of the retailer. These quantities can be obtained from the first order conditions. In some special
cases, these first order conditions for the retailer are satisfied only when the order quantities are infinite, in which case we
say that the system is sub-optimal. Similarly, when infeasible conditions are required for the channel coordination, such as
zero profit of the manufacturer or the retailer, we refer to that as system sub-optimality. Below we provide the main results
concerning the channel coordinations, the proofs of which are given in the Appendix.

Case-1: Full returns with partial credit, no substitution
Suppose the retailer is allowed to return all unsold products to the manufacturer and there is no substitution between the

two products. This case is similar to two independent products and the results of [1] are valid for each one. Namely, a policy
that allows unlimited returns for full credit or that allows no returns is system suboptimal. However, a policy which allows
for unlimited returns at partial credit will be system optimal for appropriately chosen values of model parameters, as stated
below. Similarly, as discussed before the two way full substitution also reduces to a single product and the following result is
valid with the product that offers a higher profit margin for the manufacturer.

Proposition 3.1. Let a ¼ 0; b ¼ 0;R1 ¼ R2 ¼ 1. Then channel coordination is achieved if the following conditions are satisfied:
EP
T 

( Q
1,

Q
2 

)

Fig. 4.
Produc
p1 � c1

p1
¼ p1 � d1

p1 � s1
; ð9Þ

p2 � c2

p2
¼ p2 � d2

p2 � s2
: ð10Þ
The above conditions indicate that for channel coordination with two independent products is achieved if the ratio of the chan-
nel profit per unit to the selling price is the same as the ratio of the retailer’s profit per unit to the difference between the selling
price and the return credit, which requires that the return credit should not exceed the wholesale price. We see from the above
conditions that the coordinating parameters are independent of the demand distribution.

Case-2: Full returns with partial credit, one-way full substitution
Consider the case where the retailer is allowed to return all unsold products to the manufacturer with partial credit and

only product 1 is substituted with product 2 with probability one, if stock-out occurs. The condition under which coordina-
tion is achieved is given below. If one-way substitution is effective for the other product, the indices will simply be inter-
changed and F will be replaced by G.

Proposition 3.2. Let a ¼ 1; b ¼ 0;R1 ¼ R2 ¼ 1. Then, channel coordination is achieved if
FðQ 1Þ ¼
c2ðp2 � s2Þ þ p2ðs2 � d2 þ d1 � c1Þ þ s2ðp1 þ c1Þ

s1p2 � s2p1
; ð11Þ
provided that the r.h.s of (11) lies in (0,1).

Note that, unlike the previous case, the asymmetry in the substitution behavior resulted in a condition that depends on
the demand distribution. In particular, this condition requires that the service level for product 1 satisfies the condition given
in the r.h.s. of (11).

Case-3: One-way full substitution with no returns. Suppose again we have one-way full substitution but returns are not al-
lowed. Such an agreement fails to coordinate the channel.
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The expected total profit and the expected profit of the retailer. For Product 1, the parameters c1; d1; p1; s1 are respectively, 2.0, 4.22, 7.0 and 3.05. For
t c2;d2; p2; s2 are 3.0, 5.0, 7.0 and 3.5.



Table 1
Case-2: Profit share for one-way full substitution with partial credit, full returns.

s1 s2 EPR %EPR EPR %EPR EPR %EPR

d1 ¼ 4:5, d2 ¼ 3, d1 ¼ 6, d2 ¼ 4:5 d1 ¼ 7, d2 ¼ 5:5

1,5 0.18 129.30 73,08 64,802 36,63 21,80 12,32
2 0.77 133.53 75,47 69,03 39,01 26,03 14,71
2,5 1,36 137.76 77,86 73,2568 41,40 30,26 17,10
3 1,96 141.98 80,25 77,48 43,79 34,48 19,49
3,5 2,55 146.21 82,64 81,71 46,18 38,71 21,88
4 3,15 150.44 85,03 85,94 48,57 42,94 24,27
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Proposition 3.3. Let a ¼ 1; b ¼ 0, R1 ¼ 0 and R2 ¼ 0. Then, channel coordination requires c1 ¼ d1 and c2 ¼ d2. Hence, the system
is suboptimal, unless the manufacturer makes zero profit.

Case-4: One-way full substitution with full returns and full credit
This is a special case of Case-2 with s1 ¼ d1; s2 ¼ d2. The manufacturer pays the wholesale price back for all the unsold

items. This unbalanced system in favor of the retailer is suboptimal.

Proposition 3.4. Suppose a ¼ 1; b ¼ 0;R1 ¼ 1, R2 ¼ 1, s1 ¼ d1 and s2 ¼ d2. Then the system is suboptimal.

Example 3. Recall that in Examples 1 and 2 we have observed that the coordinatin can not be achieved with the given
wholesale prices and return credits. Coordinating parameters are obtained as follows. With the same production costs
and selling prices, i.e. c1 ¼ 2:0; p1 ¼ 7; c2 ¼ 3:0; p2 ¼ 7, the values of the wholesale price and the return credits that coordi-
nate the channel are obtained as d1 ¼ 4:22; s1 ¼ 3:05 and d2 ¼ 5:0; s2 ¼ 3:50, respectively. These parameters yield the same
optimal retailer order quantities 49 and 30 with the optimal profit of 90.8 for the retailer. Since the total expected channel
profit is 170.1, we observe that the retailer gets most of the profit. However, other coordinating parameters would result in
different shares of the profit among the manufacturer and the retailer, as will be discussed in the next example. The resulting
profit functions with these particular coordinating parameters are given in Fig. 4.

Next we consider an example that illustrates how the total profit is splitted between the manufacturer and the retailer
under different values wholesale prices and return credits that coordinate the system.

Example 4. For this example we consider identical negative binomial demand distributions for the two products, the
parameters of which are set to ri ¼ 5; pi ¼ 0:25 for i=1,2. The resulting means and variances are EðYÞ ¼ EðXÞ ¼ r=p and
VðXÞ ¼ VðYÞ ¼ rð1� pÞ=p2. We consider Case 2 where coordination is achieved under full returns with partial credit. We set
the costs of producing one unit of Product 1 and 2 as c1 ¼ 3; c2 ¼ 2, respectively and the corresponding selling prices as
p1 ¼ 9 and p2 ¼ 7. The optimal production quantitities Q�1;Q

�
2 of the manufacturer that maximizes, EPTðQ1;Q2Þ are found and

then the transfer payments and buyback credits that achieve channel coordination are investigated using the results of
Proposition 3.2. The optimal production quantities for Case 2 are found as Q �1 ¼ 14 and Q�2 ¼ 31 with the corresponding total
expected chain profit, EPTðQ1;Q2Þ of 177.808. In this case recall that Product 2 is substituted for Product 1 with probability
one. Hence as expected, the optimal production quantity of the Product 2 is larger despite the fact that the unit profit of
Product 1 is larger.

It is of interest to see the impact of the coordinating wholesale prices and return credits on the profit share among the
parts of the channel. To illustrate this, the expected profit of the retailer and the percentage of his share, denoted by
%EPR, are obtained for different choices of wholesale prices d1, d2 and return credits s1 and s2, and the results are displayed
in Table 1. As expected the retailer’s share increase with the return credit and decrease with the wholesale price, and whole-
sale prices have more impact on how the profit is shared among the parts of the channel.
4. Conclusion

In this study, a simple supply chain structure with a single retailer and a manufacturer is considered for two substitutable
products. The retailer is allowed to return some products to the manufacturer according to the contract between the retailer
and the manufacturer. We provide the expressions for the total expected channel profit, manufacturers expected profit and
the retailers expected profit under general model parameters. Special cases regarding the substitution probabilities, return
credits and return percentages are investigated for channel coordination. In a similar study of [1] with a single product, it
was found that channel coordination was not achieved with full returns and full credits. This is consistent with our result.
We have found that channel coordination is not achieved for no returns cases. We have also provided expected profit expres-
sions for the special case of exponential demand and elaborated on the model with several examples where the demand has
exponential or negative binomial distributions, respectively.

It would be interesting to extend the results of this study to correlated multi products and multi-period settings. Other
contract types with multiple products are also worthwhile to consider.
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Appendix

The following results on integrals are needed in some of the derivations below:
Z 1

Q2

Z Q1

0
½Q 1 � x�dFðxÞdGðyÞ ¼

Z Q1

0
FðxÞdx� GðQ 2Þ

Z Q1

0
FðxÞdx

Z 1

Q1

Z Q1þQ2�x

Q1�x
½Q2 � yþ Q1 � x�dGðyÞdFðxÞ ¼

Z 1

Q1

Z Q1þQ2�x

Q1�x
GðyÞdydFðxÞ: ð12Þ
Calculation of EPTðQ1;Q2Þ
Referring to Fig. 1, profit expressions in each region can be written as
ðaÞ pa ¼ p1xþ p2y x 6 Q 1; y 6 Q 2

ðbÞ pb ¼ p2yþ p2axþ Q 1ðp1 � p2aÞ x P Q 1; y 6 Q 2; aðx� Q 1Þ < Q 2 � y
ðcÞ pc ¼ p1Q 1 þ p2Q2 x P Q 1; y 6 Q 2; aðx� Q 1Þ > Q 2 � y

ðdÞ pd ¼ p1Q 1 þ p2Q2 x P Q 1; y P Q 2

ðeÞ pe ¼ p1Q 1 þ p2Q 2 x 6 Q 1; y P Q 2;Q1 � x < bðy� Q 2Þ
ðf Þ pf ¼ p1xþ p1byþ Q 2ðp2 � p1bÞ x 6 Q 1; y P Q 2;Q1 � x > bðy� Q 2Þ
Similar terms in different profit expressions are collected and their contribution to the overall expected profit are given as
follows:

Term p1x in region ða [ f Þ:
p1

Z Q1

0
x
Z Q2þ

ðQ1�xÞ
b

0
dGðyÞdFðxÞ ¼ p1

Z Q1

0
xGðQ 2 þ

ðQ 1 � xÞ
b

ÞdFðxÞ:
Applying integration by parts we write the above term as
p1 Q 1GðQ 2ÞFðQ 1Þ �
Z Q1

0
G Q2 þ

ðQ 1 � xÞ
b

� �
FðxÞdx þ ðQ 1 þ bQ 2Þ

Z Q2þ
Q1
b

Q2

FðQ 1 þ bðQ 2 � uÞÞdGðuÞ
"

�b
Z Q2þ

Q1
b

Q2

FðQ 1 þ bðQ2 � uÞÞudGðuÞ
#
: ð13Þ
Term p2y in region ða [ bÞ
p2 Q 2GðQ 2ÞFðQ 1Þ �
Z Q2

0
F Q 1 þ

ðQ 2 � xÞ
a

� �
GðxÞdxþ ðQ 2 þ aQ 1Þ

Z Q1þ
Q2
a

Q1

GðQ 2 þ aðQ1 � uÞÞdFðuÞ
"

�a
Z Q1þ

Q2
a

Q1

GðQ 2 þ aðQ 1 � uÞÞudFðuÞ
#
: ð14Þ
Term p1by in region ðf Þ
p1b
Z Q2þ

Q1
b

Q2

y
Z Q1þbðQ2�yÞ

0
dFðxÞdGðyÞ ¼ p1b

Z Q2þ
Q1
b

Q2

yFðQ 1 þ bðQ2 � yÞÞdGðyÞ: ð15Þ
Term p2ax in region ðbÞ
p2a
Z Q1þ

Q2
a

Q1

xGðQ2 þ aðQ 1 � xÞÞdFðxÞ: ð16Þ
Term Q2ðp2 � p1bÞ in region ðf Þ
Q2ðp2 � p1bÞ �FðQ 1ÞGðQ 2Þ þ
Z Q1

0
G Q2 þ

ðQ 1 � xÞ
b

� �
dFðxÞ

� �
: ð17Þ
Term Q1ðp1 � p2aÞ in region ðbÞ
Q1ðp1 � p2aÞ �FðQ 1ÞGðQ 2Þ þ
Z Q2

0
F Q1 þ

ðQ 2 � yÞ
a

� �
dGðyÞ

� �
: ð18Þ
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Term p1Q1 þ p2Q2 appears in regions ðdÞ; ðeÞ and ðcÞ and the corresponding contributions in these regions are:
ðdÞ ðp1Q 1 þ p2Q2ÞFðQ 1ÞGðQ 2Þ; ð19Þ

ðeÞ ðp1Q 1 þ p2Q 2Þ
Z 1

Q1

Z 1

Q2þ
ðQ1�xÞ

b

dGðyÞdFðxÞ ¼ ðp1Q 1 þ p2Q2Þ
Z Q1

0
G Q2 þ

ðQ 1 � xÞ
b

� �
dFðxÞ

¼ ðp1Q 1 þ p2Q 2ÞðFðQ 1Þ �
Z Q1

0
G Q2 þ

ðQ 1 � xÞ
b

� �
dFðxÞÞ; ð20Þ

ðf Þ ðp1Q1 þ p2Q 2Þ GðQ 2Þ �
Z Q2

0
F Q 1 þ

ðQ 2 � yÞ
a

� �
dGðyÞ

� �
: ð21Þ
The sum of (19)–(21) results in the following for the contribution of p1Q1 þ p2Q2
ðp1Q 1 þ p2Q2Þ 1þ GðQ2ÞFðQ 1Þ �
Z Q2

0
F Q 1 þ

ðQ 2 � yÞ
a

� �
dGðyÞ �

Z Q1

0
G Q 2 þ

ðQ 1 � xÞ
b

� �
dFðxÞ

�
: ð22Þ
Finally EPTðQ1;Q2Þ is obtained by the sum of (13)–(18), (22) and �c1Q 1 � c2Q2.
Calculation of the EPRðQ 1;Q2Þ
The derivation of the expression for the retailer’s profit is done similarly by considering different regions as given in Fig. 2.

The profit expressions in tese regions are written as
ðaÞ pa ¼ p1xþ p2yþ R1Q1s1 þ R2Q 2s2

ðbÞ pb ¼ p1xþ p2yþ R1Q 1s1 þ ðQ 2 � yÞs2

ðcÞ pc ¼ p1xþ p1ðbðy� Q 2ÞÞ þ R1Q1s1 þ p2Q 2

ðdÞ pd ¼ p2Q 2 þ p1ðxþ bðy� Q 2ÞÞ þ ðQ 1 � x� bðy� Q 2ÞÞs1

ðeÞ pe ¼ p1xþ p2yþ R2Q 2s2 þ ðQ 1 � xÞs1

ðf Þ pf ¼ p1xþ p2yþ ðQ 1 � xÞs1 þ ðQ 2 � yÞs2

ðgÞ pg ¼ p2yþ p2ðaðx� Q 1ÞÞ þ R2Q 2s2 þ p1Q 1

ðhÞ ph ¼ p1Q 1 þ p2ðyþ aðx� Q 1ÞÞ þ ðQ 2 � y� aðx� Q 1ÞÞs2

ðiÞ pi ¼ p1Q 1 þ p2Q 2

ðjÞ pj ¼ p1Q 1 þ p2Q 2

ðkÞ pk ¼ p1Q 1 þ p2Q 2
As before, similar terms in the above expressions are collected to calculate the contribution to the expected profit as follows:
Term p1x in region a [ b [ e [ f
p1

Z Q1

0
x
Z Q2

0
dGðyÞdFðxÞ ¼ p1GðQ 2Þ Q1FðQ1Þ �

Z Q1

0
FðxÞdx

� �
ð23Þ
Term p2y in region ða [ b [ e [ f Þ
p2FðQ 1Þ Q2GðQ 2Þ �
Z Q2

0
GðyÞdy

� �
ð24Þ
Term R1Q 1s1 in region ða [ bÞ
Z Q2

0
x
Z R1 :Q1

0
R1Q 1s1dFðxÞdGðyÞ ¼ R1Q 1s1FðR1Q 1ÞGðQ 2Þ ð25Þ
Term R2Q 2s2 in region ða [ eÞ
R2Q 2s2GðR2Q 2ÞFðQ 1Þ ð26Þ
Term ðQ2 � yÞs2 in region ðb [ f Þ
�R2Q 2s2FðQ 1ÞGðR2Q2Þ þ s2FðQ 1Þ
Z Q2

R2Q2

GðyÞdy ð27Þ
Term ðQ1 � xÞs1 in region ðb [ f Þ
�R1Q 1s1GðQ 2ÞFðR1Q1Þ þ s1GðQ2Þ
Z Q1

R1Q1

FðxÞdx ð28Þ
Term p1Q1 þ p2Q2 in region ðiÞ
Z 1

Q1

Z 1

Q2

ðp1Q1 þ p2Q 2ÞdGðyÞdFðxÞ ¼ ðp1Q 1 þ p2Q 2ÞGðQ 2ÞFðQ1Þ ð29Þ
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p2Q2 in ðc [ d [ jÞ
Z 1

Q2

Z Q1

0
p2Q 2dFðxÞdGðyÞ ¼ p2Q 2GðQ 2ÞFðQ 1Þ ð30Þ
Term p1Q1 in ðjÞ
p1Q 1GðQ2ÞFðQ 1Þ � p1Q 1

Z 1

Q2

FðQ 1 � ðbðy� Q 2ÞÞÞdGðyÞ ð31Þ
Term p1ðxþ bðy� Q2ÞÞ in region ðc [ dÞ

Z Q2þ

Q1
b

Q2

Z Q1�ðbðy�Q2ÞÞ

0
p1ðxþ bðy� Q 2ÞÞdFðxÞdGðyÞ ¼ p1GðQ 2Þ

Z Q1

0
FðxÞdx

� p1

Z Q1

0
FðxÞG Q 2 þ

ðQ 1 � xÞ
b

� �
dxþ p1Q 1

Z Q2þ
Q1
b

Q2

FðQ 1 � ðbðy� Q2ÞÞÞdGðyÞ ð32Þ
Term R1Q 1s1 in region ðcÞ
Z Q2þ
R1Q1

b

Q2

Z R1Q1�bðy�Q2Þ

0
R1Q1s1dFðxÞdGðyÞ ¼ R1Q 1s1

Z Q2þ
R1Q1

b

Q2

FðR1Q 1 � bðy� Q 2ÞÞdGðyÞ ð33Þ
Finally term ½Q 1 � x� bðy� Q 2Þ�s1 in region ðdÞ contributes
Z 1

Q2

Z Q1�bðy�Q2Þ

R1 :Q1�bðy�Q2Þ
½Q 1 � x� bðy� Q 2Þ�s1dFðxÞdGðyÞ ð34Þ
The expression for EPRðQ1;Q2Þ is then obtained after some algebra, by summing the terms in (23)–(34).

Proof of Proposition 3.2. For this special case EPTðQ1;Q2Þ reduces to
EPTðQ 1;Q 2Þ ¼ �p1

Z Q1

0
FðxÞdxþ ðp2 � c2ÞQ2 � p2

Z Q2

0
GðyÞFðQ 1 þ Q 2 � yÞdyþ ðp1 � c1ÞQ 1
Using Leibniz‘s rule and setting the first partial derivatives to zero we have;
0 ¼ p1 � c1 � p1FðQ1Þ � p2

Z Q2

0
GðyÞf ðQ 1 þ Q 2 � yÞdy ð35Þ

0 ¼ p2 � c2 � p2GðQ 2ÞFðQ1Þ � p2

Z Q2

0
GðyÞf ðQ 1 þ Q 2 � yÞdy ð36Þ
From which we obtain;
1� FðQ 1ÞGðQ 2Þ ¼
c2 þ p1 � c1 � FðQ 1Þp1

p2
: ð37Þ
The partial derivatives of (3) set to zero result in:
0 ¼ ðs1 � p1ÞFðQ 1Þ þ ðp1 � d1Þ þ ðs2 � p2Þ
Z Q2

0
f ðQ 1 þ Q 2 � yÞGðyÞdðyÞ ð38Þ

0 ¼ ðs2 � p2ÞFðQ 1ÞGðQ 2Þ þ ðp2 � d2Þ þ ðs2 � p2Þ
Z Q2

0
f ðQ 1 þ Q 2 � yÞGðyÞdðyÞ ð39Þ
Solving (38) and (39), we get
ðs1 � p1ÞFðQ 1Þ þ ðp1 � d1Þ � ðp2 � d2Þ½ �=ðs2 � p2Þ ¼ FðQ 1ÞGðQ 2Þ ð40Þ
Combining (40) and (41) we get the result.

Proof of Proposition 3.3. In this case, EPTðQ1;Q2Þ, is given by:
EPTðQ 1;Q 2Þ ¼ �p1

Z Q1

0
FðxÞdxþ ðp2 � c2ÞQ2 � p2

Z Q2

0
GðyÞFðQ 1 þ Q 2 � yÞdyþ ðp1 � c1ÞQ 1
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From this expression we obtain the first order conditions as
0 ¼ p1 � c1 � p1FðQ 1Þ � p2

Z Q2

0
GðyÞf ðQ 1 þ Q 2 � yÞdy ð41Þ

0 ¼ p2 � c2 � p2GðQ 2ÞFðQ 1Þ � p2

Z Q2

0
GðyÞf ðQ 1 þ Q 2 � yÞdy ð42Þ
From (4) we get the first order conditions as
0 ¼ p1 � d1 � p1FðQ 1Þ � p2

Z Q2

0
f ðQ 1 þ Q 2 � yÞGðyÞdy ð43Þ

0 ¼ p2 � d2 � p2FðQ 1ÞGðQ 2Þ � p2

Z Q2

0
f ðQ 1 þ Q 2 � yÞGðyÞdy ð44Þ
Eqs. (41), (43), (42) and (44) imply that c1 ¼ d1; c2 ¼ d2 which is not feasible.

Proof of Proposition 3.4. This is a special case of case 2. Consider the expression given by (39) for the first order conditions
of the retailer’s profit. Letting s2 ¼ d2, we get
0 ¼ ðp2 � s2Þ 1� FðQ1ÞGðQ2ÞÞ �
Z Q2

0
f ðQ 1 þ Q 2 � yÞGðyÞdy

� �
ð45Þ
Noting that
Z Q2

0
f ðQ 1 þ Q 2 � yÞGðyÞdy ¼

Z Q1þQ2

Q1

GðQ 1 þ Q 2 � uÞdFðuÞ
(45) is written as
1� FðQ 1ÞGðQ 2Þ ¼
Z Q1þQ2

Q1

GðQ 1 þ Q 2 � uÞdFðuÞ 6
Z 1

Q1

dFðuÞ ¼ 1� FðQ1Þ
which is impossible unless Q1 ¼ Q2 ¼ 1. Hence, the system is suboptimal.
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