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Doğan A. Serel �

Faculty of Business Administration, Bilkent University, 06800 Bilkent, Ankara, Turkey
a r t i c l e i n f o

Article history:

Received 25 May 2006

Accepted 16 July 2008
Available online 14 August 2008

Keywords:

Newsboy

Inventory

Supply uncertainty

Emergency supply

Pricing
73/$ - see front matter & 2008 Elsevier B.V. A

016/j.ijpe.2008.07.012

: +90 312 290 2415; fax: +90 312 266 4958.

ail address: serel@bilkent.edu.tr
a b s t r a c t

We explore an extension of the single-period (newsboy) inventory problem when

supply is uncertain. We look into the negotiations between a newsvendor (retailer) and

a manufacturer when there is competition from a second supplier. There is a chance that

the second supplier will not be able to deliver the product. The retailer can maximize his

expected profit by optimally allocating his order between the two suppliers. The

retailer’s ordering problem is analyzed in conjunction with the manufacturer’s related

pricing problem. The effects of demand and supply uncertainties on the optimal

decisions of the parties are explored using numerical examples. We also explore

extension of the retailer’s problem to the cases of order cancellation, price-dependent

demand, and demand-dependent supply availability.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

A wide variety of companies carry inventories of
finished goods so that they can respond to customer
orders without delay. There has been extensive study
of the optimal stocking decision in a single-period
(newsvendor) problem when demand is uncertain (see,
e.g., Khouja, 1999). In the standard newsvendor problem,
the buyer tries to balance the costs of shortages and
leftovers by determining the most appropriate level of
inventory given the demand forecast for the end product
and relevant cost parameters (Silver et al., 1998). The
newsvendor model can be used to decide on order
quantities of style goods and perishable products that
should be sold in a single selling season.

While deterministic supply lead time and availability is
a fairly common assumption in the inventory literature,
there are also models that take into account randomness
of product delivery times from suppliers. In some cases,
the quantity delivered by a supplier may deviate from the
ll rights reserved.
quantity ordered by the buyer. Although retailers expect
smooth and timely delivery of goods from manufacturers,
sometimes supply shortages may result in unsatisfied
demand and lost profits for the retailer.

Manufacturers may experience similar problems with
their suppliers. Supply failures may be caused by events
such as accidents, strikes, and supplier equipment mal-
functions (Waller, 2003). Ericsson reported a loss of about
$400 million in the spring of 2001; this was primarily
caused by a fire at a supplier’s plant that disrupted the
supply of radio-frequency chips used in one of Ericsson’s
key consumer products (Norrman and Jansson, 2004). The
financial insolvency of the UK chassis manufacturer UPF
Thompson in 2001 threatened the continuity of produc-
tion at its major customer, Land Rover (Juttner, 2005).
Sometimes unexpected surges in demand may tempora-
rily distort the balance between supply and demand.
Because of component shortages, Motorola failed to ship
the camera phones promised to its major customers
during the holiday season in 2003 (Kharif, 2003).

In this paper we develop a single-period inventory
model for identifying the best stocking policy for a retailer
faced with uncertain demand and supply. We consider a
retailer who has two alternative suppliers, one of whom is
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not guaranteed to be available when the retailer needs
the product in the future. To reduce his risk, the retailer
can purchase any desired amount of the item in advance
from the reliable manufacturer, albeit at a higher cost.
We focus on the rational actions of the retailer and the
manufacturer in this dual supplier environment. Within a
single-period inventory framework, we analyze the joint
impact of demand and supply uncertainties on the
optimal decisions (order quantity and supply price) of
the parties. We also look into changes in the retailer’s
optimal ordering policy in different scenarios involving
backordered demand, order cancellation flexibility, price-
sensitive demand, and supply availability correlated with
demand. Since the newsvendor model with a linear
supply price is applicable in a wide range of business
settings, our analytical approach can be used to explore
various aspects of the retailer–manufacturer relationship
under conditions of supply uncertainty. In our numerical
study we find that the optimal price for the reliable
manufacturer does not change much regardless of
whether the retailer orders from the risky supplier prior
to or after observing the random demand.

Retailers can guarantee the availability of supplies by
placing their purchase orders with a reliable manufacturer
long before the start of the selling season. If certain
manufacturers in the market are more reliable than others
and more in demand, buyers may be compelled to make
early purchase commitments to procure the product from
the reliable manufacturers. In some other cases, existing
constraints on supply capacity prompt retailers to make
early commitments. Backup agreements between retailers
and manufacturers are an example of the advance
purchase commitment that we study in this paper. In
backup agreements with a manufacturer of fashion
garments, a retailer orders in two stages: the initial firm
order is delivered before the start of the season, and later
additional units can be ordered from a backup during the
season (Eppen and Iyer, 1997). In our model, the backup is
unreliable, and becomes unavailable when the selling
season starts. Advance supply commitments also benefit
the manufacturers through improved production plan-
ning, and potential cost savings in the procurement of raw
materials.

Supply uncertainty has been incorporated into sto-
chastic demand inventory models in various ways in the
literature. The papers can be further categorized into
single-supplier and multiple-supplier models. Single-sup-
plier models are primarily concerned with the determina-
tion of optimal inventory control policy given imperfect
supply. Some authors have considered random supply
capacity in a periodic review inventory control framework
(Ciarallo et al., 1994; Erdem and Ozekici, 2002). There are
also all-or-none models which assume that supply avail-
ability is described by a Bernoulli process each period
(Parlar et al., 1995; Ozekici and Parlar, 1999; Gullu et al.,
1999); there is a certain probability that the quantity
ordered by the buyer is fully received, or no delivery
occurs. Another approach is to assume that the supplier
becomes unavailable to the buyer for a random duration
followed by an interval of availability of random length
(Parlar, 1997; Mohebbi, 2004; Mohebbi and Hao, 2006). In
the yield uncertainty case, it is assumed that the supplier
delivers a random fraction of the order placed by the
buyer (Wang and Gerchak, 1996; Inderfurth, 2008; Abdel-
Malek et al., 2008).

The multiple-supplier models in the literature address
the issues of supplier selection and optimal-order alloca-
tion. Papers in this category include models in which
supply uncertainty is specified as random capacity (Erdem
et al., 2006), all-or-none supply availability (Dada et al.,
2007; Babich et al., 2007), on and off times with random
durations (Gurler and Parlar, 1997), and random yield
(Agrawal and Nahmias, 1997; Yang et al., 2007). Minner
(2003) reviews the research in multiple-supplier inven-
tory models.

In this paper, we use the all-or-none supply availability
approach to model the uncertainty about supply. The
retailer’s problem in our work to some extent resembles
the single-period ordering problem studied by Jain and
Silver (1995) where a supplier with a random supply
capacity guarantees availability at a premium price. The
retailer’s problem in Jain and Silver (1995) is to decide
the order size, and the portion of the order size to be
designated as the dedicated capacity. The availability of
the dedicated capacity is certain; however, the supplier’s
realized capacity may not be enough to fully meet the
remaining part of the retailer’s order. In our paper,
the supply uncertainty is specified differently, and there
are two different suppliers.

The key contributions of the paper can be summarized
as follows. (1) We extend the single-period inventory
problem with supply uncertainty to the case where the
supply price is determined within the framework of a
Stackelberg game. (2) In addition to the buyer’s inventory
problem, we also analyze the structural properties of
the supplier’s pricing problem in a single-period setting.
The buyer’s inventory problem in conditions of supply
uncertainty has been investigated by a number of
researchers, but they have not fully explored the supplier’s
perspective in this environment. We identify the condi-
tions that ensure unimodality of the supplier’s profit
function. (3) We study the pricing competition between a
reliable supplier and a risky supplier for a newsvendor,
and explore the conditions for the existence and unique-
ness of Nash equilibrium in this competition. (4) We also
generalize the newsvendor model with a deterministic
emergency supply option studied in the literature; we
investigate the case where emergency supply is randomly
available to the newsvendor. (5) Finally, we propose
a model integrating the case of supply uncertainty
with price-dependent demand within a single-period
framework.
2. Model

We focus on the interaction between a retailer and a
manufacturer when there is a second source of supply
from which the retailer can fill some or all of his stocking
needs. The product is resold by the retailer to his
customers at retail price, p. We assume a Bernoulli
probability distribution for availability of the second
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source to the retailer in the future. As noted earlier, supply
disruptions may be caused by a variety of factors in
practice; we refer to the second source as the ‘‘risky
supplier’’. The probability that the retailer will be able to
purchase any amount he wants from the risky supplier is
u, and the probability is 1�u that no amount of product
will be available from the risky supplier for immediate
delivery.

The retailer’s ordering plan may involve dividing
his total order into two parts such that R units will be
obtained from the manufacturer, and S�R units will be
ordered later from the risky supplier (if available).
Depending on the relative costs of sourcing from the
manufacturer and the risky supplier, the retailer can also
decide to use one of these two sources of supply
exclusively. We remark that the risky supplier may
correspond to a spot market. The problem of allocating a
buyer’s procurement orders among a preferred supplier
and a reliable spot market was previously studied in Serel
et al. (2001) within a multi-period framework; the
extension to the unreliable spot market case was
examined in Serel (2007).

Let p denote the shortage cost (loss of goodwill), and t
denote the unit salvage value of leftovers at the end of the
season. We use c2 and c to represent the wholesale price
per unit charged by the risky supplier and the manufac-
turer, respectively. The price of the risky supplier, c2, is
exogenous to the model; but the manufacturer’s supply
price c is to be determined based on negotiations between
the retailer and the manufacturer. To eliminate unrealistic
cases, we assume c, c2op. We also let cs be the unit
production cost of the manufacturer.

The cumulative distribution function (cdf) of demand
faced by the retailer is denoted as F(x), the mean demand
is m, the standard deviation of the demand distribution is
s, the complementary cdf is Fc(x), and the probability
density function (pdf) of demand is f(x).

We study a Stackelberg game between the retailer and
the manufacturer in which the manufacturer determines
her wholesale price c based on the expected reaction of the
retailer to this price. As c increases, the retailer will
decrease his order amount from the manufacturer (R);
there will thus be an optimal price c� that maximizes the
manufacturer’s expected profit. We show that under
certain restrictions on the probability of risky-supplier
availability, u, and the demand distribution class, the
manufacturer’s profit will be a quasi-concave function of c.

Our paper is structured as follows. First, we formulate
the retailer’s problem, and derive his optimal inventory
decision. Then, we analyze the manufacturer’s pricing
problem. The issue of Nash equilibrium in the pricing
game between the manufacturer and the risky supplier is
addressed in Section 3. Subsequently, in Section 4 we
consider a variant of the problem where the retailer
starts the selling season with inventory supplied by the
manufacturer only. If observed demand exceeds the stock
on hand at the beginning of the season, extra units from
the risky supplier are ordered (if available). This variant of
the problem is similar to the newsvendor problem with an
emergency supply option (Gallego and Moon, 1993;
Khouja, 1996); the difference in our case is that avail-
ability of emergency supply is not certain but subject to
the outcome of a Bernoulli process. Next, we consider
various extensions of the retailer’s ordering problem
including the scenario where demand for the product
depends on the selling price. Following numerical exam-
ples, we offer some concluding remarks.

3. Optimal policies of the retailer and the manufacturer
when excess demand is lost

In this section we first study the retailer’s problem
assuming that supply prices are given. Subsequently we
analyze the manufacturer’s optimal pricing decision,
taking into account the expected response of the retailer
to this price.

3.1. The retailer’s ordering policy

The retailer’s optimal ordering policy follows one of
three paths: using the manufacturer only, using the risky
supplier only, and using both sources. Since we are
interested in the cases in which the manufacturer has a
nonzero share of the retailer’s total order amount, we first
write the retailer’s objective function based on the
assumption that the retailer uses both sources of supply.
If the optimal R ¼ 0, this will correspond to the case in
which the retailer includes only the risky supplier in his
ordering plan.

The retailer’s expected profit as a function of R and S,
B(R, S), can be written as

BðR; SÞ ¼ ð1� uÞfpE½minðR;XÞ� þ tEðR� XÞþ

� pEðX � RÞþ � cRg

þ ufpE½minðS;XÞ� þ tEðS� XÞþ

� pEðX � SÞþ � c2ðS� RÞ � cRg, (1)

where X is the random demand, and (W)+
�max (W, 0).

With probability 1�u, the retailer will start the season
with R units on hand; with probability u, the starting
inventory will be S. The retailer’s expected profit function
is composed of four parts: expected revenue, salvage
value, shortage penalty, and purchase cost. Note that the
retailer orders R units from the manufacturer before
observing availability of the risky supplier. The partial
derivatives of B(R, S) are

qB=qR ¼ ð1� uÞ½ðpþ pÞFcðRÞ þ tFðRÞ � c� þ uðc2 � cÞ, (2)

qB=qS ¼ u½ðpþ pÞFcðSÞ þ tFðSÞ � c2�. (3)

The second partial derivatives of B(R, S) are

q2B=qR2
¼ �ð1� uÞ½ðpþ p� tÞf ðRÞ�o0,

q2B=qS2
¼ �u½ðpþ p� tÞf ðSÞ�o0.

The retailer needs to solve the following optimization
problem:

Maximize BðR; SÞ

subject to 0pRpS.

Since B(R, S) is jointly concave in R and S, the optimal
solution can be found using Karush–Kuhn–Tucker (KKT)
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conditions. Let l and n be the Lagrange multipliers. The
KKT conditions are

qB=qR ¼ l� v; qB=qS ¼ �l,

lðR� SÞ ¼ 0; vR ¼ 0; l; vX0.

Setting the first partial derivatives (2) and (3) equal to
zero, we obtain

FðRÞ ¼ ½ð1� uÞðpþ p� cÞ þ uðc2 � cÞ�=½ð1� uÞðpþ p� tÞ�,
(4)

FðSÞ ¼ ðpþ p� c2Þ=ðpþ p� tÞ. (5)

Higher u corresponds to lower supply uncertainty for the
retailer. Observe that the total order amount S does not
depend on u; that is, the degree of supply uncertainty has
no impact on the total quantity that the retailer plans to
order. From the monotonocity of F( � ), if F(R)oF(S), then
RoS. The values of R and S given by (4) and (5) satisfy the
constraint RpS when

½ð1� uÞðpþ p� cÞ þ uðc2 � cÞ�=½ð1� uÞðpþ p� tÞ�
pðpþ p� c2Þ=ðpþ p� tÞ. (6)

Inequality (6) implies that cXc2. By (4), when cXc2, as u

increases, R decreases. On the other hand, R given by (4) is
zero when cXcmax ¼ (1�u)(p+p)+uc2. Thus, the retailer
will order from both sources when c2ococmax. In other
words, the retailer will decide how to divide his order
between a reliable and high-cost supplier, and an unreli-
able and low-cost supplier. The upper limit on the
wholesale price, cmax, increases as the probability of
risky-supplier availability u decreases. For u ¼ 0, cmax ¼

p+p. For u ¼ 1, cmax ¼ c2, meaning that when the avail-
ability of the second supplier is certain, the manufacturer
has to set her price below c2 to be able to sell to the
retailer.

If cXcmax, R ¼ 0 and only the risky supplier will be
used. Note that when R ¼ 0, the optimal amount that the
retailer plans to order, S, will still be given by (5). If cpc2,
then optimal R will be equal to optimal S, and only the
manufacturer will receive a positive order from the
retailer. If R ¼ S, KKT conditions give

qB=qRþ qB=qS ¼ 0. (7)

Setting R ¼ S, and substituting (2) and (3) in (7), we obtain

FðRÞ ¼ ðpþ p� cÞ=ðpþ p� tÞ. (8)

Eq. (8) describes the solution to the traditional single-
supplier newsvendor problem with supply price c. The
retailer’s expected profit is expressed as B(R) in this case
since R is the only variable.

If only the risky supplier is available to the retailer
(with probability u), the retailer’s expected profit can be
written as

BðSÞ ¼ � ð1� uÞpmþ ufpE½minðS;XÞ� þ tEðS� XÞþ

� pEðX � SÞþ � c2Sg. (9)

The value of S maximizing (9) is given by (5). Hence,
independent of the value of u, if the risky supplier is
available, the retailer will stock the constant S units, and
nothing else.
To recap, the retailer’s optimal ordering policy
has 3 possible scenarios: for cpc2, the retailer uses only
the manufacturer; if c2ococmax, the retailer orders from
both the manufacturer and the risky supplier, and if
cXcmax, the risky supplier will be the sole source of
supply.

Although we have assumed a fixed probability of
availability u, our model is actually more general, and
our results also hold when the parameter u itself
is uncertain. Let w(u) be the pdf of the random
variable U which can take values in the interval between
0 and 1. Assuming that probability of availability of the
risky supplier and demand for the product are indepen-
dent of each other, we can write the retailer’s expected
profit as

BðR; SÞ ¼

Z 1

0
½ð1� uÞT1ðRÞ þ uT2ðR; SÞ�wðuÞdu

¼ ½1� EðUÞ�T1ðRÞ þ EðUÞT2ðR; SÞ,

where T1(R) is the term inside the first { } on the right-
hand side (RHS) of (1), and T2(R, S) is the term inside the
second { } on the RHS of (1). When we have uncertainty in
the availability parameter, the term u in our analysis can
be interpreted as the expected value of that parameter.
Hence, all our results will also apply in the case of a
random Bernoulli parameter.
3.2. The manufacturer’s pricing decision

In order to maximize her profit, the manufacturer
needs to determine her optimal wholesale price based on
the expected response of the retailer to her choice of c.
Knowing the functional relationship between c and the
retailer’s order quantity (as derived in the previous
subsection), the manufacturer solves two optimization
problems:
(I)
 Maximize M1(c) ¼ (c�cs)R

subject to FðRÞ ¼ ðpþ p� cÞ=ðpþ p� tÞ;
cpc2;

BðRÞX0:
(II)
 Maximize M2(c) ¼ (c�cs)R

subject to FðRÞ ¼
ð1� uÞðpþ p� cÞ þ uðc2 � cÞ

ð1� uÞðpþ p� tÞ ;

c2ococmax;

BðR; SÞX0:
Whether the optimal c is less than or more than c2

depends on the closeness of c2 to the selling price p.
If c2 is low enough, the optimal c will fall in the interval
between c2 and cmax. The task of finding the optimal price
for the manufacturer would be greatly simplified if M1 and
M2 were unimodal functions of c. In Proposition 1, we
show that M1 is quasi-concave in c if the demand
distribution belongs to the large class of increasing
generalized failure rate (IGFR) distributions (Lariviere
and Porteus, 2001). For distributions in this class, the
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Table 1
Manufacturer’s optimal profit, M�, when both M1 and M2 are quasi-

concave

Case M�

a(1)pc2, a(2)oc2 M1(a(1))

a(1)4c2, a(2)oc2 M1(c2) ¼ M2(c2)

a(1)4c2, a(2)
Xc2 M2(a(2))

Manufacturer's profit function

0
200
400
600
800
1000

5

wholesale price (c)

Pr
of

it

M1

M2

201510

Fig. 1. Manufacturer’s profit functions M1(c) and M2(c) in the lost sales

model (c2 ¼ 10, c� ¼ a(2)
¼ 14.9).
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generalized failure rate g(x) ¼ f(x) x/Fc(x) is an increasing
function of x.

Proposition 1. The manufacturer’s profit function when the

retailer sources only from the manufacturer, M1, is quasi-

concave in c if the demand distribution is IGFR.

Proof. First note that from expression (8) for F(R), we
have

qR=qc ¼ �½ðpþ p� tÞf ðRÞ��1o0, (10)

FcðRÞ ¼ 1� FðRÞ ¼ ðc � tÞ=ðpþ p� tÞ. (11)

From (11),

c ¼ ðpþ p� tÞFcðRÞ þ t. (12)

The first derivative of M1 with respect to c is

dM1=dc ¼ Rþ ðc � csÞqR=qc. (13)

Substituting (10) and (12) in (13),

dM1

dc
¼ R 1�

FcðRÞ

f ðRÞR

� �
þ

cs � t
ðpþ p� tÞf ðRÞ

� �
. (14)

We assume tocs since the case t4cs indicates riskless
profit for the manufacturer. Hence, when dM1/dc ¼ 0, we
have

FcðRÞ4f ðRÞR (15)

and by (13)

c � cs ¼ �R=ðqR=qcÞ. (16)

The second derivative of M1 with respect to c is

d2M1

dc2
¼

dR

dc
2þ

ðc � csÞ

ðpþ p� tÞ½f ðRÞ�2
df ðRÞ

dR

� �
. (17)

Combining (10), (16), and (17), at dM1/dc ¼ 0, we have

d2M1

dc2
¼

dR

dc
2þ

R

f ðRÞ

df ðRÞ

dR

� �
. (18)

Note that

2þ
R

f ðRÞ

df ðRÞ

dR
¼

f ðRÞ þ ðdf ðRÞ=dRÞRþ f ðRÞ

f ðRÞ
. (19)

Eqs. (15) and (19) imply that

2þ
R

f ðRÞ

df ðRÞ

dR
4

FcðRÞðdgðRÞ=dRÞ

f ðRÞ
. (20)

Finally, using dg(R)/dRX0 and dR/dco0, we conclude that
d2M1/dc2p0 when dM1/dc ¼ 0, and consequently M1(c) is
quasi-concave in c. &

The quasi-concavity of M2 with respect to c is
guaranteed under an additional condition on the value
of cs, which is stated in Proposition 2.

Proposition 2. The manufacturer’s profit function when the

retailer plans to use both the manufacturer and the risky

supplier, M2, is quasi-concave in c if the demand distribution

is IGFR and cs4(1�u)t+uc2.

Proof. Observe that from (4)

qR=qc ¼ �½ð1� uÞðpþ p� tÞf ðRÞ��1o0. (21)
Using (21),

dM2

dc
¼Rþ ðc � csÞ

qR

qc

¼ R 1�
c

ð1� uÞðpþ p� tÞf ðRÞR

� �
þ

cs

ð1� uÞðpþ p� tÞf ðRÞ .

(22)

Combining (4) and (22),

dM2

dc
¼ R 1�

FcðRÞ

f ðRÞR

� �
þ
�tð1� uÞ � uc2 þ cs

ð1� uÞðpþ p� tÞf ðRÞ
. (23)

If cs4(1�u)t+uc2, then at dM2/dc ¼ 0, Fc(R)4f(R)R. The
second derivative of M2 with respect to c is

d2M2

dc2
¼

dR

dc
2þ

ðc � csÞ

ð1� uÞðpþ p� tÞ½f ðRÞ�2
df ðRÞ

dR

� �
. (24)

At dM2/dc ¼ 0, the second derivative equals

d2M2

dc2
¼

dR

dc
2þ

R

f ðRÞ

df ðRÞ

dR

� �
. (25)

Following steps similar to Proposition 1, it can be shown
that d2M2/dc2p0 when dM2/dc ¼ 0. &

According to Proposition 2, if the manufacturer’s unit
production cost cs is greater than a lower bound,
LB ¼ (1�u)t+uc2, M2 will be a quasi-concave function of
c; LB is actually a weighted average of the salvage value t
and c2. If u ¼ 0, LB ¼ t, and the condition reduces to cs4t.
As u increases LB increases, and the condition cs4LB
becomes more restrictive. Nonetheless, when the problem
parameters ensure that both M1 and M2 are quasi-concave
in c, the solution to the manufacturer’s pricing problem
can be easily determined. The quasi-concavity condition
for M2 can also be expressed as uo(cs�t)/(c2�t).

Let a(1) and a(2) be the prices satisfying the first-order
conditions dM1/dc ¼ 0 and dM2/dc ¼ 0 in optimization
problems (I) and (II), respectively. Given that M1 and M2

are quasi-concave, the manufacturer’s optimal profit, M�,
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is as shown in Table 1. Using a numerical example with
c2 ¼ 10, M1 and M2 are plotted against c in Fig. 1. In this
example, the third case in Table 1 holds; the manufac-
turer’s optimal price c� ¼ a(2)

¼ 14.9, and the maximum
profit M� ¼ M2(14.9) ¼ $793.1.

We can derive an expression for a(1) by solving

dM1=dc ¼ Rþ ðc � csÞqR=qc ¼ 0, (26)

where R is given by (8). From (26), we obtain

að1Þ ¼ cs þ Rðpþ p� tÞf ðRÞ.

Hence, if a(1) is the optimal wholesale price for the
manufacturer, the optimal markup amount over the
production cost is R (p+p�t)f(R). Since R is a function of
c, the value of a(1) must be found by solving the zero of a
nonlinear equation. By substituting the value of a(1) in M1,

M1ða
ð1ÞÞ ¼ ðað1Þ � csÞR ¼ R2

ðpþ p� tÞf ðRÞ. (27)

Similarly, by solving

dM2=dc ¼ Rþ ðc � csÞqR=qc ¼ 0,

we find

að2Þ ¼ cs þ Rð1� uÞðpþ p� tÞf ðRÞ, (28)

where R is given by (4). It also follows that

M2ða
ð2ÞÞ ¼ ðað2Þ � csÞR ¼ R2

ð1� uÞðpþ p� tÞf ðRÞ. (29)

In Proposition 3, we explore the behavior of the
manufacturer’s profit in response to changes in supply
uncertainty.

Proposition 3. The manufacturer’s optimal profit is a

nonincreasing function of the probability of risky-supplier

availability u if the demand distribution is IGFR and

cs4(1�u)t+uc2.

Proof. Since R does not depend on u when c ¼ c2,
dM1(c2)/du ¼ dM2(c2)/du ¼ 0. Also, because R given by
(8) does not depend on u, dM1(a(1))/du ¼ 0. Using (4),

dR=du ¼ ðc2 � cÞð1� uÞ�2
½ðpþ p� tÞf ðRÞ��1o0. (30)

We can rewrite (29) as

M2ða
ð2ÞÞ ¼ ½f ðRÞ=FcðRÞ�R

2
½�ð1� uÞtþ c � uc2�. (31)

Substituting g(R) ¼ [f(R)R/Fc(R)], and differentiating (31),

dM2ða
ð2ÞÞ

du
¼ ½�ð1� uÞtþ c � uc2�

�
qR

qu
R
qgðRÞ

qR
þ gðRÞ

� �
þ ðt� c2ÞgðRÞRp0. (32)

Inequality (32) holds because of (30), and toc2. The IGFR
assumption implies that qg(R)/qR40. Thus, the manufac-
turer’s optimal profit is inversely related to u. &

The impacts of other parameters on the manufacturer’s
optimal profit are investigated using numerical examples
in a later section. We can examine the relationship
between the optimal wholesale price and supply uncer-
tainty by evaluating dc�/du. Since R does not depend on u

when c�A{a(1), c2}, we focus on the behavior of c� ¼ a(2).
We can rewrite (28) as

að2Þ ¼ cs þ ½�ð1� uÞtþ c � uc2�gðRÞ. (33)
Differentiating (33):

dað2Þ

du
¼ ½�ð1� uÞtþ c � uc2�

qgðRÞ

qR

qR

qu
þ gðRÞðt� c2Þp0

Since qR/quo0, and toc2, c� is a nonincreasing function of
the probability of risky-supplier availability u if the
demand distribution is IGFR and cs4(1�u)t+uc2.
3.3. The risky supplier’s pricing decision and Nash

equilibrium

Although so far we have assumed that the risky
supplier’s price c2 is given, as pointed out by a referee, it
may be interesting to relax this assumption and investi-
gate whether there exists a Nash equilibrium if both the
manufacturer and the risky supplier set their prices
simultaneously in a static non-cooperative game scenario.
Given c, and assuming that the unit production cost of the
risky supplier is cs2, tocs2oc2, the risky supplier’s
problem can be written as
(III)
 Maximize RS1 (c2) ¼ (c2�cs2)S

subject to FðSÞ ¼ ðpþ p� c2Þ=ðpþ p� tÞ;
cXcmax ¼ ð1� uÞðpþ pÞ þ uc2;

BðSÞX0:
(IV)
 Maximize RS2(c2) ¼ (c2�cs2)(S�R)

subject to FðRÞ ¼
ð1� uÞðpþ p� cÞ þ uðc2 � cÞ

ð1� uÞðpþ p� tÞ ;

FðSÞ ¼ ðpþ p� c2Þ=ðpþ p� tÞ;
c2ococmax;

BðR; SÞX0:
In a similar manner to Proposition 1, it can be shown
that the risky supplier’s profit function RS1 (c2) is quasi-
concave in c2 if the demand distribution is IGFR. Since the
retailer orders from both the manufacturer and the risky
supplier when c2ococmax, we focus on that case
(Problem IV). Note that the best response of the risky
supplier to any manufacturer price c is to offer a price
below c. The existence of Nash equilibrium can be shown
using different approaches. In Proposition 4, we show
that, under certain conditions, the manufacturer’s (risky
supplier’s) profit function is quasi-concave in the decision
c (c2), which implies that there is at least one Nash
equilibrium in the pricing game between the manufac-
turer and the risky supplier (Cachon and Netessine, 2004).
In this subsection, we assume that the demand distribu-
tion is an increasing failure rate (IFR) distribution, i.e. the
failure rate f(x)/Fc(x) is an increasing function of x. The IFR
distributions belong to the larger IGFR class, and the set of
IFR distributions includes commonly used distributions
such as normal and gamma distributions.

Proposition 4. There exists at least one Nash equilibrium in

the non-cooperative game played between the manufacturer

and the risky supplier if the demand distribution is IFR,

uo(cs�t)/(c2�t), and @f(R)/@Rp0.
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Proof. First consider the manufacturer’s profit function.
Since IGFR implies IFR, from Proposition 2, M2 is quasi-
concave in c if the demand distribution is IFR, and
uo(cs�t)/(c2�t); in fact, it can be shown that M2 is
concave in c under these two assumptions.

Consider now the risky supplier’s payoff. Note that

qRS2

qc2
¼ S� Rþ ðc2 � cs2Þ

qS

qc2
�

qR

qc2

� �
. (34)

From (4),

qR=qc2 ¼ u½ð1� uÞðpþ p� tÞf ðRÞ��140, (35)

q2R

qc2
2

¼
�u

ð1� uÞðpþ p� tÞ½f ðRÞ�2
qf ðRÞ

qR

qR

qc2
. (36)

From (5),

qS=qc2 ¼ �½ðpþ p� tÞf ðSÞ��1o0, (37)

q2S

qc2
2

¼
1

ðpþ p� tÞ½f ðSÞ�2
qf ðSÞ

qS

qS

qc2
. (38)

Differentiating (34),

q2RS2

qc2
2

¼ 2
qS

qc2
�

qR

qc2

� �
þ ðc2 � cs2Þ

q2S

qc2
2

�
q2R

qc2
2

 !
. (39)

Substituting (38) into (39),

q2RS2

qc2
2

¼
qS

qc2
2þ

ðc2 � cs2Þ

ðpþ p� tÞ½f ðSÞ�2
qf ðSÞ

qS

� �

� 2
qR

qc2
� ðc2 � cs2Þ

q2R

qc2
2

(40)

Using the IFR property,

K1 � �
FcðSÞ

½f ðSÞ�2
qf ðSÞ

qS

� �
¼ �

c2 � t
ðpþ p� tÞ½f ðSÞ�2

qf ðSÞ

qS

� �
o1,

(41)

Substituting (41) into (40),

q2RS2

qc2
2

¼
qS

qc2
2�
ðc2 � cs2ÞK1

ðc2 � tÞ

� �
� 2

qR

qc2
� ðc2 � cs2Þ

q2R

qc2
2

.

(42)

If K1o0, the term 2�(c2�cs2)K1/(c2�t) is positive since

c24cs2, and the denominator (c2�t)40. If 0pK1o1, and

(c2�cs2)/(c2�t)o1, the term 2�(c2�cs2)K1/(c2�t) will be

positive. Since cs24t, the term 2�(c2�cs2)K1/(c2�t) is

positive. Using (35) and (37), we find that if q2R/qc2
2
X0

and tocs2, q2RS2/qc2
2p0. By (35) and (36), q2R/qc2

2
X0 if

qf(R)/qRp0. Thus RS2 (c2) is concave in c2 if the demand

distribution is IFR and qf(R)/qRp0. &

The condition qf(R)/qRp0 is met by the uniform and
exponential distribution. If the demand distribution is
normal, this condition implies that F(R) should be greater
than 0.5. We remark that a similar condition is imposed
on the demand density for proving the existence of Nash
equilibrium in the two-supplier competition model of
Sethi et al. (2005).
With additional conditions on the demand distribu-
tion, it can be shown that there is a unique Nash
equilibrium. To show the uniqueness of Nash equilibrium,
we will use the contraction mapping method (Cachon and
Netessine, 2004), and show in Proposition 5 that

jq2M2=qc qc2jojq
2M2=qc2j (43)

and

jq2RS2=qc qc2jojq
2RS2=qc2

2j. (44)

Proposition 5. There exists a unique Nash equilibrium in

the non-cooperative game played between the manufacturer

and the risky supplier if the demand distribution is IFR,

uo(cs�t)/(c2�t), and @f(x)/@xp0 for xXR.

Proof. We first show (43). From (22), we obtain

q2M2

qc qc2
¼

qR

qc2
þ ðc � csÞ

q2R

qc qc2
. (45)

By (21),

q2R

qc qc2
¼

1

ð1� uÞðpþ p� tÞ½f ðRÞ�2
qf ðRÞ

qR

qR

qc2
. (46)

Combining (45) and (46),

q2M2

qc qc2
¼

qR

qc2
1þ

c � cs

ð1� uÞðpþ p� tÞ½f ðRÞ�2
qf ðRÞ

qR

� �
. (47)

Using the IFR property, we have

K2 � �
FcðRÞ

½f ðRÞ�2
qf ðRÞ

qR

� �

¼ �
�ð1� uÞtþ c � uc2

ð1� uÞðpþ p� tÞ½f ðRÞ�2
qf ðRÞ

qR

� �
o1. (48)

We can rewrite (47) as

q2M2

qc qc2
¼

qR

qc2
1�

ðc � csÞK2

�ð1� uÞtþ c � uc2

� �
. (49)

Substituting (48) into (24),

q2M2

qc2
¼
qR

qc
2�

ðc � csÞK2

�ð1� uÞtþ c � uc2

� �
. (50)

From (21) and (35),

qR

qc2
¼ �u

qR

qc
. (51)

Comparing (49) and (50), and using (51), it follows that

jq2M2=qc qc2jojq
2M2=qc2j.

To show (44), we will prove that (cf. Chen et al., 2004)

q2RS2

qc2
2

þ
q2RS2

qc qc2
o0. (52)

From (5), qS/qc ¼ 0. Note that

qRS2

qc2
þ
qRS2

qc
¼ S� Rþ ðc2 � cs2Þ

qS

qc2
�

qR

qc2
�
qR

qc

� �
. (53)

Substituting (51) into (53)

qRS2

qc2
þ
qRS2

qc
¼ S� Rþ ðc2 � cs2Þ

qS

qc2
þ

1� u

u

� �
qR

qc2

� �
.

(54)
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To show (52), we will demonstrate that the derivative of
(54) with respect to c2 is negative. Differentiating (54):

q2RS2

qc2
2

þ
q2RS2

qc qc2
¼

qS

qc2
þ ðc2 � cs2Þ

q2S

qc2
2

�
qR

qc2

þ
1� u

u

� �
ðc2 � cs2Þ

q2R

qc2
2

þ
qS

qc2
þ

1� u

u

� �
qR

qc2
. (55)

Combining (38) and (41),

q2S

qc2
2

¼ �
K1

ðc2 � tÞ
qS

qc2
. (56)

Eqs. (37) and (56) and IFR property imply that

qS

qc2
þ ðc2 � cs2Þ

q2S

qc2
2

¼
qS

qc2
1�
ðc2 � cs2ÞK1

ðc2 � tÞ

� �
o0. (57)

From (35) and (36),

�
qR

qc2
þ

1� u

u

� �
ðc2 � cs2Þ

q2R

qc2
2

¼
u

ð1� uÞðpþ p� tÞf ðRÞ �1�
ðc2 � cs2Þ

ðpþ p� tÞ½f ðRÞ�2
qf ðRÞ

qR

� �
.

(58)

Substituting (48) into (58),

�
qR

qc2
þ

1� u

u

� �
ðc2 � cs2Þ

q2R

qc2
2

¼
u

ð1� uÞðpþ p� tÞf ðRÞ �1þ
ð1� uÞðc2 � cs2ÞK2

�ð1� uÞtþ c � uc2

� �
.

(59)

The RHS of (59) is negative if (1�u)(c2�cs2)/[�(1�u)
t+c�uc2]o1, or equivalently, uo1+[(c�c2)/(cs2�t)]. This
condition is always satisfied since c4c2. Using (35)
and (37),

qS

qc2
þ

1� u

u

� �
qR

qc2
¼

1

pþ p� t
1

f ðRÞ
�

1

f ðSÞ

� �
. (60)

The RHS of (60) is nonpositive if f(S)pf(R). This holds true
when qf(x)/qxp0 for xXR. Hence, (57), (59), and (60)
imply that the RHS of (55) is negative. &

Thus, if the manufacturer and the risky supplier are
engaged in a pricing game, the manufacturer would
charge a higher price than the risky supplier in the
resulting Nash equilibrium, and the retailer’s ordering
policy would be described by (4) and (5). When the
conditions stated in Proposition 5 hold, the supply prices c

and c2 in the Nash equilibrium can be determined by
setting the first derivatives (22) and (34) to zero.

4. Extension to the case where excess demand may be
satisfied by an emergency shipment

In Section 3, it was assumed that the retailer starts the
season with inventory from the manufacturer and/or the
risky supplier; if demand during the selling season
exceeds this starting inventory, excess demand is un-
satisfied. In some cases, it may be possible to satisfy all
demand during the season by using an emergency supply
option, i.e., excess demand is met by backordering. In this
section, we outline the extension of our model to this
setting. Our problem is different from the variant of the
newsvendor problem that was previously studied that
assumed certainty in emergency supply (Gallego and
Moon, 1993; Khouja, 1996). In our framework, emergency
supply corresponds to the risky-supplier alternative which
will be available with a probability of u, and unavailable
with a probability of 1�u.

The new model follows. The retailer orders R units
from the manufacturer, and starts the season with this
inventory. If needed, there may be an opportunity to
purchase from the risky supplier so that demand in excess
of R can be satisfied. If demand is less than R, the retailer
sells the leftover items at unit salvage price t.
4.1. Retailer’s problem

The retailer’s expected profit function, B(R), is now
given by

BðRÞ ¼ ð1� uÞfpE½minðR;XÞ� þ tEðR� XÞþ

� pEðX � RÞþ � cRg

þ ufpmþ tEðR� XÞþ � c2EðX � RÞþ � cRg. (61)

Differentiating (61) with respect to R,

qB=qR ¼ ð1� uÞ½ðpþ pÞFcðRÞ þ tFðRÞ � c�

þ u½tFðRÞ þ c2FcðRÞ � c�,

q2B=qR2
¼ � f ðRÞ½ðpþ p� tÞ � uðpþ p� c2Þ�o0. (62)

The second derivative given in (62) is negative since
touc2. We are not interested in the case of tXuc2 because
there the retailer would only source from the risky
supplier. Thus, the first-order condition qB/qR ¼ 0 is used
for finding the optimal-order quantity, resulting in

FðRÞ ¼ ½pþ p� c � uðpþ p� c2Þ�=½pþ p� t� uðpþ p� c2Þ�.

(63)

In order to have R40, we need p+p�c�u (p+p�c2)40, or
equivalently, cocmax ¼ (1�u) (p+p)+uc2. At extreme va-
lues of u, for u ¼ 0 we have cmax ¼ p+p, and for u ¼ 1,
cmax ¼ c2. Thus, the upper bound on c decreases as the
probability that emergency supply will be available (u)
increases. Note that in the deterministic emergency
supply case (Gallego and Moon, 1993), emergency supply
price c2 has to be greater than the regular supply price c in
order for the model to have a nontrivial solution. However,
in our model with random emergency supply, the regular
supply price can exceed the emergency supply price.

As in the standard newsvendor model, the RHS of (63)
can be interpreted as a ratio of the underage cost to the
sum of underage and overage costs. The underage cost is
p+p�u(p+p)+uc2�c, and the overage cost is c�t. If the
retailer is short one unit, his profit decreases by an
amount equal to the underage cost, and the overage cost
measures the impact on the retailer’s profit of each item of
leftover stock.

In Proposition 6, we show that, for a fixed wholesale
price, the manufacturer receives a smaller order when
there is an emergency supply.
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Proposition 6. For a given wholesale price c, the order

received by the manufacturer, R, is lower when excess

demand is backordered rather than lost.

Proof. Let R1, R2, and R3 be the value of R satisfying (8),
(4), and (63), respectively. The optimal R in the lost sales
case is either R1 or R2, and the optimal R in the
backordered demand case is R3. Let Y ¼ u(p+p�c2). Then
F(R3) ¼ (p+p�c�Y)/(p+p�t�Y). Comparison with (8) re-
veals that R1XR3. The numerators on the RHS of (4) and
(63) are the same. The denominator on the RHS of (63) is
larger than that of (4) if toc2. Hence, R2XR3. &

If only the risky-supplier source is available, the
retailer’s expected profit, Bes, is

Bes ¼ uðp� c2Þm� ð1� uÞpm. (64)

Note that variability of the demand distribution does not
affect the retailer’s profit, Bes.

4.2. Manufacturer’s problem

The manufacturer’s problem when there is an
(stochastic) emergency supply option is

Maximize M3(c) ¼ (c�cs)R

subject to FðRÞ ¼
pþ p� c � uðpþ p� c2Þ

pþ p� t� uðpþ p� c2Þ
;

coð1� uÞðpþ pÞ þ uc2;

BðRÞX0:

The unimodality of M3 is examined in Proposition 7.

Proposition 7. When excess demand may be satisfied

by an emergency shipment, the manufacturer’s profit

function, M3, is quasi-concave in c if the demand distribution

is IGFR.

Proof. The proof is similar to the proof of Proposition 1.
Using (63),

dR=dc ¼ �f½pþ p� t� uðpþ p� c2Þ�f ðRÞg
�1o0,

d2M3

dc2
¼

dR

dc
2þ

ðc � csÞ

½pþ p� t� uðpþ p� c2Þ�½f ðRÞ�
2

df ðRÞ

dR

� �
.

(65)

Substituting the first-order condition for M3 into (65),

d2M3

dc2
¼

dR

dc
2þ

R

f ðRÞ

df ðRÞ

dR

� �
.

Then, analogous to Proposition 1, it can be shown that
d2M3/dc2p0 when dM3/dc ¼ 0. &

Thus, the price maximizing M3 will be the optimal
wholesale price chosen by the manufacturer when an
emergency supply source is available to the retailer once
demand is known. Let a(3) be the wholesale price
satisfying the first-order condition

dM3=dc ¼ Rþ ðc � csÞqR=qc ¼ 0, (66)

where R is given by (63). Solving (66),

að3Þ ¼ cs þ R½pþ p� t� uðpþ p� c2Þ�f ðRÞ. (67)
Hence, the optimal markup in the model with back-
ordered demand is R[p+p�t�u(p+p�c2)]f(R). Using (67),

M3ða
ð3ÞÞ ¼ ðað3Þ � csÞR ¼ R2

½pþ p� t� uðpþ p� c2Þ�f ðRÞ.

(68)

Proposition 8 states that, as in the lost sales case,
decreasing supply uncertainty hurts the manufacturer.

Proposition 8. The manufacturer’s optimal profit is a

nonincreasing function of the probability of emergency

supply availability u if the demand distribution is IGFR.

Proof. Using (63), some algebra yields

dR=du ¼ ðpþ p� c2Þðt� cÞ

�½pþ p� t� uðpþ p� c2Þ�
�2½f ðRÞ��1o0. (69)

Substituting g(R) ¼ [f(R)R/Fc(R)], we can rewrite (68) as

M3ða
ð3ÞÞ ¼ gðRÞRðc � tÞ. (70)

Following the same steps as in Proposition 3,

dM3ða
ð3ÞÞ

du
¼ ðc � tÞ qR

qu
R
qgðRÞ

qR
þ gðRÞ

� �
p0. (71)

By (69), and the assumption that c4t, the left-hand side
(LHS) of (71) is nonpositive. Thus, the manufacturer’s
optimal profit is a nonincreasing function of u. &

It can be shown that an increase in c2 will never cause
the manufacturer’s profit to decrease. Using (63),

dR=dc2 ¼ uðc � tÞ½pþ p� t� uðpþ p� c2Þ�
�2½f ðRÞ��140.

(72)

Differentiating (70)

dM3ða
ð3ÞÞ

dc2
¼ ðc � tÞ qR

qc2
R
qgðRÞ

qR
þ gðRÞ

� �
X0. (73)

Thus, the manufacturer’s optimal profit is a nondecreasing
function of the emergency supply price c2, if the demand
distribution is IGFR.

We now turn our attention to the behavior of the
optimal wholesale price as the emergency supply char-
acteristics change. First we rewrite (67) as

að3Þ ¼ cs þ ðc � tÞgðRÞ. (74)

Using (74), we obtain

dað3Þ

du
¼ ðc � tÞ qgðRÞ

qR

qR

qu
p0. (75)

The sign of the LHS of (75) is based on arguments similar
to those in Proposition 8. Hence, the manufacturer’s
optimal wholesale price is a nonincreasing function of
the probability of emergency supply availability u if the
demand distribution is IGFR. Finally, we look into the
impact of c2 on c�. From (74):

dað3Þ

dc2
¼ ðc � tÞ qgðRÞ

qR

qR

qc2
X0. (76)

By (72) and the IGFR assumption, the LHS of (76) is
nonnegative. Thus, increases in emergency supply un-
certainty or price will never result in a decrease in the
manufacturer’s optimal wholesale price if the demand
distribution is IGFR.
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5. Extension to the case where order cancellation is
allowed

In certain cases, the manufacturers allow their customers
to revise their order quantities in exchange for a penalty
payment (e.g., Xu, 2005). Suppose the retailer can cancel any
portion of his order from the manufacturer after assessing
the availability of the risky supplier, and before the start of
the season. Let r be the refund per unit that the retailer
receives if he decides to cancel any desired portion of his
initial order R, roc. Also, let S be the total stocking level after
any cancellation of the initial order and ordering from the
risky supplier. The ability to cancel the order does not make
the retailer worse off compared to the case where cancella-
tion is not possible. Thus, if cpc2, the risky supplier will not
be given a positive order, as in the previous model. Clearly, if
rpc2, the risky supplier will definitely not be used, and there
is no need to modify the initial order R. Cancellation might
occur only when c4r4c2, so we focus on that case. If the
risky supplier is available, then the optimal policy is to
cancel all of R, and source fully from the risky supplier.
Hence, the retailer’s objective function can be written as

BðR; SÞ ¼ ð1� uÞfpE½minðR;XÞ�

þ tEðR� XÞþ � pEðX � RÞþ � cRg

þ ufpE½minðS;XÞ� þ tEðS� XÞþ

� pEðX � SÞþ � c2Sþ ðr � cÞRg. (77)

The first-order conditions lead to

FðRÞ ¼ ½ð1� uÞðpþ p� cÞ þ uðr � cÞ�=½ð1� uÞðpþ p� tÞ�,
(78)

FðSÞ ¼ ðpþ p� c2Þ=ðpþ p� tÞ. (79)

Since B(R, S) is concave, the optimal solution is given by
(78) and (79). Comparing (78) with (4), since r4c2, the
initial order from the manufacturer, R is higher when
cancellation is possible.

6. Optimal ordering policy when demand is price-
dependent

In this section we analyze the retailer’s problem with lost
sales when demand for the product is dependent on selling
price. The newsvendor problem with price-dependent
demand has been studied using either an additive or
multiplicative uncertainty approach (e.g., Petruzzi and Dada,
1999; Choi, 2007; Arcelus et al., 2007; Karakul, 2008;
Webster and Weng, 2008). We consider that randomness in
demand is incorporated into the model in an additive form.
Thus, the random demand during the season, X, equals

Xðp; �Þ ¼ yðpÞ þ �,

where y(p) describes the functional relationship between
demand and price, and e is a random variable. More
specifically, we use the linear relationship y(p) ¼
a�bp(a40, b40). In the additive error approach, the
variance of the demand does not depend on the price. We
also let e( � ) represent the probability density function of
e. Further, let m and n denote the mean and standard
deviation of e, respectively.
The retailer’s ordering problem is deconstructed into two
stages. In the first stage, the retailer places an order of R

units with the manufacturer. After ascertaining the avail-
ability of the risky supplier, the retailer orders S�R units
from the risky supplier (if available). Then, given the
available stock on hand, the retailer sets the selling price p

and the season starts. Since it is uncertain whether the risky
source will be used, the optimal price should be determined
contingent on the availability of the risky supplier.

6.1. Deterministic demand

Let iA{1, 2} be the state of supplier availability, with i ¼ 1
indicating that the risky supplier is available. As in earlier
sections, we assume the probability that i ¼ 1 is u. Let pi be
the selling price in state i, with i ¼ 1, 2. First we consider the
case of deterministic demand. Since the risky supplier will be
used only if c2oc, we make that assumption. If there were
only the reliable manufacturer available to the retailer in
the problem, the retailer would maximize his profit
(p�c)(a+m�bp), which leads to the optimal price (a+m+bc)/
2b, and the optimal-order amount Ru

¼ (a+m�bc)/2. Clearly,
Ru is an upper bound on the optimal R in the problem
including the risky supplier. If R units are ordered earlier, and
state 2 is observed, i.e., the risky supplier is not available, the
optimal price, p2

�
¼ (a+m�R)/b. If the risky supplier is

available, the optimal price p1
�
¼ (a+m+bc2)/2b, and the

optimal total stocking level S� ¼ a�bp1
�+m ¼ (a+m�bc2)/2.

Thus, the retailer’s expected profit is written as

BðRÞ ¼ u½pn
1 ða� bpn

1 þmÞ � c2ða� bpn
1 þm� RÞ � cR�

þ ð1� uÞ½ðpn
2 � cÞR�. (80)

We can show that

ðpn
1 � c2Þða� bpn

1 þmÞ ¼ ðaþm� bc2Þ
2=4b.

From (80), we have

qB=qR ¼ uðc2 � cÞ þ ð1� uÞ½ðaþm� 2RÞ=b� c�, (81)

q2B=qR2
¼ �2ð1� uÞ=bp0.

Thus, B(R) is concave in R, and the optimal amount to be
ordered from the reliable manufacturer R� can be found
by setting (81) to zero:

Rn
¼ 0:5½ðaþm� bcÞ þ ubðc2 � cÞ=ð1� uÞ�. (82)

If the RHS of (82) is negative, the optimal R is zero. Using
(82), we can show that qR�/qup0, qR�/qcp0, and qR�/
qc2X0. If R is zero, the retailer’s optimal expected profit
from (80) is

BðR ¼ 0Þ ¼ uða� bc2Þ
2=4b.

6.2. Stochastic demand

We now return to the stochastic demand case. The
retailer’s expected profit function in state 1 is

B1ðp1; SjRÞ ¼ p1E½minðS;XÞ� þ tEðS� XÞþ

� pEðX � SÞþ � cR� c2ðS� RÞ; (83)
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where SXR is the total stocking level. Let p1
� and S� be the

optimal decisions maximizing (83) for a given R. The
retailer’s expected profit in state 2 is

B2ðp2jRÞ ¼ p2E½minðR;XÞ� þ tEðR� XÞþ � pEðX � RÞþ � cR.

(84)

Denoting the optimal price in state 2 by p2
�, the optimal

amount to purchase from the manufacturer, R�, is found
by maximizing

BðRÞ ¼ ufp�1ðRÞE½minðS�ðRÞ;XÞ�

þ tE½S�ðRÞ � X�þ � pE½X � S�ðRÞ�þ � cR

� c2½S
�
ðRÞ � R�g þ ð1� uÞfp�2ðRÞE½minðR;XÞ�

þ tEðR� XÞþ � pEðX � RÞþ � cRg. (85)

Let

LðzÞ ¼
Z z

0
ðz� �Þeð�Þd�; YðzÞ ¼

Z 1
z
ð�� zÞeð�Þd�.

Then we can rewrite (83) as

B1ðp1; zSjRÞ ¼ p1½yðp1Þ þm�YðzSÞ� þ tLðzSÞ

� pYðzSÞ � cR� c2½yðp1Þ þ zS � R�, (86)

where zS ¼ S�y(p1). Note that L(zS) gives expected left-
overs, and Y(zS) reflects expected shortages. If y(p1)+zSpR,
no purchase from the risky supplier is made. Therefore,
we need to take into account only those combinations of
p1 and zS that satisfy y(p1)+zS4R.

Differentiating (86), we have

qB1=qp1 ¼ aþm� 2bp1 þ bc2 �YðzSÞ. (87)

Thus, for a given zS, B1( � ) is maximized when (cf. Petruzzi
and Dada, 1999)

p1 ¼ p�1 ¼ ½aþmþ bc2 �YðzSÞ�=2b. (88)

Hence, the retailer’s problem when i ¼ 1 is solved in two
steps using a line search algorithm. First, the optimal price is
found for a given S (and R) by (88). Then a search over zS is
conducted to find the best pair (p1

�, zS
�) maximizing (86).

Let zR ¼ R�y(p2). If the risky supplier is not available,
i.e., i ¼ 2, the retailer’s expected profit function is

B2ðp2jzRÞ ¼ p2½yðp2Þ þm�YðzRÞ�

þ tLðzRÞ � pYðzRÞ � c½yðp2Þ þ zR�. (89)

The optimal price, p2
�, is determined as

p�2 ¼ ½aþmþ bc �YðzRÞ�=2b. (90)

Finally we substitute p1
�(R), p2

�(R), and S�(R) into (85) and
obtain R�. The optimal amount ordered from the risky
supplier S�R can be positive only when c2oc. In terms
of zS and zR, the retailer’s expected profit (85) can be
written as

BðzS; zRÞ ¼ ufp�1ðzSÞ½yðp
�
1ðzSÞÞ þm�YðzSÞ� þ tLðzSÞ

� pYðzSÞ � c½yðp�2ðzRÞÞ þ zR� � c2½yðp
�
1ðzSÞÞ þ zS

� yðp�2ðzRÞÞ � zR�g þ ð1� uÞfp�2ðzRÞ½yðp
�
2ðzRÞÞ

þm�YðzRÞ� þ tLðzRÞ � pYðzRÞ

� c½yðp�2ðzRÞÞ þ zR�g. (91)

We remark that using an analogous procedure, the
optimal ordering and pricing policy in the model involving
multiplicative uncertainty can be determined.
7. Optimal ordering policy when supply availability
depends on demand

As noted earlier, the Bernoulli parameter representing
the probability of supplier availability may itself be
uncertain. Further, it can also be correlated with demand
for the product. For example, demand and the probability
of supply availability may be inversely related to each
other because the total supply capacity in the market may
be insufficient relative to demand when expected demand
is high. We now analyze the retailer’s problem when
demand X and the probability of supply availability U are
interdependent. Let h(x, u) be the joint pdf of X and U. The
retailer’s expected profit can be written as

BðR; SÞ ¼ p

Z 1

0

Z R

0
ð1� uÞxhðx;uÞdx duþ pR

Z 1

0

Z 1
R
ð1� uÞhðx;uÞdx du

þ t
Z 1

0

Z R

0
ð1� uÞðR� xÞhðx;uÞdx du

� p
Z 1

0

Z 1
R
ð1� uÞðx� RÞhðx;uÞdx du

þ p

Z 1

0

Z S

0
uxhðx;uÞdx duþ pS

Z 1

0

Z 1
S

uhðx;uÞdx du

þ t
Z 1

0

Z S

0
uðS� xÞhðx;uÞdx du

� p
Z 1

0

Z 1
S

uðx� SÞhðx;uÞdx du� c2ðS� RÞ

Z 1

0
uwðuÞdu� cR:

(92)

Differentiating (92), we have

qB=qR ¼ ðpþ pÞFcðRÞ þ tFðRÞ � c � p

Z 1

0

Z 1
R

uhðx;uÞdx du

� t
Z 1

0

Z R

0
uhðx;uÞdx du� p

Z 1

0

Z 1
R

uhðx;uÞdx duþ c2EðUÞ.

(93)

qB=qS ¼ p

Z 1

0

Z 1
S

uhðx;uÞdx duþ t
Z 1

0

Z S

0
uhðx;uÞdx du

þ p
Z 1

0

Z 1
S

uhðx;uÞdx du� c2EðUÞ. (94)

Using (93) and (94),

q2B=qR2
¼ �ðpþ p� tÞf ðRÞ þ ðpþ p� tÞ

Z 1

0
uhðR;uÞduo0,

since f ðRÞ ¼
R 1

0 hðR;uÞdu4
R 1

0 uhðR;uÞdu,

q2B=qS2
¼ �ðpþ p� tÞ

Z 1

0
uhðS;uÞduo0.

Thus, the retailer’s objective function is concave in R and
S; consequently, if the retailer uses both suppliers in the
optimal solution, the optimal R and S can be found by
setting (93) and (94) to zero.

8. Numerical examples

In this section we present some numerical examples.
We assume that retail demand for the product is normally
distributed given that it is a frequently used demand
distribution in the inventory literature.

In our numerical study we use the following set of
values for the parameters: p ¼ 20, p ¼ t ¼ 3, cs ¼ 5,
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c2A{8,12}, m ¼ 100, sA{20,40}, and uA{0.2,0.5}. For the
model in which excess demand is lost, Table 2 gives
the optimal wholesale price for the manufacturer, c�,
and resulting values of parameters associated with the
retailer’s purchasing policy, R and S. We use B to denote
the retailer’s expected profit, and M to denote the
manufacturer’s profit. Table 3 shows the results for
the model with the emergency supply option.

As the results in Tables 2 and 3 indicate, the
manufacturer’s profit decreases as u increases. This
pattern is in accordance with Propositions 3 and 8. Hence,
the risky supplier’s proportion of the retailer’s purchasing
plan is higher when there is less supply uncertainty, as
evidenced by the decrease in the manufacturer’s profit M.
Because of the reduction in the probability of using the
cheaper source, higher supply uncertainty decreases the
retailer’s expected profit. Confirming the analytical study,
a lower level of supply uncertainty exerts a downward
pressure on the manufacturer price c�.

As expected, a higher c2 reduces the retailer’s expected
profit while positively influencing the manufacturer’s
profit. Similarly, the manufacturer’s optimal price c�

increases as c2 increases. We remark that the total profit
of the manufacturer and the risky supplier depends on c2.
As c2 decreases, the manufacturer will have to select a
lower price and her profit will decrease.

Comparing results for s ¼ 20 against s ¼ 40, we see
that higher demand variability leads to higher retailer
profit with a concomitant reduction in the manufacturer’s
profit. The decrease in the manufacturer’s profit appears
to be mainly related to the decrease in the optimal price c�
Table 2
Optimal profits of the retailer and the manufacturer (lost sales model)

c2 u s c� R S B M

8 0.2 20 17.9 77.6 113.5 116.4 1000.9

40 15.5 76.8 127.0 183.3 806.8

0.5 20 14.0 79.3 113.5 489.8 713.4

40 12.3 81.3 127.0 499.8 593.4

12 0.2 20 18.6 78.2 102.5 38.0 1063.1

40 16.0 79.0 105.0 114.1 869.3

0.5 20 15.7 81.7 102.5 298.4 874.1

40 13.6 88.8 105.0 328.2 763.9

Table 3
Optimal profits of the retailer and the manufacturer in the model with an

emergency supply option

c2 u s c� R B M

8 0.2 20 18.0 76.3 118.0 991.4

40 15.5 74.8 208.4 785.9

0.5 20 14.1 75.7 504.3 688.7

40 12.3 73.8 560.5 538.5

12 0.2 20 18.7 76.3 44.7 1045.3

40 16.0 75.4 146.0 829.9

0.5 20 15.8 76.2 325.5 823.2

40 13.7 74.5 393.4 648.3
rather than to the change in the order amount R. In
Table 2, when demand variability increases, at a low risky-
supplier price c2, the amount ordered from the manufac-
turer may decrease. However, when c2 is high, the order
placed with the manufacturer seems to increase as
demand variability increases. In the emergency supply
case (Table 3), demand variance exerts a negative impact
on both c� and R.

Lau et al. (2001) investigated a problem in which a
manufacturer, acting as a Stackelberg leader, sets the
supply price to which the retailer responds with an order
amount. They found that in this scenario with normally
distributed demand, as demand variance increases, the
retailer’s expected profit increases, but after a threshold
point, further increase in demand variance decreases the
retailer’s expected profit. Although not shown in Tables 2
and 3, we have observed a similar impact of demand
variance on retailer’s profit in our problem.

When results in Tables 2 and 3 are compared for a
given set of parameters, the optimal wholesale price c�

appears fairly stable regardless of whether excess demand
is lost or backordered. Due to this behavior of c�, the
quantity ordered from the manufacturer, R, is less when
the retailer can prevent lost sales via emergency supply
(Proposition 6). The retailer’s expected profit is higher
when there is emergency supply. The improvement in
expected profit compared to the lost sales case is
especially significant when demand variance is high. The
manufacturer experiences a reduction in her profit when
excess demand is backordered. The retailer decreases the
amount ordered from the manufacturer when there is a
chance to order from the risky supplier after observing
demand.

The amount ordered from the manufacturer R shows
little variation with changes in c2, u, and s in Table 3. We
can interpret this result as an indication of the existence
of a target sale amount for the manufacturer independent
of these parameters when an emergency supply option is
available to the retailer. We also noticed that when supply
risk is high, R is fairly robust to changes in demand
variability, with or without backordered demand. Note
that the patterns observed in our study are associated
with intermediate values of u and c2. As c2 decreases to a
very low level, the optimal R in response to the optimal
manufacturer price may decrease.

Finally, we present numerical examples for the price-
dependent demand scenario. We use the additive linear
demand model with following values of parameters:
a ¼ 200, b ¼ 8, m ¼ 0, p ¼ t ¼ 3, nA{20,40}, and
uA{0.2,0.5}. We assume e is normally distributed. The
optimal stocking level and prices, and the retailer’s
maximal expected profit are listed in Table 4. The results
indicate that when c ¼ c2, the retailer decides to source
fully from the manufacturer, and does not use the risky
supplier even if he is available in the second stage. Given
c2oc, the retailer allocates an increasing share of his order
to the risky supplier as the probability of availability u

increases. The retailer’s profit decreases with demand
variance. When there is a low probability of availability,
the decrease in the retailer’s profit is not significant as c2

increases from 8 to 12. As in Tables 2 and 3, the retailer’s
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Table 4
Retailer’s optimal ordering policy under price-dependent demand

u n c2 c p1
� p2

� R S B

0.2 20 8 12 16.3 17.9 54.5 80.0 202.4

12 12 18.0 18.0 56.0 56.0 192.4

40 8 12 16.0 17.3 55.6 92.0 65.0

12 12 17.4 17.4 58.5 58.5 50.9

0.5 20 8 12 16.3 17.7 50.3 80.0 221.9

12 12 18.0 18.0 56.0 56.0 192.4

40 8 12 16.0 16.8 46.0 92.0 95.8

12 12 17.4 17.4 58.5 58.5 50.9
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profit increases as the probability of risky-supplier
availability increases.
9. Conclusion

We studied the extension of the basic single-period
(newsvendor) model in the case where future supply is
randomly available, and the retailer can mitigate his
procurement risk by making an advance purchase
commitment. After analyzing the retailer’s ordering
problem, we solved the manufacturer’s pricing problem
by assuming the manufacturer is the Stackelberg leader.
We derived the conditions ensuring unimodality of the
manufacturer’s objective function. Both the lost sales and
backordered demand cases were investigated. Using
numerical examples, we explored the impact of various
parameters—demand variability, and the price and avail-
ability of the risky supplier—on the optimal decisions of
the retailer and the manufacturer. It was also shown that,
under certain conditions on the demand distribution and
the probability of supply availability, there exists a unique
Nash equilibrium in the competitive pricing game invol-
ving the manufacturer and the risky supplier. We also
investigated the retailer’s problem when (i) it is possible
to cancel any portion of the initial order, (ii) demand for
the product is sensitive to the selling price, and (iii) supply
availability and demand for the product are statistically
dependent.

The well-known newsvendor model provides a useful
framework for analyzing the tradeoffs between holding
costs and shortage costs incurred by a retailer facing
uncertain demand. In this paper we analyzed the effect of
supply uncertainty from the perspective of both the
retailer and the manufacturer, and found that in a
Stackelberg game led by the manufacturer, the retailer is
expected to earn a higher profit when excess demand
is backordered rather than lost. When excess demand is
backordered, the order quantity committed by the retailer
in advance stays within a narrow band across varying
degrees of demand and supply uncertainties. The manu-
facturer’s optimal wholesale price was relatively insensi-
tive to the modeling assumption of lost sales or
backordering. Future research could incorporate some of
the other specifications of supply uncertainty discussed in
the literature.
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