
J. Parallel Distrib. Comput. 66 (2006) 32–46
www.elsevier.com/locate/jpdc

Task assignment in heterogeneous computing systems�

Bora Ucara, Cevdet Aykanata,∗, Kamer Kayaa, Murat Ikincib

aDepartment of Computer Engineering, Bilkent University, 06800, Ankara, Turkey
bSTM Inc., Mecnun Sokak No 58, Beştepe, 06510, Ankara, Turkey

Received 25 January 2005; received in revised form 14 June 2005; accepted 16 June 2005
Available online 11 August 2005

Abstract

The problem of task assignment in heterogeneous computing systems has been studied for many years with many variations. We
consider the version in which communicating tasks are to be assigned to heterogeneous processors with identical communication links
to minimize the sum of the total execution and communication costs. Our contributions are three fold: a task clustering method which
takes the execution times of the tasks into account; two metrics to determine the order in which tasks are assigned to the processors; a
refinement heuristic which improves a given assignment. We use these three methods to obtain a family of task assignment algorithms
including multilevel ones that apply clustering and refinement heuristics repeatedly. We have implemented eight existing algorithms to
test the proposed methods. Our refinement algorithm improves the solutions of the existing algorithms by up to 15% and the proposed
algorithms obtain better solutions than these refined solutions.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Task assignment; Heterogeneous computing systems; Task interaction graph

1. Introduction

The problem of task assignment in heterogeneous sys-
tems deals with finding proper assignment of tasks to pro-
cessors in order to optimize some performance metric such
as the system utilization and the turnaround time. There ex-
ists a large body of literature covering many task and par-
allel computer models. In this paper, we consider the task
assignment problem with the following characteristics. The
tasks are modeled using a task interaction graph (TIG). In
the TIG model, the vertices of the graph correspond to the
tasks and the edges correspond to the intertask communi-
cations. There is no precedence relation among tasks. The
processors are heterogeneous, i.e., the execution cost of a

� This work is partially supported by the Scientific and Technical
Research Council of Turkey under grant 103E028 and by the European
Commission FP6 project SEEGRID with contract no 002356.
∗ Corresponding author. Fax: +90 312 266 4027.

E-mail addresses: ubora@cs.bilkent.edu.tr (B. Ucar),
aykanat@cs.bilkent.edu.tr (C. Aykanat), kamer@cs.bilkent.edu.tr
(K. Kaya), ikinci@stm.com.tr (M. Ikinci).

0743-7315/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2005.06.014

task depends on the processor on which it is executed. The
network is homogeneous, i.e., the communication between
two tasks depends only on whether or not they are assigned
to the same processor. The objective is to minimize the sum
of the total execution and communication costs in order to
optimize system utilization.

The problem is formally defined as follows. Let P be
the set of n processors in the heterogeneous computing
system, T be the set of m tasks to be assigned to the pro-
cessors, ETC = {xip}m×n be the expected time to compute
matrix where xip denotes the execution cost of task i on
processor p, and G = (T , E) be the TIG, where E is
the set of edges representing the communication between
tasks. Each edge (i, j) ∈ E is associated with a com-
munication cost cij, which incurs only when tasks i and
j are assigned to different processors. The processors are
heterogeneous in the sense that there is no special struc-
ture in the ETC matrix. In other words, processor p being
faster than processor q on task i, e.g., xip �xiq , does not
imply anything about their speeds for another task. In
general, cost models are composed from constituent cost
components that reflect the application activities. In these

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52922277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jpdc
mailto:ubora@cs.bilkent.edu.tr
mailto:aykanat@cs.bilkent.edu.tr
mailto:kamer@cs.bilkent.edu.tr
mailto:ikinci@stm.com.tr

B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46 33

compositional models, cost components such as local disk
I/O costs are modeled separately [3]. In this work, we con-
sider only the execution and communication costs.

Given the above definitions, the objective is to find an
assignment A : T → P that minimizes the sum of execution
and communication costs:

Minimize

(
m∑

i=1

n∑
p=1

aipxip + ∑
(i,j)∈E

n∑
p=1

aip(1− ajp)cij

)

subject to
n∑

p=1
aip = 1, i ∈ T

aip ∈ {0, 1}, p ∈ P, i ∈ T .

Here, if task i is assigned to processor p, then aip = 1 and
0 otherwise. The constraint

∑n
p=1 aip = 1 ensures that the

task i is assigned to only one processor. Although the prob-
lem is NP-complete [6], some special instances are poly-
nomial time solvable: two-processor systems in the time
complexity of a maximum flow algorithm [46], tree TIGs
on heterogeneous networks in O(mn2) time [6], tree TIGs
on homogeneous networks in O(mn) time [4], series par-
allel TIGs in O(mn3) time [29,49,50], k-ary tree TIGs in
O(mnk+1) time [17].

1.1. Background

The problem defined above was first introduced by Stone
[46]. Stone’s original work lays down the TIG model to rep-
resent sequentially executing tasks. In other words, at any
time exactly one task is being executed on one of the pro-
cessors. The edges represent two-way interactions between
two persistent tasks, e.g., a task passes control to another one
and waits the control to be returned back again [40]. Some
later works interpreted the TIG model in such a way that
all tasks are simultaneously executable and communications
take place either at any time or intermittently throughout the
program execution (see for example [27,43,47]). These later
interpretations consider the minimization of the turnaround
time, e.g., minimizing the maximum load in terms of execu-
tion and communication costs per processor. We work un-
der the original interpretation and address the minimization
of the sum of the total execution and communication costs.
This interpretation has been used to develop grid scheduling
models [3] such as for mapping parallel pipelines [51] and
phased message-passing programs [20]. CPU and commu-
nication intensive tasks when mapped to a set of computers
in a common LAN are most likely to be charged in terms of
the total CPU cycles they consume and the total network ac-
tivity they generate under various economy models for the
Grid [10]. Therefore, we believe that minimization of the
sum of the total execution and communication costs will be
the objective in scheduling grid applications.

There are numerous studies addressing the task assign-
ment problem under various characterizations. A compre-
hensive survey discussing the models before early 1990s

can be found in [40]. The books [44] and [16] cover many
aspects of the task scheduling problem. Among some re-
cent surveys covering certain variations are [32] which ad-
dresses directed task graphs, [8,45] which address indepen-
dent tasks, and [21–23] which address file sharing otherwise
independent tasks. For some later works on mapping TIGs
to processors in order to minimize turnaround time see: [27]
for exact algorithms under processor heterogeneity and net-
work homogeneity; [48] for exact algorithms under proces-
sor and network heterogeneity; [35] for exact algorithms un-
der processor homogeneity and network heterogeneity; [47]
for heuristics under processor and network heterogeneity
where each processor and communication link have com-
putation and communication capacity, respectively; [43] for
heuristics under processor homogeneity and network het-
erogeneity; [26] for heuristics under processor and network
homogeneity. See [33] for exact algorithms that map TIGs
to processors in the array networks for minimizing the sum
of total execution and communication costs. The variant in
[33] assumes that some processors have unique resources
and hence there are restrictions in the task assignments. See
[41] for heuristics that map TIGs to processors in order
to minimize total communication time in a heterogeneous
network.

Apart from the differences in the objectives, computing
system characteristics, and computation models, the task as-
signment algorithms differ in the solution methods. The pa-
pers [14,27,42] categorize the solution methods into graph-
theoretic, mathematical programming, state-space search,
probabilistic and randomized optimization methods. The pa-
pers cited above include numerous references for these ap-
proaches. Therefore, we refer the reader to these papers for
references regarding a particular method.

We have implemented eight algorithms from the litera-
ture given in Table 1 in order to build a sound experimental
framework. These eight algorithms are quite different in
nature. The first four are state-of-the-art meta-heuristics and
hence fall into the category of randomized optimization. The
next two are based on graph-theoretic concepts. Specifically,
the KLZ algorithm uses matching based and agglomera-
tive clustering techniques to reduce the problem size. The
VML algorithm uses network-flows techniques to obtain a
partial task assignment and then uses greedy heuristics to
complete the assignment. The algorithm TOpt obtains opti-
mal solutions for the problem instances whose TIGs are in
tree structure. Specifically, this algorithm solves the recur-
sion A(i, p) = ∑

j∈child(i) mink{A(j, k) + c′ij(p, k)} + xip

from leaves to the root of the tree using a dynamic pro-
gramming approach and returns mink{A(r, k)}. Here, r is
the root of the tree and A(i, p) is the optimal solution for
the subtree whose root is i under the condition that the
task associated with node i is assigned to processor p, and
c′ij(p, k) = cij if p �= k and 0 otherwise. The algorithm
A∗ is an informed-search algorithm which finds optimal
solutions for very small instances of the task assignment
problem.

34 B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46

Table 1
Existing task assignment algorithms implemented in this work

Algorithm Reference Approach

GA [1] Genetic algorithm
SA [24] Simulated annealing
TSN [13] Tabu search and noising
PSO [42] Particle swarm optimization
KLZ [31] Graph theoretic (clustering)
VML [34] Graph theoretic (network flows)
TOpt [6] Graph theoretic (dynamic programming on trees)
A∗ [27,48] State-space search algorithm (based on A∗)

1.2. Contributions

Among the previous works that address Stone’s origi-
nal problem, those that use task clustering (for example
[7,15,31,34,36,52]) are of particular interest to us because
we are improving upon these works. These works use
clustering approaches in which highly interacting tasks are
merged to reduce the original problem into a smaller one.
Some of these works [31,36] consider processors for clus-
tering by augmenting processor vertices and processor-to-
task edges and obtain task-to-processor assignments during
the clustering process. This type of algorithms are called
single-phase heuristics. Some other works [7,15,34,52] ob-
tain task-to-processor assignments in an assignment phase
separated from the clustering phase and hence are called
two-phase heuristics.

In previous clustering approaches, the decision on clus-
tering two tasks depends solely on the communication cost
between them. However, these two tasks may be dissimilar
in the sense that their total execution cost may be inferior
when assigned to the favorite processor of either one, where
the favorite processor of a task is the processor that has the
minimum execution time for that task. Motivated by this
observation, we propose a clustering heuristic which con-
siders the communication costs between two tasks as well
as their dissimilarity in §2. In general, the order in which
tasks are assigned to processors affects the assignment qual-
ity. We propose two metrics in §3 to determine a favorable
order in two-phase approaches. Furthermore, we develop an
iterative-improvement-based heuristic to refine task assign-
ments in §4.

We build a family of assignment heuristics by using the
proposed clustering metric, assignment ordering, and refine-
ment heuristic. In §5.1, we propose a method that starts like
a two-phase heuristic and then later behaves like a single-
phase heuristic. Then, we adopt the multilevel framework,
which has proven to be successful in graph and hypergraph
partitioning, in two different settings: multilevel task clus-
tering and multilevel task assignment. The multilevel clus-
tering setting presented in §5.2 reduces the given task as-
signment problem by forming task clusters. This method is
better suited to the two-phase assignment heuristics as the
clustering and assignment phases are separated. The multi-

level assignment setting presented in §5.3 reduces the task
assignment problem by assigning disjoint task sets to pro-
cessors at each level. This method is better suited to the
single-phase assignment heuristics.

The proposed assignment algorithms are static in the sense
that the assignment of tasks to processors is done before the
program execution begins. Large and nondedicated comput-
ing platforms may require dynamic task assignment meth-
ods to adapt to the run-time changes such as increases in
the workload, processor failures, and link failures. The pro-
posed refinement heuristics seem to be viable to adapt the
original assignments to the run-time changes. However, dy-
namic task assignment methods interact with other system
components such as process migration mechanism whose
costs should be considered in the refinement heuristics. In
this paper, we do not dwell into these issues. See references
[5,19,37] for dynamic task assignment and fault tolerance
management.

2. A novel clustering approach

2.1. Motivation

Most of the task assignment algorithms that use cluster-
ing reduce the intercluster communication costs first, and
then find a solution by assigning the task clusters to their fa-
vorite processors. Since they do not consider the difference
between the execution times of tasks on the same proces-
sors, they may form clusters of tasks that are not similar to
each other. For the sample TIG given in Fig. 1, traditional
clustering algorithms tend to merge tasks i and h, since (i, h)

is the edge with the maximum weight. The validity of this
decision is investigated in the rightmost table of Fig. 1. Al-
though clustering i and h saves 100 units of communication
cost, the cluster has at least 400 units of execution cost. The
other alternatives lead to smaller savings in communication
costs, but also lead to smaller execution costs. Therefore, it
seems that clustering tasks i and h is not preferable. This
deficiency cannot be avoided without taking the execution
times of tasks into consideration.

In a clustering approach, the communication cost between
a task i and a cluster is equal to the sum of communication
costs between task i and all tasks in that cluster. In most
of the clustering approaches, clusters are formed iteratively
(i.e., new clusters are formed one at a time) based on the

i

j

k

h

10 100

50

Task Execution

P1 P2 P3

i 2 200 400

j 1 100 200

k 200 2 400

h 400 200 2

Mate Save Min

comm. exec.

h 100 400

j 10 3

k 50 202

costs

Fig. 1. Task i is to be clustered.

B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46 35

communication costs between tasks and clusters. This ap-
proach corresponds to agglomerative clustering in clustering
classification. In these approaches, the edges that are inci-
dent on the clusters usually have large communication costs
and hence iterative clustering algorithms will most likely
contract such edges incident on the currently formed cluster.
This problem is known as the polarization problem. Kop-
idakis et al. [31] proposed two solutions for this problem.
The first solution is to use hierarchical clustering approaches
such as matching-based algorithms instead of the iterative
ones. In hierarchical clustering algorithms, several new clus-
ters may be formed simultaneously. This approach solves
the polarization problem, but the experimental results given
in [31] show that it generally leads to inferior assignment
quality. The other solution presented by Kopidakis et al. is to
set the communication cost between a task i and a cluster to
the maximum of the communication costs between the task
i and the tasks in that cluster. Choosing the maximum com-
munication cost prevents polarization towards the growing
cluster. However, this scheme causes unfairness and usually
does not yield good clusters in terms of intercluster commu-
nication costs.

According to the first observation, a clustering scheme
which considers the similarities of tasks while looking at
the communication costs is expected to obtain better clus-
ters than the traditional clustering approaches. The second
observation displays the need for a clustering scheme that
avoids polarization during agglomerative clustering. These
observations are the key points for the motivation of the pro-
posed clustering approach.

2.2. Clustering metric

Most of the previous clustering approaches, such as [7,15],
are used in a two-phase setting. Clustering phase, as the
first phase of those algorithms, has more flexibility than the
assignment phase. Therefore, success of the overall assign-
ment algorithm depends heavily on the success of the clus-
tering phase. Main decisions about the solution are given in
the clustering phase and assignment phase usually completes
the solution by using a straightforward heuristic; such as as-
signing all the clusters to their favorite processors as in Lo’s
greedy phase [34]. An issue with the clustering approach is
that an optimal solution to the reduced problem is not always
an optimal solution to the original problem. This is because
of the shortsighted decisions made in the clustering phase
of the algorithms. Such algorithms try to maximize the total
intertask communication costs within the clusters so as to
minimize the total communication costs between the clus-
ters. However, this approach may not give good clusters, es-
pecially when the processors are heterogeneous. We propose
a new clustering approach which considers the differences
between execution costs of tasks on the same processors.

Let i and j be two communicating tasks in G. If these tasks
are assigned to different processors, then their contribution

to the total cost will be at least

cij +min
p∈P {xip} +min

p∈P {xjp},

where the last two terms are the minimum execution costs
of tasks i and j. If tasks i and j are assigned to the same
processor, then their contribution to the total cost will be
at least

min
p∈P {xip + xjp}.

With an optimistic view, we derive an equation for the profit
�ij of clustering tasks i and j by subtracting the above two
costs

�ij = cij +min
p∈P {xip} +min

p∈P {xjp}
−min

p∈P {xip + xjp}. (1)

Eq. (1) can be rewritten as

�ij = cij − dij, (2)

where dij effectively represents the dissimilarity between
tasks i and j in terms of their execution costs. That is,

dij = min
p∈P {xip + xjp} −

(
min
p∈P {xip} +min

p∈P {xjp}
)

.

Note that since minp∈P {xip + xjp}� minp∈P {xip} +
minp∈P {xjp} for all i, j, p, we have dij �0. Dissimilarity
metric achieves its minimum value of dij = 0 when the
tasks i and j have the same favorite processor. As seen in
Eq. (2), the clustering profit decreases with the increasing
dissimilarity between the respective pair of tasks. Hence,
unlike the traditional clustering approaches, our clustering
profit does not depend only on the intertask communication
costs but also depends on the similarities of the tasks to be
clustered.

The proposed profit metric for clustering two tasks can
be extended to a set S of tasks by preserving the general
principles. The profit of clustering the tasks in S can be
computed as

�S = cS − dS, where

cS = 1

2

∑
i∈S

∑
j∈S

cij and

dS = min
p∈P

{∑
i∈S

xip

}
−
∑
i∈S

min
p∈P {xip}.

Here, cS represents the savings in communication cost due
to the internal edges of S, and dS represents the dissimilarity
of the tasks that constitute S.

The proposed metric inherently solves the polarization
problem because it considers the difference between the
execution times of the tasks being clustered. As in most

36 B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46

MERGE-CLUSTERS (G, Q, x, i, j)

DELETE(Q, j)

merge tasks i and j into a new supertask k
construct Adj [k] by performing weighted union of Adj [i] and Adj [j]
update Adj [h] accordingly for each task h ∈ Adj [k]
for each processor p ∈ P do

xkp ← xip + xjp

for each h ∈ Adj [k] do
compute clustering profit �hk = �kh

if key[h] = �hk then
INCREASE-KEY (Q, h, �hk) with mate[h] = k

elseif mate[h] = i or mate[h] = j then
recompute the best mate � ∈ Adj[h] of task h
DECREASE-KEY (Q, h, �h�)

choose the best mate � ∈ Adj[k] for task k
INSERT (Q, k, �k�) with mate[k] = �

Fig. 2. Clustering task clusters i and j in the agglomerative clustering algorithm.

of the clustering algorithms, the communication cost be-
tween a task and a cluster is likely to be larger than the
communication costs between pairs of single tasks in our
clustering scheme. But the dissimilarity between the exe-
cution times of a task and a cluster is also likely to be
larger than that of a pair of single tasks. Therefore, our
clustering metric does not degenerate when the clusters get
bigger.

2.3. An agglomerative clustering algorithm

We develop an agglomerative clustering algorithm which
uses the proposed clustering metric. Initially, each task is
considered to be a singleton cluster. At each step, a pair of
task clusters with the maximum clustering profit are merged
until the maximum profit becomes negative. We use a pri-
ority queue Q implemented as a max-heap to select the pair
of tasks at each step.

When two clusters i and j are merged into a new cluster
k, the edge between i and j is contracted and the adjacency
list of k is set to the weighted union of the remaining edges
of i and j. Creating the new cluster k requires computing the
execution costs of k as xkp = ∑i∈k xip. After forming the
adjacency list of k, clustering profits of the tasks that become
adjacent to k are computed. If the clustering profit of such
a task h with k is greater than the old key value of h, then k
will be the best mate of h with a key value of �hk . Otherwise,
the algorithm recomputes the best clustering profit of h only
if the old best mate of h is either i or j. In this case, the key
value of h has to be decreased. These steps are shown in the
algorithm given in Fig. 2.

Fig. 4 presents the steps of our clustering algorithm for
the sample problem given in Fig. 3. The execution costs of
the new clusters are also presented in Fig. 3. The clustering

3

4 5

76

1 2

5

10

35

15

35

c12 = 40

10

20

15

10

Tasks xi1 xi2 xi3

1 65 30 15

2 50 45 100

3 100 5 100

4 85 45 10

5 10 95 100

6 85 30 95

7 35 25 90

{2,5} 60 140 200

{1,4} 150 75 25

{2,5,7} 95 165 290

Fig. 3. TIG and execution times for a sample task assignment problem.

algorithm forms two clusters; first one is formed by merg-
ing tasks 1 and 4, and second one is formed by merging
tasks 2, 5, and 7. By doing so, two decisions are made in
the clustering phase: tasks 1 and 4 should be assigned to the
same processor; tasks 2, 5, and 7 should be assigned to the
same processor. With these decisions, the original problem
is reduced to a smaller one. An optimal solution, which has
a cost of 270 units, is found for the problem in Fig. 3 with
an exhaustive enumeration. Assigning the resulting clusters
{1, 4}, {2, 5, 7}, {3}, and {6} to their favorite processors P3,
P1, P2, and P2, respectively, achieves the optimal solution.
This achievement shows that our clustering algorithm pro-
duces perfect clusters for the sample problem. Lo’s algo-
rithm [34] obtains a solution whose cost is 275 units while
the algorithm proposed by Kopidakis et al. [31] obtains a
solution whose cost is 285 units.

B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46 37

3

10/-5

35/30

33

75/-45

25/-25

10/-5

40/-10

10/10

10/-70

4 5

15/-20 15/5
5/5

35/-40

10/-75

c12 = 40/25 =α12

Step 1

15/-20

10/-70

25/15

5/5

Step 2

5/5

75/-50

25/15

5/-50

1,4 2,5,7

67

2,51,4

6

76

1 2 1

6

4

3

2,5

7

Step 3 Step 4

20/20
20/20

35/-40

25/-25

10/-60

Fig. 4. Clustering steps for the sample TIG given in Fig. 3.

3. Algorithms for determining the assignment order

Numerous research works on iterative assignment algo-
rithms show that the quality of the solution depends on the
order in which the tasks are assigned to processors. There
are a lot of assignment heuristics that try to find a good or-
der for assigning tasks. See for example [52] which sorts
the tasks according to their sum of communication costs and
then assigns the tasks in that order to their favorite proces-
sors. Here, we propose two new heuristics to determine the
assignment order. In both of the heuristics, each task clus-
ter selected for assignment will be assigned to its favorite
processor.

3.1. Assignment order according to clustering loss

In the previous section, we presented a profit metric �S

for clustering a set S of tasks into a new cluster. If �S > 0,
then clustering the tasks in S may be a good decision. If
�S �0 for all S containing a task i, then forming a cluster
including task i is meaningless; it is better to assign task i to
its favorite processor. But if there are two or more tasks that
have negative clustering profits for all their clustering alter-
natives, then the order in which clusters are assigned may
affect the solution quality. Our ordering scheme depends on
the expectation that assigning the task with the smallest clus-
tering profit first gives better solutions. This is reasonable,
because the task with the smallest clustering profits is the
most independent task in general. Therefore, in case of an
imperfect assignment, other tasks will not be affected very
much.

3.2. Assignment order according to grab affinity

Lo [34] used the word “grab” to identify the first phase
of her algorithm. In this phase, the algorithm tries to find
a prefix to all optimal solutions by using a maximum flow

algorithm on a commodity flow network. In each iteration
of the grab phase, a number of tasks may be grabbed by an
individual processor, and these tasks are then assigned to the
respective processor. Assume that only task i is grabbed by a
processor p in a step of the grab phase. Then, the inequality

Xi

n− 1
− xip �

∑
(i,j)∈E

cij + xip

must hold for the task i, where Xi =∑p∈P xip.
By reorganizing the above inequality, we obtain the resid-

ual

ri = Xi

n− 1
− 2 min

p
{xip} −

∑
(i,j)∈E

cij,

for each task i. If ri > 0, then task i should be assigned to
its favorite processor in any optimal assignment. For ri �0,
a greater ri means that task i is more likely to be assigned
to its favorite processor in an optimal solution. Due to this
observation, selecting the task i with the greatest ri for as-
signing first is more likely to give better solutions. We use
this criterion to determine the order in which task clusters
are assigned to processors.

After assigning task i to a processor, assigning an adjacent
task j of i to the same processor will save the communication
cost cij. Therefore, rj should be updated according to this
saving. We use the method proposed by Lo [34] to update rj
by modifying the execution cost of j on processor q �= p as

x∗jq = xjq + cij, (3)

where the execution cost of j on processor p is kept intact.

4. A heuristic for refining task assignments

Kernighan and Lin (KL) [30] propose a fast refinement
heuristic which is used in the refinement phase of the graph
and hypergraph partitioning tools. KL algorithm, starting
from an initial partition, performs a number of passes until
it finds a locally optimum partition. Each pass consists of
a sequence of vertex swaps. Fiduccia and Mattheyses (FM)
[18] introduce a faster implementation of KL algorithm by
using vertex movements instead of vertex swaps. Here, we
propose an FM-based refinement heuristic for task assign-
ments. The notion of movement in our approach is the task
reassignment.

Let task i be assigned to processor p. The reassignment
gain of task i from processor p to processor q is the decrease
in the cost if task i is assigned to processor q instead of
processor p. In other words, the reassignment gain for task
i from processor p to processor q is

gi(p→ q)=
⎛
⎝xip +

∑
j∈Adj[i],a[j]=q

cij

⎞
⎠

−
⎛
⎝xiq +

∑
j∈Adj[i],a[j]=p

cij

⎞
⎠ ,

38 B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46

SLA (G, x)

Q← ∅
for each task i ∈ T do

compute clustering profit �ik for each task k ∈ Adj[i] according to Eq. 1
choose the best mate j ∈ Adj[i] of task i with �ij = maxk∈Adj[i]{�ik}
INSERT (Q, i, �ij)

mate[i] ← j

while Q ∈ ∅ do
i ← MAX (Q)

if key[i] > 0 then
i ← EXTRACT-MAX (Q)

MERGE-CLUSTERS (G, Q, x, i, mate[i])
else

select the task i with maximum assignment affinity
ASSIGN (G, Q, x, i)

Fig. 5. SLA task assignment algorithm.

where a[j] denotes the current processor assignment for
task j.

The proposed algorithm begins with calculating the max-
imum reassignment gain for each task i according to the
current assignment. This initial gain computation step runs
in O(mn + |E|) time. The tasks are inserted into a prior-
ity queue according to their maximum reassignment gains.
Initially, all tasks are unlocked, i.e., they are free to be re-
assigned. The algorithm selects an unlocked task with the
largest reassignment gain from the priority queue and as-
signs it to the processor that gives the maximum reassign-
ment gain. After reassigning task i from processor p to q,
the algorithm locks i and updates the reassignment gains of
each task j ∈ adj[i] to processors p and q as

gj (a[j] → p) = gj , (a[j] → p)− cij and

gj (a[j] → q) = gj , (a[j] → q)+ cij.

For each j ∈ adj[i], if a[j] /∈ {p, q}, then both of these
updates are realized, otherwise only one of them is real-
ized. This constant number of updates for each j ∈ adj[i]
is possible because of the network homogeneity. In a het-
erogeneous network, it is necessary to update all reassign-
ment gains for each such j, e.g., n − 1 updates for each
j ∈ adj[i]. Gain update operation, including the key up-
date in the priority queue, takes O(n+ log m) time for each
j ∈ adj[i]. The proposed algorithm does not allow the reas-
signment of the locked tasks in a pass since this may result
in thrashing. A single pass of the algorithm ends when all
tasks have been reassigned. Therefore, a single pass takes
O(m log m+ |E|(n+ log m)) time.

At the end of a refinement pass, we have a sequence of
tentative task reassignments and their respective gains. Then
from this sequence, we construct the maximum prefix sum
of gains which incurs the maximum decrease in the cost of
the initial assignment. The permanent realization of the re-

assignments in this prefix is efficiently achieved by rolling
back the remaining moves of the whole sequence. This as-
signment becomes the initial assignment for the next pass of
the algorithm. Allowing tentative reassignments with nega-
tive gains provides a limited hill-climbing ability. The over-
all refinement process terminates if the maximum prefix sum
of a pass is not positive. Similar to most of the FM-based
algorithms, the proposed refinement algorithm obtains ma-
jor improvements only in the first few passes. Hence, we
allow only a constant number of passes for the sake of effi-
ciency. Thus, the overall runtime of the proposed refinement
algorithm is O((m+ |E|)(n+ log m)).

5. Proposed assignment heuristics

In this section, we propose task assignment heuristics
which exploit the clustering metric, assignment order and
refinement heuristics proposed in the previous sections. The
heuristic proposed in §5.1 is referred to as a single level ap-
proach in order to differentiate it from the multilevel ones
presented in §5.2 and §5.3.

5.1. SLA: single level task assignment

The SLA algorithm uses the agglomerative clustering
method described in §2.3 to reduce the problem size and
assigns tasks to processors in an order imposed by either of
the criteria described in §3. The task which is selected for
assignment is assigned to its favorite processor according to
the modified execution times of tasks. The heuristic SLA has
a loose asymptotic upper bound of O(|E|2n+ |E|m log m).
The pseudocodes for the SLA and its assignment phase are
given in Figs. 5 and 6, respectively.

The SLA algorithm continuously forms supertasks by
merging pairs of tasks with the maximum positive cluster-

B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46 39

ASSIGN (G, Q, x, i)

DELETE(Q, i)

assign task i to its favorite processor
for each task j ∈ Adj[i] do

Adj[j] ← Adj[j] − i

for each processor q ∈ P − {p} do
xjq ← xjq + cij

for each task j ∈ Adj[i] do
UpdateKey(Q, j)

Fig. 6. Algorithm for assigning task i to processor p in SLA.

ing profit. If the clustering profits of all tasks/supertasks be-
come negative, then a task/supertask is selected according
to one of the proposed assignment criteria and is assigned
to its favorite processor. Assigning a supertask to a proces-
sor effectively means assigning all its constituent tasks to
that processor. Note that after the assignment of a task, the
clustering profits of some unassigned task pairs may be-
come positive and hence the algorithm may form intermit-
tent clusters. After each clustering and assignment, the key
values of the unassigned tasks may change. Therefore, the
key values of the tasks in the priority queue are updated ap-
propriately after these two operations. The algorithm given
in Fig. 2 already handles the updates after a clustering step.
When a task/supertask i is assigned to its favorite processor,
the execution times of all unassigned tasks/supertasks that
are adjacent to it are updated according to Eq. (3), and their
clustering profits and best mates are recomputed. The SLA
algorithm terminates when all tasks are assigned.

5.2. Multilevel task clustering and refinement

Here, we propose a multilevel approach for the two-phase
assignment framework. The multilevel approach has previ-
ously proven to be successful in graph and hypergraph par-
titioning problems [9,11,12,25,28]. There are three phases
in the multilevel approach: clustering, initial solution, and
refinement. For the task assignment problem, we use the
proposed clustering heuristics to reduce the original prob-
lem down to a series of smaller problems. We then adopt
the assignment heuristics of §5.1 to obtain an initial solu-
tion. Then, we use the refinement heuristics proposed in §4
periodically while projecting the initial solution to the origi-
nal problem. Note that in graph and hypergraph partitioning
problems, the processors are assumed to be homogeneous
and there is a balance constraint. Therefore, the clustering,
initial solution, and refinement heuristics developed for these
problems are not directly applicable to our target problem.

5.2.1. Clustering phase
In this phase, the given TIG G = G0 = (T0, E0) is co-

arsened into a sequence of smaller TIGs G1 = (T1, E1), . . . ,

Gk = (Tk, Ek), where |T0| > |T1| > · · · > |Tk|. This
coarsening is achieved by coalescing disjoint subsets of tasks

of G� at level � into supertasks such that each supertask in
G� forms a single task of G�+1 at level �+1. The execution
times of each task of G�+1 become equal to the sum of
execution times of its constituent tasks in G�. The edge
set of each supertask is set to the weighted union of the
edge sets of its constituent tasks, where the internal edges
are deleted. Coarsening phase terminates when the number
of tasks in the coarsened TIG reduces below the number
of processors or reduction on the number of tasks between
successive levels is below 10% (i.e., |T�+1|/|T�| > 0.90).
We use the clustering profit metric presented in §2.2 within
the following four clustering heuristics.

A. Matching-based clustering: Matching-based clustering
permits the clustering of pairs of tasks at a level and it works
as follows. For each edge (i, j) in G�, the clustering profit
�ij for tasks i and j is calculated. Then, the edges with non-
negative clustering profits are visited in the descending or-
der of clustering profits. If both of the incident tasks are not
matched yet, then these two tasks are merged into a cluster.
At the end, unmatched tasks remain as singleton clusters for
the next level. Note that this heuristic does not find a max-
imum weighted matching in terms of the clustering profits.
However, it is possible to compute one in O(m|E| log m)

time [39].
B. Randomized semi-agglomerative clustering: In this

scheme, each task i is assumed to constitute a singleton
cluster, Ci = {i}, at the beginning of each coarsening level.
We also use Ci to denote the supertask cluster that contains
task i during the clustering process. The clusters are visited
in a random order. If a task i has already been clustered (i.e.,
|Ci | > 1), then it is skipped, otherwise it selects a neigh-
boring singleton or supertask cluster with the maximum
nonnegative clustering profit to join. If the clustering profits
of a task i are all negative, then task i remains unclustered
at the current coarsening level. The clustering quality of
this scheme is not predictable, because it highly depends
on the order in which the task clusters are visited. That
is, at each run, this clustering scheme may form different
clusters. Therefore, we use this clustering scheme in a ran-
domized assignment algorithm which we run many times
to find solutions to a task assignment problem.

C. Semi-agglomerative clustering: This clustering scheme
is very similar to the randomized semi-agglomerative clus-
tering. The only difference is that, a single task to be clus-
tered is not selected randomly, instead, a single task with the
highest clustering profit is selected to be clustered. The so-
lution quality obtained by this scheme is more predictable.
In fact, it gives relatively better solution quality than the av-
erage solution quality of the randomized version. But it is
also very likely to be stuck to a local optimal solution whose
refinement may not be easy.

D. Agglomerative clustering: This clustering scheme, dif-
ferent from the semi-agglomerative one, allows two super-
task clusters to be merged at a coarsening level. In a sense, it
tries to overcome the limitations of the semi-agglomerative
scheme. Note that this clustering approach is the application

40 B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46

of the agglomerative clustering algorithm presented in §2.3
in a multilevel setting.

5.2.2. Initial assignment phase
The aim of this phase is to find an assignment for the

task assignment problem at the coarsest level. Although we
use the SLA algorithm described in §5.1 to find the initial
assignments, any other algorithm is also viable.

5.2.3. Uncoarsening phase
At each level �, assignment A� found on the task set T�

is projected back to an assignment A�−1 on the task set
T�−1. The constituent tasks of each supertask in G�−1 are
assigned to the processor to which the respective supertask
is assigned in G�. Obviously, A�−1 has the same cost as A�.
We then refine this assignment by using the refinement al-
gorithm given in §4. Note that even if the assignment A�

is at a local minimum (i.e., reassignment of any single task
does not decrease the assignment cost), the projected as-
signment A�−1 may not be as such. Since G�−1 is finer, it
has more degrees of freedom that can be exploited to further
improve the assignment A�−1. In a multilevel framework,
the refinement scheme becomes very effective, because the
initial assignment available at each level is already a good
assignment.

5.3. Multilevel task assignment and refinement

In the multilevel algorithms given in §5.2, the original
problem is reduced by forming task clusters. In this section,
we propose another approach to reduce the original prob-
lem under the multilevel setting by assigning some of the
tasks to processors at each level. In essence, the algorithm
proposed in this section is a multilevel approach for single-
phase assignment framework.

Suppose a randomized assignment algorithm, e.g., the
multilevel algorithm with randomized semi-agglomerative
clustering approach described in §5.2.1-B, is run several
times for a given task assignment problem instance. If a task
i is found to be assigned to the same processor p in all or
the majority of the solutions produced by these runs, then
we can expect the processor p to be a “good” assignment
for the task i. Based on this expectation, we find five dif-
ferent assignments for a given task assignment problem by
using a randomized multilevel assignment algorithm. From
those five assignments, we choose the best four assignments
to eliminate the negative effects of significantly bad assign-
ments. If task i is assigned to the same processor p in all
of the four assignments, then it is assigned to processor p
at the current level. Then, task i together with its edges are
deleted from the TIG for the following coarsening levels.
But in the refinement phase, task i will be free to be re-
assigned to any other processor at higher levels. After this
assignment, we adjust the execution costs of the adjacent
tasks. For each edge (i, j) ∈ E, we add cij to the execution

times of task j on all processors except p. This approach
promises high-quality solutions, but it has a relatively high
running time. This tradeoff can be controlled by using less
than five assignments, but in that case it is likely to obtain
worse solutions.

6. Experiments

6.1. Data set

We evaluate the performance of the proposed task assign-
ment algorithms on two sets of problem instances. The first
set of problems are those whose TIGs are in tree structure.
The second set of problem instances are those whose TIGs
are general graphs.

The topologies of the tree TIGs are generated as follows.
First, for each m = 100, 200, 300, 1200, and 2600, we create
a complete graph with m vertices (tasks). Then, we pick
edges randomly to grow a forest until a spanning tree of the
complete graph is obtained.

The topologies of the general TIGs are obtained from
the DWT matrices of Harwell–Boeing matrix collection via
MatrixMarket [38]. The rows/columns of the matrices cor-
respond to the vertices of the TIGs, where the off-diagonal
nonzeros correspond to the edges of the TIGs. We choose
the DWT set to designate task interactions, because it con-
tains matrices that are rich in nonzero patterns and hence
enables generation of TIGs that are rich in interaction forms.
The properties of the TIGs are given in Table 2.

Another parameter is the number of processors n. We
evaluate the performance of the proposed algorithms for
n = 4, 8, and 16 processors.

Once the topologies of the TIGs are obtained, we assign
random integers in range 1–100 to the edges to represent
communication cost of the interactions. We use the meth-
ods discussed in [2] to generate expected execution time to
compute (ETC) matrix for each TIG and n pair. Recall that
the ETC matrix is of size m×n, where the entry (i, p) is the
expected execution time of task i on machine p, i.e., xip. We
generate all four types of ETC matrices: low task heterogene-
ity and low machine heterogeneity (ETC0), low task hetero-
geneity and high machine heterogeneity (ETC1), high task

Table 2
Properties of TIGs obtained from DWT matrices

Topology m |E| Vertex degree

min max avg

DWT59 59 104 1 5 3.53
DWT66 66 127 1 5 3.85
DWT72 72 75 1 4 2.08
DWT209 209 767 3 16 7.34
DWT221 221 704 3 11 6.37
DWT234 234 300 1 9 2.56
DWT1242 1242 4592 1 11 7.39
DWT2680 2680 1173 3 18 8.34

B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46 41

heterogeneity and low machine heterogeneity (ETC2), high
task heterogeneity and high machine heterogeneity (ETC3).
ETC matrices are further classified into two categories [2].
In the consistent ETC matrices, there is a special structure
which implies that if a machine has a lower execution time
than another machine for some task, then the same is true
for any other task. The inconsistent ETC matrices have no
such special structure. We evaluate the performance of the
proposed algorithms with inconsistent ETC matrices.

Final parameter is the communication-to-computation

ratio rcom. Let the scaling factor be f = rcom ×
(∑

i,j cij

)/
(∑

i,p xip/n
)

, where the numerator represents the total

intertask communication cost and the denominator repre-
sents the total task execution cost on the average. Then
scaling each xip by f results in an average communication-
to-computation ratio of rcom. We evaluate the performance
of the proposed algorithms with rcom = 0.7, 1.0, and 1.4.
These three choices characterize the problem instances in
which computations have more impact than the commu-
nications, computations and communications have com-
parable impacts, and communications have more impact,
respectively.

In order to be able to obtain reproducible performance re-
sults, we generate 10 random instances for a given quartet
of TIG, n, rcom, and ETC type. The performance of an algo-
rithm on a problem instance is given as the average of the
10 runs corresponding to these random instances.

6.2. Set up

We have implemented the eight algorithms given in
Table 3 from the literature in order to assess the performance
of the proposed algorithms. We run the meta-heuristics (the
first four algorithms) on tree TIGs with 100, 200, and 300
vertices and on general TIGs with less than 234 vertices.
The KLZ and VML algorithms are run on all problem in-
stances. TOpt is run on tree TIGs with all parameters and
A∗ is run on general TIGs with 59, 66, and 72 vertices to
find optimal solutions for 4-processor systems.

We apply the refinement algorithm given in §4 to improve
the solutions of all but the exact algorithms given above.
Since the following tables present the quality of the refined
solutions, we give the improvement ratios in Table 4. The
numbers in this table are computed as follows. For each
problem instance specified by a quartet of TIG, n, rcom, and
ETC type which has 10 random samples, we divide the qual-
ity of the unrefined solution by that of the refined solution
and take the average of these ratios. Hence, by multiplying
the quality of the solutions given in the following tables with
these average values, the average quality of the solutions
obtained by the original algorithms can be found.

Table 5 summarizes the properties of the proposed algo-
rithms whose performance results are displayed in the fol-
lowing tables. We use assignment order according to grab

Table 3
Existing task assignment algorithms from the literature

Algorithm Description

GA Genetic algorithm of Ahuja et al. [1] applied to task
assignment

SA Simulated annealing [24]
TSN A combination of tabu search and noising [13]
PSO Particle swarm optimization [42] modified to handle

heterogeneous processors
KLZ Kopidakis et al.’s MaxEdge algorithm which is the best

of the two heuristics proposed in [31]
VML Lo’s task assignment algorithm [34]
TOpt Bokhari’s shortest tree algorithm [6]
A∗ A state space search algorithm based on A∗ algorithms

given in [27] and [48]

Table 4
The ratios of unrefined solutions’ quality to refined solutions’ quality

TIG ETC GA SA TSN PSO VML KLZ

Tree 0 1.02 1.01 1.03 1.10 1.00 1.00
1 1.03 1.17 1.49 2.44 1.00 1.04
2 1.02 1.01 1.04 1.11 1.00 1.00
3 1.10 1.01 1.08 1.40 1.30 1.05

Average 1.04 1.05 1.16 1.51 1.08 1.02

General 0 1.01 1.04 1.08 1.11 1.00 1.08
1 1.01 1.17 1.40 2.69 1.00 1.30
2 1.01 1.04 1.08 1.13 1.00 1.11
3 1.09 1.01 1.07 1.33 1.16 1.21

Average 1.03 1.07 1.16 1.57 1.04 1.17

Table 5
Proposed task assignment algorithms

Algorithm Description

SLA Single level algorithm described in §5.1
MLC-M Multilevel algorithm with matching-based clustering de-

scribed in §5.2.1-A
MLC-S Multilevel algorithm with semi-agglomerative cluster-

ing described in §5.2.1-C
MLC-A Multilevel algorithm with agglomerative clustering de-

scribed in §5.2.1-D
MLA Multilevel algorithm with assignment-based reduction

described in §5.3

affinity in the single level algorithm and also in the initial
solution phase of the multilevel clustering and refinement
algorithms. We run the proposed algorithms on all problem
instances and compare their performance with the appropri-
ate existing algorithms.

6.3. Experiments with tree TIGs

The performance of the existing algorithms are normal-
ized with respect to the optimal solutions found by the TOpt
algorithm and the average results are given in Table 6. We
do not present the data for the proposed algorithms, because

42 B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46

Table 6
Averages of the normalized solution qualities of the existing algorithms
on tree TIGs

n rcom ETC GA SA TSN PSO VML KLZ

4 0.7 0 1.02 1.08 1.12 1.02 1.01 1.02
1 1.01 1.16 1.17 1.02 1.00 1.01
2 1.04 1.09 1.12 1.02 1.01 1.02
3 1.11 1.12 1.17 1.13 1.14 1.08

1.0 0 1.03 1.06 1.09 1.02 1.02 1.02
1 1.01 1.11 1.13 1.01 1.00 1.01
2 1.03 1.07 1.09 1.02 1.02 1.03
3 1.08 1.07 1.13 1.09 1.11 1.07

1.4 0 1.04 1.05 1.06 1.03 1.02 1.03
1 1.01 1.06 1.07 1.02 1.00 1.02
2 1.04 1.05 1.07 1.02 1.02 1.03
3 1.05 1.04 1.09 1.07 1.07 1.05

8 0.7 0 1.02 1.13 1.13 1.03 1.02 1.02
1 1.03 1.27 1.24 1.08 1.00 1.02
2 1.03 1.13 1.13 1.03 1.02 1.02
3 1.17 1.21 1.26 1.21 1.21 1.14

1.0 0 1.02 1.09 1.09 1.03 1.02 1.02
1 1.03 1.20 1.16 1.04 1.00 1.03
2 1.03 1.10 1.10 1.03 1.02 1.02
3 1.12 1.14 1.18 1.13 1.14 1.12

1.4 0 1.03 1.07 1.08 1.04 1.02 1.02
1 1.01 1.10 1.08 1.03 1.00 1.02
2 1.04 1.07 1.08 1.04 1.03 1.02
3 1.08 1.09 1.13 1.09 1.09 1.09

16 0.7 0 1.03 1.15 1.14 1.07 1.02 1.03
1 1.06 1.35 1.33 1.18 1.00 1.04
2 1.03 1.16 1.15 1.08 1.03 1.02
3 1.22 1.30 1.31 1.31 1.28 1.20

1.0 0 1.03 1.10 1.09 1.06 1.03 1.03
1 1.05 1.21 1.20 1.19 1.00 1.05
2 1.03 1.12 1.12 1.06 1.03 1.02
3 1.16 1.22 1.24 1.24 1.18 1.17

1.4 0 1.03 1.08 1.08 1.06 1.03 1.03
1 1.03 1.14 1.14 1.11 1.00 1.05
2 1.04 1.08 1.08 1.06 1.04 1.03
3 1.12 1.16 1.17 1.19 1.13 1.13

Averages 0 1.03 1.09 1.10 1.04 1.02 1.02
1 1.03 1.18 1.17 1.08 1.00 1.03
2 1.03 1.10 1.10 1.04 1.02 1.02
3 1.12 1.15 1.19 1.16 1.15 1.12

The normalization is with respect to the optimal solutions found by TOpt.

they obtain solutions whose qualities are very close to those
obtained by the TOpt algorithm. All of the proposed algo-
rithms perform almost equally well; the ratios of the solu-
tions obtained by them are in the range 1.00–1.01. These al-
most equal solution qualities verify the effectiveness of the
proposed clustering and refinement heuristics.

As seen in Table 6, problem instances with ETC3 are the
hardest instances, because of the higher degree of hetero-
geneity, for all algorithms except SA and TSN. These two
meta-heuristics use one-way moves which reassign one task
from its current processor to another and two-way moves
which exchange two tasks assigned to two different proces-
sors. The two-way moves may lead to solutions that are far

from the optimal solution in which all tasks are assigned
to a restricted set (even just one processor) of processors.
This kind of optimal solutions exists for the problem in-
stances with lower degree of heterogeneity (ETC0, ETC1,
and ETC2).

Performances of all existing algorithms degrade with the
increasing number of processors, because the search space
gets larger. The degradations are higher in meta-heuristics
as compared to KLZ and VML, because the meta-heuristics
explicitly search this larger space.

Although the algorithms given in Table 3 are quite differ-
ent in nature, they all perform better as rcom increases for
fixed n and ETC type. Upon observing this phenomenon, we
investigated the solutions of the existing algorithms prior to
the refinement process. In fact, there is no such pattern in the
unrefined solutions of PSO, KLZ, and VML. Such a pattern
exists in the solutions of GA for ETC3, and in the solutions
of SA and TSN. Therefore, we can say that our refinement
algorithm gives rise to such a phenomenon. Since the com-
munication costs increase with the increasing rcom, the re-
finement algorithm finds amplified opportunities to reduce
the total cost.

VML performs well for all instances with ETC0, ETC1
and ETC2. However, KLZ outperforms VML for ETC3 in-
stances especially for large n. This is because VML’s perfor-
mance decreases with the increasing number of processors
due to its dependence on the success of the grab phase. For
small number of processors, the grab phase works but for
large number of processors, the assignments of VML are
generally provided by the greedy phase.

6.4. Experiments with general TIGs

As evident from the performance results given for tree
TIGs, the instances with large processor counts and ETC
of type 3 assist in distinguishing among task assignment
heuristics. Therefore, the performance of the proposed algo-
rithms on general TIGs are presented only for n = 16 and
ETC3. The solutions of the proposed algorithms are normal-
ized with respect to the best solutions found by the existing
algorithms and the average results are given in Table 7. As
seen from the table, all the proposed algorithms perform al-
most equally well, and they perform better than the existing
algorithms. Note that the performance gap between the pro-
posed algorithms and the existing ones closes as the number
of tasks increases. However, this is mostly due to the refine-
ment algorithm that we use to improve the solutions of the
existing algorithms. In the dwt1242 and dwt2680 instances,
the best unrefined solutions obtained by the existing algo-
rithms are 1.08, 1.14, and 1.20 multiples of the best refined
solution, on the average, for rcom = 0.7, 1.0, and 1.4, re-
spectively.

For small graphs (dwt59, dwt66, dwt72), we run A∗ on
the problem instances with 4 processors to find optimal so-
lutions. The normalized qualities of the solutions obtained

B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46 43

Table 7
Averages of the normalized solution qualities of the proposed algorithms
on general TIGs for n = 16 and ETC3

TIG rcom SLA MLC-M MLC-S MLC-A MLA

dwt59 0.7 0.94 0.94 0.93 0.94 0.93
1.0 0.91 0.91 0.91 0.91 0.91
1.4 0.95 0.96 0.95 0.95 0.96

dwt66 0.7 0.91 0.91 0.91 0.91 0.90
1.0 0.93 0.94 0.94 0.93 0.94
1.4 0.96 0.96 0.96 0.96 0.97

dwt72 0.7 0.87 0.88 0.87 0.87 0.88
1.0 0.88 0.89 0.89 0.88 0.89
1.4 0.93 0.94 0.94 0.93 0.94

dwt209 0.7 0.98 0.97 0.99 0.97 0.96
1.0 1.00 0.98 0.99 1.00 0.98
1.4 0.99 0.98 0.98 0.98 0.97

dwt221 0.7 0.98 0.97 0.97 0.97 0.97
1.0 0.95 0.95 0.95 0.95 0.95
1.4 0.97 0.97 0.97 0.97 0.97

dwt234 0.7 0.93 0.93 0.94 0.93 0.94
1.0 0.93 0.92 0.92 0.92 0.93
1.4 0.93 0.93 0.93 0.93 0.94

dwt1242 0.7 1.00 0.99 1.00 1.00 0.98
1.0 0.98 0.97 0.97 0.97 0.97
1.4 0.98 0.97 0.98 0.98 0.98

dwt2680 0.7 1.02 1.01 1.02 1.02 1.00
1.0 0.99 0.99 0.99 0.99 0.98
1.4 0.98 0.98 0.98 0.98 0.98

Average 0.7 0.95 0.95 0.95 0.95 0.95
1.0 0.95 0.94 0.94 0.95 0.94
1.4 0.96 0.96 0.96 0.96 0.96

The normalization is with respect to the best solutions obtained by the
existing algorithms.

by the proposed algorithms are again in between 1.00 and
1.01 multiples of the optimal solutions. Although the task
assignment problem with these instances are quite easy, the
refined solutions of the existing heuristics are not as good
as the solutions of the proposed heuristics. For example, for
ETC3 and rcom = 0.7, the best and worst solutions found by
the existing algorithms are far from the optimal by factors
of 1.05 and 1.10.

6.5. Scalability studies

In order to see whether the proposed clustering metric and
refinement heuristics scale well with the increasing num-
ber of processors and tasks, we test the proposed algorithms
with large tree instances (whose optimal solutions are found
by the TOpt algorithm proposed by Bokhari). For Grid ap-
plications, large instances are usually considered to be those
in which the number of tasks is at least one order of magni-

Table 8
Averages of the normalized solution qualities of the proposed algorithms,
VML, and KLZ on tree TIGs with 10 000 tasks on 100 processors

rcom ETC SLA MLC-M MLC-S MLC-A MLA VML KLZ

0.7 0 1.00 1.00 1.00 1.00 1.01 1.06 1.05
1 1.00 1.00 1.00 1.00 1.00 1.00 1.10
2 1.00 1.00 1.00 1.00 1.01 1.05 1.03
3 1.01 1.02 1.01 1.01 1.07 1.31 1.32

1.0 0 1.00 1.00 1.00 1.00 1.01 1.07 1.05
1 1.00 1.00 1.00 1.00 1.00 1.00 1.10
2 1.00 1.00 1.00 1.00 1.01 1.06 1.03
3 1.01 1.01 1.01 1.01 1.07 1.24 1.27

1.4 0 1.00 1.00 1.00 1.00 1.01 1.06 1.05
1 1.00 1.00 1.00 1.00 1.00 1.00 1.05
2 1.00 1.00 1.00 1.00 1.01 1.07 1.04
3 1.01 1.01 1.01 1.01 1.07 1.19 1.21

Averages 0 1.00 1.00 1.00 1.00 1.01 1.06 1.05
1 1.00 1.00 1.00 1.00 1.00 1.00 1.09
2 1.00 1.00 1.00 1.00 1.01 1.06 1.03
3 1.01 1.01 1.01 1.01 1.07 1.25 1.26

The normalization is with respect to the optimal solutions found by TOpt.

tude larger than the number of available processor [21–23].
Therefore, we have created tree TIGs with 10 000 tasks to
be mapped to 100 processors. Since the heuristics VML and
KLZ use clustering approaches we also give their perfor-
mance.

The performance of VML, KLZ, and the proposed heuris-
tics are given in Table 8. The quality of the solutions are
again normalized with respect to the optimal solutions found
by Bokhari’s algorithm. As seen from the table, all of the pro-
posed heuristics obtain solutions whose qualities are again
very close to the optimal solutions. All results, except those
of the MLA algorithm for ETC3 instances, are within the
range 1.00–1.02 of the optimal solutions. However, the VML
and KLZ heuristics are not found to be as scalable as the
proposed heuristics. The performance of the VML and KLZ
heuristics drop especially for the problem instances with
ETC3. The averages of VML and KLZ given in Table 6 as
1.15 and 1.12 for the small problem instances with ETC3 be-
come 1.25 and 1.26 for the large problem instances as seen
in Table 8. Note also that in the large problem instances, the
ratios of the qualities of unrefined solutions to those of the
refined solutions for ETC3 are 1.99 and 1.10 for the VML
and KLZ heuristics, respectively. For the small tree TIGs
given in Table 6, these ratios were 1.30 and 1.05 as given in
Table 4, i.e., the original heuristics do not scale as well as
the proposed task assignment heuristics.

6.6. Running times

The algorithms were implemented in C/C++, compiled
with gcc/g++ compilers using -O3 optimization flag, and run
on a machine with 2.66 GHz P4 processor, 512 KB cache,

44 B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46

Table 9
The running times of the proposed task assignment heuristics on the tree
TIGs with 10 000 vertices

n ETC SLA MLC-M MLC-S MLC-A MLA

25 0 0.58 0.16 0.42 0.48 1.65
1 1.03 0.14 0.43 0.54 1.53
2 0.60 0.15 0.42 0.48 1.68
3 0.54 0.17 0.42 0.48 1.80

50 0 0.76 0.30 0.62 0.70 2.71
1 1.43 0.24 0.63 0.81 2.43
2 0.78 0.28 0.62 0.71 2.68
3 0.71 0.32 0.62 0.73 2.90

100 0 1.11 0.64 1.07 1.19 5.18
1 2.01 0.54 1.01 1.34 4.61
2 1.18 0.60 1.05 1.20 5.03
3 1.06 0.66 1.07 1.19 5.65

The numbers are the averages of 10 runs for each parameter set. Running
times are given in seconds.

and 2 GB main memory. We do not present the time of the
A∗ algorithm because it is not meant to be a general purpose
solution.

Here we first report the running times of the proposed
heuristics in comparison with the existing heuristics given in
Table 3 for the fixed parameter set of n = 16, rcom = 1.0,
and ETC3 with varying TIGs. The GA, PSO, and TSN algo-
rithms have large execution times. For example, GA obtains
a solution for the dwt1242 instance in 161 s. PSO obtains
a solution for the dwt209 instance in 29 s. TSN obtains a
solution for the dwt72 instance in 15 s. TOpt, KLZ, and all
of the proposed algorithms except MLA obtain a solution
for the tree TIG with m = 2600 in less than 0.05 s. MLA
solves the same problem in 0.16 s, VML solves the problem
in 0.85 s, and SA solves the problem in 27 s. KLZ and all
of the proposed algorithms except MLA solve dwt2680 in
less than 0.07 s. MLA solves the same problem in 0.26 s.
VML solves the same problem in 38 s. This again shows that
VML’s grab phase do not work well in general graphs with
large number of vertices.

Next we report the running times of the proposed heuris-
tics to see whether their running times scale well with the
increasing number of processors for a large number of tasks.
We run the proposed heuristics for the parameter set n =
25, 50, 100, rcom = 0.7, 1.0, 1.4, all ETC types with the
tree TIG having 10 000 vertices. Table 9 displays the aver-
ages of the running times in seconds.

As seen from the table, all of the proposed algorithms
scale almost linearly with the increasing number of proces-
sors. The slowest algorithm is again MLA. The table also
reveals that clustering-based multilevel algorithms (MLC-
M, MLC-S, and MLC-A) are faster than the single level al-
gorithm. We admit that the MLA algorithm is not as good
as the other proposed algorithms in terms of both running
time and solution quality. Recall from §5.3 that it is a multi-
level approach for the single-phase assignment framework.

Therefore, we keep it in the presentation for the sake of
completeness.

7. Conclusion

We proposed a novel clustering approach which consid-
ers the task execution costs as well as the communication
costs between the tasks; two metrics to determine the or-
der in which tasks are assigned to processors; an iterative-
improvement-based heuristic for refining task assignments;
a family of fast heuristics, including multilevel ones, which
obtain high-quality solutions.

The key point in the clustering heuristics including ours
is the following. Clustering any two tasks will guarantee a
saving which is equal to the communication cost that in-
curs if these tasks are assigned to any two different pro-
cessors under the homogeneous network model. However,
when the network is heterogeneous, the amount of saving
will no longer be a constant and it will differ according to
the processors to which the tasks are assigned. We tried in-
corporating minimum possible amount of saving into the
clustering metric but it did not work. We think that devel-
oping clustering heuristics for the heterogeneous networks
is a research issue.

Acknowledgments

All of the algorithms mentioned in §6 are available upon
request. We acknowledge the participation of Melih Onuş
in the development of the GA, SA, TSN, and PSO algo-
rithms. Part of the experimental tests were carried out at
the TUBITAK ULAKBIM High Performance Computing
Center.

References

[1] R.K. Ahuja, J.B. Orlin, A. Tiwari, A greedy genetic algorithm for the
quadratic assignment problem, Comput. Oper. Res. 27 (10) (2000)
917–934.

[2] S. Ali, H.J. Siegel, M. Maheswaran, D. Hensgen, S. Ali, Task
execution time modeling for heterogeneous computing systems, in:
C. Raghavendra (Ed.), Proceedings of the Ninth Heterogeneous
Computing Workshop (HCW 2000), IEEE, Cancun, Mexico, 2000,
pp. 185–199.

[3] F. Berman, High-performance schedulers, in: I. Foster, C. Kesselman
(Eds.), The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, Los Altos, CA, 1999, pp. 279–309, Chapter 12.

[4] A. Billionnet, Allocating tree structured programs in a distributed
system with uniform communication costs, IEEE Trans. Parallel
Distrib. Systems 5 (4) (1994) 445–448.

[5] C. Boeres, A. Lima, V.E.F. Rebello, Hybrid task scheduling:
integrating static and dynamic heuristics, in: Proceedings of the
15th Symposium on Computer Architecture and High Performance
Computing, IEEE, New York, 2003, pp. 199–206.

[6] S.H. Bokhari, A shortest tree algorithm for optimal assignments
across space and time in distributed processor system, IEEE Trans.
Software Engrg. 7 (6) (1981) 583–589.

B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46 45

[7] N.S. Bowen, C.N. Nikolaou, A. Ghafoor, On the assignment problem
of arbitrary process systems to heterogeneous distributed computer
systems, IEEE Trans. Comput. 41 (3) (1992) 257–273.

[8] T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M. Maheswaran,
A.I. Reuther, J.P. Robertson, M.D. Theys, B. Yao, A comparison
of eleven static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems, J. Parallel Distrib.
Comput. 61 (6) (2001) 810–837.

[9] T.N. Bui, C. Jones, A heuristic for reducing fill in sparse matrix
factorization, in: Proceedings of the Sixth SIAM Conference on
Parallel Processing for Scientific Computing, Philadelphia, 1993, pp.
445–452.

[10] R. Buyya, D. Abramson, J. Giddy, H. Stockinger, Economic
models for resource management and scheduling in grid computing,
Concurrency Comput.: Practice Exp. 14 (13–15) (2002) 1507–1542.

[11] U.V. Çatalyürek, C. Aykanat, Hypergraph-partitioning based
decomposition for parallel sparse-matrix vector multiplication, IEEE
Trans. Parallel Distrib. Systems 10 (7) (1999) 673–693.

[12] U.V. Çatalyürek, C. Aykanat, PaToH: A multilevel hypergraph
partitioning tool, version 3.0, Technical Report BU-CE-9915,
Computer Engineering Department, Bilkent University, 1999.

[13] W.-H. Chen, C.-S. Lin, A hybrid heuristic to solve a task allocation
problem, Comput. Oper. Res. 27 (3) (2000) 287–303.

[14] M.K. Dhodhi, I. Ahmad, A. Yatama, I. Ahmad, An integrated
technique for task matching and scheduling onto distributed
heterogeneous computing systems, J. Parallel Distrib. Comput. 62
(9) (2002) 1338–1361.

[15] K. Efe, Heuristic models of task assignment scheduling in distributed
systems, IEEE Comput. 15 (6) (1982) 50–56.

[16] H. El-Rewini, T.G. Lewis, H.H. Ali, Task Scheduling in Parallel and
Distributed Systems, Prentice-Hall, Englewood Cliffs, New Jersey,
USA, 1994.

[17] D. Fernandez-Baca, Allocating modules to processors in a distributed
system, IEEE Trans. Software Engrg. 15 (11) (1989) 1427–1436.

[18] C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for
improving network partitions, in: Proceedings of the 19th Design
Automation Conference, IEEE Press, New York, 1982, pp. 175–181.

[19] B. Folliot, P. Sens, Load sharing and fault tolerance manager,
in: R. Buyya (Ed.), High Performance Cluster Computing, Vol.
1: Architectures and Systems, Prentice-Hall, Englewood Cliffs, NJ,
1999, pp. 534–552, Chapter 22.

[20] J. Gehring, A. Reinefeld, MARS—a framework for minimizing
the job execution time in a metacomputing environment, Future
Generation Comput. Systems 12 (1) (1996) 97–99.

[21] A. Giersch, Y. Robert, F. Vivien, Scheduling tasks sharing files
on heterogeneous clusters, Technical Report RR-2003-28, LIP, ENS
Lyon, France, May 2003.

[22] A. Giersch, Y. Robert, F. Vivien, Scheduling tasks sharing files from
distributed repositories, Technical Report 5124, INRIA, February
2004.

[23] A. Giersch, Y. Robert, F. Vivien, Scheduling tasks sharing files on
heterogeneous master-slave platforms, in: PDP’2004, 12th Euromicro
Workshop on Parallel Distributed and Network-based Processing,
IEEE Computer Society Press, Silver Spring, MD, 2004.

[24] Y. Hamam, K.S. Hindi, Assignment of program modules to
processors: A simulated annealing approach, European J. Oper. Res.
122 (2) (2000) 509–513.

[25] B. Hendrickson, R. Leland, A multilevel algorithm for partitioning
graphs, in: Proceedings of the 1995 ACM/IEEE Conference on
Supercomputing (CDROM), ACM Press, San Diego, CA, 1995,
p. 28.

[26] Z. Juhasz, S.J. Turner, A new heuristic for the process-processor
mapping problem, in: G. Kotsis, P. Kacsuk (Eds.), Proceedings of
the Third Austrian–Hungarian Workshop on Distributed and Parallel
Systems, DAPSYS 2000, Distributed and Parallel Systems: From
Concepts to Applications, Kluwer, Dordrecht, 2000, pp. 91–94.

[27] M. Kafil, I. Ahmad, Optimal task assignment in heterogeneous
distributed computing systems, IEEE Concurrency 6 (3) (1998)
42–51.

[28] G. Karypis, V. Kumar, MeTiS: A Software Package for Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill-
Reducing Orderings of Sparse Matrices Version 4.0, University of
Minnesota, Department of Computer Science/Army HPC Research
Center, Minneapolis, MN 55455, September 1998.

[29] F. Kaudel, Comments on ‘Allocating Programs Containing Branches
and Loops Within a Multiple Processor System’ by D. Towsley, IEEE
Trans. Software Engrg. 16 (4) (1990) 471.

[30] B.W. Kernighan, S. Lin, An efficient heuristic procedure for
partitioning graphs, Bell System Tech. J. 49 (2) (1970) 291–307.

[31] Y. Kopidakis, M. Lamari, V. Zissimopoulos, On the task assignment
problem: two new heuristic algorithms, J. Parallel Distrib. Comput.
42 (1) (1997) 21–29.

[32] Y.-K. Kwok, I. Ahmad, Static scheduling algorithms for allocating
directed task graphs to multiprocessors, ACM Comput. Surv. 31 (4)
(1999) 406–471.

[33] C.-H. Lee, K.G. Shin, Optimal task assignment in homogeneous
networks, IEEE Trans. Parallel Distrib. Systems 8 (2) (1997) 119–
129.

[34] V.M. Lo, Heuristic algorithms for task assignment in distributed
systems, IEEE Trans. Comput. 37 (11) (1988) 1384–1397.

[35] Y.-C. Ma, T.-F. Chen, C.-P. Chung, Branch-and-bound task allocation
with task clustering-based pruning, J. Parallel Distrib. Comput. 64
(11) (2004) 1223–1240.

[36] V.F. Magirou, An improved partial solution to the task assignment
and multiway cut problems, Oper. Res. Lett. 12 (1992) 3–10.

[37] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F. Freund,
Dynamic mapping of a class of independent tasks onto heterogeneous
computing systems, J. Parallel Distrib. Comput. 59 (2) (1999)
107–131.

[38] MatrixMarket, http://math.nist.gov/MatrixMarket.
[39] K. Mehlhorn, S. Naher, Leda: A Platform for Combinatorial and

Geometric Computing, Cambridge University Press, Cambridge,
1999.

[40] M.G. Norman, P. Thanisch, Models of machines and computation
for mapping in multicomputers, ACM Comput. Surv. 25 (3) (1993)
263–302.

[41] J.M. Orduña, F. Silla, J. Duato, On the development of a
communication-aware task mapping technique, J. Systems Archit. 50
(4) (2004) 207–220.

[42] A. Salman, I. Ahmad, S. Al-Madani, Particle swarm optimization
for task assignment problem, Microprocessors Microsystems 26 (8)
(2002) 363–371.

[43] M.A. Senar, A. Ripoll, A. Cortés, E. Luque, Clustering
and reassignment-based mapping strategy for message-passing
architectures, J. Systems Archit. 48 (8–10) (2003) 267–283.

[44] B.A. Shirazi, A.R. Hurson, K.M. Kavi, Scheduling and Load
Balancing in Parallel and Distributed Systems, IEEE Computer
Society Press, Los Altos, CA, USA, 1995.

[45] H.J. Siegel, S. Ali, Techniques for mapping tasks to machines in
heterogeneous computing systems, J. Systems Archit. 46 (8) (2000)
627–639.

[46] H.S. Stone, Multiprocessor scheduling with the aid of network flow
algorithms, IEEE Trans. Software Engrg. SE-3 (1) (1977) 85–93.

[47] K. Taura, A.A. Chien, Heuristic algorithm for mapping
communicating tasks on heterogeneous resources, in: C. Raghavendra
(Ed.), Proceedings of the Ninth Heterogeneous Computing Workshop
(HCW 2000), IEEE, Cancun, Mexico, 2000, pp. 102–115.

[48] A.P. Tom, C.S.R. Murthy, Optimal task allocation in distributed
systems by graph matching and state space search, J. Systems and
Software 46 (1) (1999) 59–75.

[49] D. Towsley, Allocating programs containing branches and loops
within a multiple processor system, IEEE Trans. Software Engrg. 12
(10) (1986) 1018–1024.

http://math.nist.gov/MatrixMarket

46 B. Ucar et al. / J. Parallel Distrib. Comput. 66 (2006) 32–46

[50] D. Towsley, Correction to ‘Allocating Programs Containing Branches
and Loops Within a Multiple Processor System’, IEEE Trans.
Software Engrg. 16 (4) (1990) 472.

[51] J.B. Weissman, X. Zhao, Run-time support for scheduling parallel
applications in heterogeneous nows, in: HPDC ’97: Proceedings of
the Sixth International Symposium on High Performance Distributed
Computing, IEEE, Portland, OR, USA, 1997, pp. 347–355.

[52] E.A. Williams, Design analysis and implementation of distributed
systems from a performance perspective, Ph.D. Thesis, University of
Texas at Austin, 1983.

Bora Ucar received the B.S. (1997) and
M.S. (1999) degrees in Computer Engi-
neering from Bilkent University, Ankara,
Turkey. He expects to be graduated with
a Ph.D. degree from the same department
by September 2005. His research interests
are combinatorial scientific computing and
high-performance computing.

Cevdet Aykanat received the B.S. and
M.S. degrees from Middle East Technical
University, Ankara, Turkey, both in electri-
cal engineering, and the Ph.D. degree from
Ohio State University, Columbus, in elec-
trical and computer engineering. He was
a Fulbright scholar during his Ph.D. stud-
ies. He worked at the Intel Supercomputer
Systems Division, Beaverton, Oregon, as a
research associate. Since 1989, he has been
affiliated with the Department of Computer

Engineering, Bilkent University, Ankara, Turkey, where he is currently
a professor. His research interests mainly include parallel computing,
parallel scientific computing and its combinatorial aspects, parallel com-
puter graphics applications, parallel data mining, graph and hypergraph-
partitioning, load balancing, neural network algorithms, high-performance
information retrieval systems, parallel and distributed web crawling, par-
allel and distributed databases, and grid computing. He has (co)authored
35 technical papers published in academic journals indexed in SCI. He
is the recipient of the 1995 Young Investigator Award of The Scientific
and Technical Research Council of Turkey. He is a member of the ACM
and the IEEE Computer Society. He has been recently appointed as a
member of IFIP Working Group 10.3 (Concurrent Systems) and INTAS
Council of Scientists.

Kamer Kaya graduated from Bilkent Uni-
versity, Turkey in 2004 with a M.Sc. degree
in Computer Engineering where he is cur-
rently a Ph.D. candidate. His research deals
with cryptography, parallel computing and
algorithms.

Murat Ikinci received the B.S. (1996) and
M.S. (1998) degrees in Computer Engineer-
ing from Bilkent University, Ankara, Turkey.
He is currently a software project manager
at the STM Inc located in Ankara, Turkey.
His research interests include interoperabil-
ity of distributed systems and network cen-
tric operations.

