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Abstract

In decomposing the total emissions into scale and pollution intensity, the conventional approach uses the total output as a

measure of scale, and hence ignores the fact that pollution is mainly a byproduct of the manufacturing activity. This study

recognizing that air pollution is mainly a byproduct of manufacturing activity proposes a new definition of pollution intensity—

pollution per unit of manufacturing output—, and a new technique to measure the aggregate pollution intensity. The index used

is a variant of Malmquist quantity index and satisfies well-established axiomatic properties. One other focal point of this study

is the overtime comparisons of pollution intensities, i.e., change in pollution intensity, using indexes that are firmly established

in productivity growth literature.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction to a number of studies which focus on production
A large number of studies have now suggested that

a correct assessment of economic performance should

also incorporate costs resulting from environmental

degradation or benefits of environmental improve-

ments. Consequently, economic measures ranging

from national accounts to social indicators of devel-

opment had to be adjusted.

The obvious need for a single environmental

performance index and a method which implicitly

recognizes the underlying production process which

transforms inputs into outputs and pollutants gave rise
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theory in measuring environmental performance.

These studies, by exploiting the aggregator character-

istics of distance functions within a Data Envelopment

Analysis (DEA) framework, derived various indexes,

which measure the environmental efficiency of vari-

ous producing units. For example, Färe et al. (1989b),

by using radial measures of technical efficiency,

compute the opportunity cost of transforming a tech-

nology from one where production units costlessly

release environmentally hazardous substances, to one

in which it is costly to release. In another study, Färe

et al. (1989a) suggested a hyperbolic measure of

efficiency (which allows for simultaneous equipropor-

tionate reduction in the undesirable output and expan-

sion in the desirable outputs) in measuring the

opportunity cost of such transformation. Finally, Zaim
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and Taskin (2000) and Taskin and Zaim (2000) by

applying these techniques to macro-level data provid-

ed evidence for the existence of a Kuznets type

relationship between measures of environmental effi-

ciency and per capita income level. However, in none

of these studies briefly introduced here pollution

intensity has been a focal point of interest.

Recently, a substantial body of work has been

devoted to developing models that account for

changes in pollution emissions in measuring produc-

tivity growth. In this regard, one can site models such

as ‘‘Multilateral productivity comparisons with unde-

sirable outputs’’ proposed by Pittmann (1983) and

‘‘Malmquist –Luenberger index of productivity

growth’’ or ‘‘Cost Malmquist Productivity index’’

by Chung et al. (1997) and Ball et al. (2001) respec-

tively. While these indexes are certainly an improve-

ment over traditional measures of productivity

growth, they still fail to establish a link between

pollution intensities (i.e., pollution emission per unit

of desirable output) and productivity growth. That is,

a higher productivity growth after accounting for

changes in pollution emissions than traditional meas-

ures of productivity growth which ignore undesirable

outputs, while implying reduced emissions, do not

necessarily imply reduced emissions per unit of de-

sirable output, i.e., an improvement with respect to

pollution intensities.

Although pollution intensity indexes have been

used in ecological economics, most notably recently

in Material (Energy) Flow Analysis (MEFA),1 argu-

ments about MEFA’s ability to describe ‘‘rebound

effect’’ still prevails. Furthermore, measurement of

pollution intensities has gained particular importance

with President Bush’s ‘‘new’’ initiative of voluntarily

reducing the greenhouse gas ‘‘intensity’’ by 18%. In

his Presidential address at the National Oceanic and

Atmospheric Administration (February 2002), the

president states that
1

how

syste
My administration is committed to cutting our

nation’s greenhouse gas intensity—how much we

emit per unit of economic activity—by 18 percent

over the next 10 years. This will put America on a
MEFA applies the concepts of industrial ecology to study

materials and energy flow into, throughout, and out of a

m.
path to slow the growth of our greenhouse

emissions and as science justifies, to stop and

then reverse the growth of emissions.
This positive sounding proposal has also created a

controversy on what really pollution intensity meas-

ures and whether reduced pollution intensity implies

reduced emissions, again reviving the discussions on

the rebound effect. For example greenhouse gas

intensity, measured as metric tons per million dollars

of GDP has been declining in the US since economic

growth has outpaced the rise in pollution as the

economy has experienced a structural shift from

industrial to services production, and to lighter less

producing industries within manufacturing. This calls

for a more profound measure of pollution intensity.

Since pollution is mainly a byproduct of manufactur-

ing industry, measuring pollution intensity per unit of

manufacturing output is a more meaningful alterna-

tive, which will not yield in over optimistic statements

especially when the overall growth of GDP outpaces

the growth of manufacturing industry. One other

problem with the conventional measure of pollution

intensity (including the ones derived by MEFA) is,

how to aggregate them into a composite index of

environmental performance when there exist multiple

pollutants. While analysis over individual pollution

intensity indexes prevent clear-cut policy conclusions,

there seems to be no agreement on various aggrega-

tion alternatives ranging from statistical techniques

such as principal components to more scientific ones

that attach weights to individual indexes reflecting

their toxicity levels.

The objective of this paper is measuring environ-

mental performance through changes in pollution

intensities in manufacturing industry. After defining

pollution as a ratio of quantity index of undesirable

outputs to quantity index of desirable outputs, changes

in environmental performance is analyzed within an

intertemporal setting. Since the pollution intensity

index used in this study relies on computation of

quantity indexes, it naturally produces a composite

index. All our measures rely on computation of

distance functions, which provide a valuable frame-

work in modeling a technology with multiple outputs

(i.e., desirable and undesirable). An empirical appli-

cation on U.S. State manufacturing sectors further

complements existing studies.
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The paper unfolds as follows. The following sec-

tion will introduce Methodology. Section 3 is allocat-

ed to the presentation of the data source and

discussion of results. Finally, Section 4 concludes.
2. Methodology

In developing a pollution intensity index, the

modelling technique developed in a series of papers

by Färe et al. (1999, 2000) and Zaim et al. (2001) is

adopted. The computation of this index relies on the

construction of a quantity index of bad outputs and a

quantity index of good outputs by putting due em-

phasis on the distinctive characteristics of production

with negative externalities. Intuitively, the quantity

index of good outputs shows the relative success of an

observation, say i, in expanding its good outputs while

using the same level of inputs and producing the same

level of pollutants as another observation say j, in an

environment where the disposal of bad outputs are not

free. The quantity index of bad outputs on the other

hand measures the relative success of observation i in

contracting its bad outputs while holding its good

outputs and inputs at the same level as an other

observation j. The ratio these two indexes provides

an pollution intensity index. As is the standard con-

vention in the index numbers literature, i and j can

refer to observations of a given firm—for example in

different time periods—or they may refer to different

firms in a single time period.

To describe the theoretical underpinnings of the

index used, suppose we observe a sample of K units

each of which uses inputs x= (x1,. . .,xN)aR+
N, to pro-

duce a vector of desirable outputs y= ( y1,. . .,yM)aR+
M

and undesirable outputs b= (b1,. . .,bJ)aR+
J. Using the

notation at hand, the technology can be described as all

feasible vectors (x,y,b), i.e., T={(x,y,b):x can produce

( y,b)}. This technology, besides satisfying standard

regularity conditions, should also account for distinc-

tive characteristics of production with negative exter-

nalities such as nulljointness and weak disposability.

The nulljointness can be formally expressed as

if ðx; y; bÞa T and b ¼ 0 then y ¼ 0

to state that the production of good output without

producing bad is impossible. The weak disposability of
bad outputs on the other hand can be imposed with the

following restriction

if ðx; y; bÞa T and 0V hV 1ðx; hy; hbÞa T

which requires a proportionate sacrifice from good

output if a reduction is sought for bad outputs. In

addition to the above two properties on the technology

T, we assume that it meets standard properties like

closedness and convexity. See Färe and Primont (1995)

for details.

Among alternative approaches, distance functions

prove to be a particularly useful tool not only to

represent a technology with distinctive character-

istics such as nulljointness and weak disposability,

but also as being a perfect aggregator and a

performance measure. Hence, output based distance

function

Dyðx; y; bÞ ¼ inffh : ðx; y=h; bÞa Tg

for the subvector of good outputs and input based

distance function

Dbðx; y; bÞ ¼ supfk : ðx; y; b=kÞa Tg

for the subvector of bad outputs provide a basis for

pollution intensity index.

More specifically following Färe et al. (1999), the

quantity index of good outputs

Qyðx0; b0; yi; y jÞ ¼ Dyðx0; y i; b0Þ
Dyðx0; y j; b0Þ

which compares good outputs bi and b j given a vector

of inputs x0 and a vector of bad outputs b0, and the

quantity index of bad outputs

Qbðx0; y0; bi; b jÞ ¼ Dbðx0; y0; biÞ
Dbðx0; y0; bjÞ

which compares bad outputs yi and y j given a vector

of inputs x0 and a vector of good outputs y0, are used

to define the pollution intensity index

PIi; jðx0; y0; b0; y i; y j; bi; b jÞ ¼ Qbðx0; y0; bi; b jÞ
Qyðx0; b0; y i; y jÞ :



y

2 For some years, the technology constructed from observations

in year t may not contain bad outputs in year t+1, i.e., bk,t+1. In this

case, linear programming problem will yield infeasible solutions.
3 I gratefully acknowledge Carl Pasurka for providing the data

used in this study.
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Since both good output and bad output index

satisfies all the desirable properties due to Fisher

(1922)—i.e., homogeneity, time reversal, transitivity

and dimensionality—pollution intensity index natu-

rally passes the Fisher test.

One should note that, although beyond the scope of

this paper, Material (Energy) Flow models, defined as

models describing systems which take inputs from

nature and return outputs into the nature, and the

model presented above are in conformity not only

with respect to their system view but also with respect

to their evaluation criteria on ecological efficiency. In

both the approaches, the higher the amount of desir-

able output produced per unit of resource or bad

output, the more efficient a production unit (firm,

region or country) is, in using its resources. Therefore,

the modeling technique presented here, which relies

explicitly on production theory (with negative exter-

nalities) and hence allows incorporation of technolog-

ical progress, provides a useful alternative to those

models, which rely on static input–output analysis.

Because as will be demonstrated, identification of

production units which face rebound effect, requires

an intertemporal analysis where productivity increase

(i.e., technological progress) is explicitly taken into

account while measuring the changes pollution inten-

sity over time, which we turn next.

As for the changes in pollution intensity over time,

the relevant measure is the simultaneous success of a

particular observation in contracting its bad outputs

and expanding its good outputs from year t to year t+1

measured with respect to a common (manufacturing)

benchmark technology constructed for the period t.

The change in bads between two periods

DQ
t;tþ1
b ¼ D

k;t
b ðxk;t; yk;t; bk;tþ1Þ
D

k;t
b ðxk;t; yk;t; bk;tÞ

is the ratio of two distance functions where

D
k;t
b ðxk;t; yk;t; bk;tþ1Þ ¼ supfkk;tþ1

: ðxk;t; yk;t; bk;tþ1=kk;tþ1ÞaTtg

and

D
k;t
b ðxk;t; yk;t; bk;tÞ ¼ supfkk;t :ðxk;t; yk;t; bk;t=kk;tÞaTtg:
The first-distance function shows the success of an

observation, say k, in contracting its bad outputs in

year t+1 (with respect to a common frontier which

represent the technology at t) while using the same

level of inputs and producing the same level of good

outputs goods as in year t (i.e., xk,t and yk,t).2 Similarly,

the second-distance function measures the success of

the same observation in contracting its bad outputs in

period t with respect to a common frontier represent-

ing the technology at t. Note that, since the distances

are measured with respect to the same benchmark

(while holding resources and good outputs at their

year t levels), the ratio provides the change in bad

outputs for observation k.

Similarly after defining the change in good outputs

as

DQt;tþ1
y ¼

Dk;t
y ðxk;t; yk;tþ1; bk;tÞ
D

k;t
y ðxk;t; yk;t; bk;tÞ

with relevant distance functions,

Dk;t
y ðxk;t; yk;tþ1; bk;tÞ ¼ inffhk;tþ1

: ðxk;t; yk;tþ1=hk;tþ1; bk;tÞaTtg
and

Dk;t
y ðxk;t; yk;t; bk;tÞ ¼ inffhk;t

: ðxk;t; yk;t=hk;t; bk;tÞaTtg;

the change in pollution intensity between t and t+1

can be expressed as:

DPIt;tþ1 ¼ DQ
t;tþ1
b

DQ
t;tþ1

:

3. Data and results

The data used for the computation of the pollution

intensity index is the same as in Färe et al. (2001)3

which consists of state level observations on manufac-

turing output, inputs and emissions of pollutants.
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Manufacturing output is proxied by Gross State Prod-

uct (GSP) in manufacturing. The two inputs considered

are the state aggregates of manufacturing employment

and capital stock. The bad output data consists of

emissions of SOx, NOx and CO by the manufacturing.

The source of GSP in manufacturing and manufactur-

ing employment is Regional Economic Information

System of Bureau of Economic Analysis. Capital stock

data is compiled in Munnell (1990). Data on emissions

of air pollutants by the industrial sector is published by

Environmental Protection Agency and allocated be-

tween manufacturing and non-manufacturing compo-

nents by Färe et al. (2001). The period for which the

data are compiled is 1972–1983 and 1985–1986. For

the year 1984, EPA did not publish emissions of

pollutants by states. For details in data construction,

please see Appendix C in Färe et al. (2001).

In computing the distance functions which will

form the basis of pollution intensity indexes, the data

envelopment analysis (DEA) (or activity analysis)

methodology is chosen among competing alternatives,

so as to take advantage of the fact that the distance

functions are perfect aggregator functions and recip-

rocals of Farrell efficiency measures. In this particular

application, Alabama is chosen as the reference state.4

Thus, we are assuming that j=0 which then refers

to the associated quantities of Alabama. Letting

k=1,. . .,K index the states in the sample, for each

state kV=1,. . .,K, we may compute for each year

ðDyðx0; yk V; b0ÞÞ�1 ¼ maxh

st

PK

k¼1

zky
k
mz hykVm m ¼ 1; . . . ;M

PK

k¼1

zkb
k
j ¼ b0j j ¼ 1; . . . ; J

PK

k¼1

zkx
k
nV x0n n ¼ 1; . . . ;N

zk z 0 k ¼ 1; . . . ;K

which is the numerator for Qy(x
0,b0,yi,y j). The denom-

inator is computed by replacing ykV on the right-hand
4 Alternatively, one could use a hypothetically average state as

a base, in which case results would be independent of Alabama as a

base.
side of the good output constraint with the observed

output for Alabama, i.e., y0. This problem, using the

observed data on desirable outputs, undesirable out-

puts and inputs for each state, constructs the best

practice frontier for the aggregate manufacturing in-

dustry for a particular year, and computes the scaling

factor on good outputs required for each observation to

attain best practice. The strict equality on the bad

output constraints serves to impose weak disposability.

Nulljointness holds provided that

XK

k¼1

bkj > 0 j ¼ 1; . . . ; J

XJ

j¼1

bkj > 0; k ¼ 1; . . . ;K:

The first condition states that each bad is produced

at least once, and the second condition tells us that at

each k some bad output is produced. These conditions

are met for 41 states in our sample.5

For the bad index, for each state k V=1,. . .,K, we
compute for each year

ðDbðx0; y0; bkVÞÞ�1 ¼ mink

st

XK

k¼1

zky
k
mz y0m m ¼ 1; . . . ;M

XK

k¼1

zkb
k
j ¼ kbkVj j ¼ 1; . . . ; J

XK

k¼1

zkx
k
nV x0n n ¼ 1; . . . ;N

zk z 0 k ¼ 1; . . . ;K

which is the numerator for Qb(x
0,y0,bi,b j ). The de-

nominator is computed by replacing bk V on the right-

hand side of the bad output constraint with the

observed bad outputs for Alabama, i.e., b0. As above,

this problem constructs the best practice frontier from

the observed data and computes the scaling factor on
5 West Virginia, New York, South Dakota, Arizona, Nevada,

Vermont and Oklahoma failed to satisfy nulljointness (see Färe et

al., 2001) and hence are excluded from the analysis.
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bad outputs required for each observation to attain

best practice. Finally, the ratio of Qb(x
0,y0,bi,b j ) to Qy

(x0,b0,yi,y j) results in a pollution intensity index with

basis chosen as Alabama. Nevertheless, since this

index is transitive it allows any bilateral comparison

among two states.

While constructing the reference technologies in

the above linear programming problems, a multiple

year windows data is employed as in Färe et al.

(2001). In this particular application, it is assumed

that the reference technology at time period t (i.e., the

left side of equalities and inequalities in the linear

programming problems) is determined by observa-

tions from period t and previous two periods, i.e., t�1

and t�2. This proved to be a particularly useful

exercise in reducing the number of infeasible solu-

tions in two mixed period linear programming prob-

lems that are constructed to compute the change in

pollution intensity (see footnote 1). Furthermore, the

data being evaluated (i.e., the right side of equalities

and inequalities in the linear programming problems)

are also chosen to be 3-year moving averages (i.e.,

average of observations in year t and the previous 2

years t�1 and t�2) in order to smooth the data by

reducing fluctuations due to chance events.

Table 1, in addition to the composite index of

pollution intensity measure computed using the meth-

odology described above, provides crude measures of

pollution intensities measured with respect to Ala-

bama for three selected years. Although the results

show considerable variation in relative rankings of

states with respect to the composite measure of

pollution intensities across the years, Connecticut,

Massachusetts, New Hampshire and Rhode Island

have kept their position within the best 10 performers.

Montana, New Mexico, North Dakota, Texas and

Wyoming on the other hand, were persistently ranked

within the 10 states with highest pollution intensity.

Although by construction comparison of this compos-

ite pollution index across years does not reveal

information on the growth rate of pollution intensity,

comparison of the relative positions of states across

years disclose some interesting results. One particu-

larly interesting result is that, the spread between the

worst and the best performer increases considerably in

time. For example, the comparison of the worst and

the best performers reveals that while the pollution

intensity of Montana in 1974 was 43 times higher than
Connecticut, this figure is 145 times between Wyom-

ing and Rhode Island in 1980 and 338 times between

Wyoming and Massachusetts in 1985. One also notes

that, the differences between crude measures of pol-

lution intensities are also in conformity with this

general pattern of increased spread between the best

and the worst performers. A comparison shows that,

while emission of SOx, NOx and CO per unit of

manufacturing output in Montana are respectively

258, 13 and 913 times higher than in Connecticut in

1974, corresponding figures are 148, 404 and 1698

times between Wyoming and Massachusetts in 1985.

Now we turn our attention to the intertemporal

analysis of pollution intensities proposed in this study.

The numerator of DPIt,t+1 shows the annual change in

a composite measure of pollution emissions (i.e., from

period t to t+1) measured with respect to the reference

technology of the base period t. This requires for each

kV, solution of two linear programming problems:

ðDkVt
b ðxkV;t; ykV;t; bkV;tþ1ÞÞ�1 ¼ minkkV;tþ1

st

XK

k¼1

zkb
t
kj ¼ kkV;tþ1btþ1

kVj j ¼ 1; . . . ; J

XK

k¼1

zky
t
kmz ytkVm m ¼ 1; . . . ;M

XK

k¼1

zkx
t
knV xtkVn n ¼ 1; . . . ;N

zk z 0 k ¼ 1; . . . ;K:

The second linear programming problem can be

computed in a similar fashion by replacing kkV,t+1 with
kkV,t and bkVj

t+1 on the right side of the first equality with

bkVj
t . The solution to these two linear programming

problems yields DQb
t,t+1 which is the numerator of

DPIt,t+1.

In Table 2, we provide the average annual growth

rates of the three pollutants and the average annual

change in a composite measure of pollution emission

which is termed as DQb
t,t+1. Following the usual index

number convention, while figures greater than one

show an increase (percentage increase can be calcu-

lated by subtracting 1 and multiplying by 100) figures

less than one represent a decrease. The results under



Table 1

Emission per unit of manufacturing output (measured with respect to Alabama)

1974 1980 1985

SOx NOx CO Pollution

intensity

Rank SOx NOx CO Pollution

intensity

Rank SOx NOx CO Pollution

intensity

Rank

Alabama 1.000 1.000 1.000 1.000 13 1.000 1.000 1.000 1.000 8 1.000 1.000 1.000 1.000 8

Arkansas 0.176 0.649 0.041 0.269 33 0.309 0.651 0.849 0.424 16 0.362 0.949 0.704 0.340 22

California 0.149 0.546 0.069 0.333 30 0.189 0.372 0.155 0.328 22 0.058 0.318 0.046 0.210 33

Colorado 0.360 0.180 0.471 0.236 35 0.273 0.483 0.628 0.292 27 0.034 0.422 0.032 0.141 37

Connecticut 0.055 0.219 0.002 0.129 41 0.042 0.065 0.048 0.077 40 0.032 0.032 0.004 0.046 40

Delaware 1.798 0.714 0.109 0.490 24 0.349 0.252 0.013 0.216 33 1.326 0.615 0.234 0.402 16

Florida 0.487 0.898 0.117 0.813 14 1.012 0.468 0.372 0.554 13 0.329 0.311 0.172 0.298 24

Georgia 0.333 0.830 0.266 0.482 26 0.271 0.340 0.400 0.339 21 0.339 0.493 0.487 0.378 17

Idaho 1.061 2.065 0.040 1.302 6 0.917 0.334 0.290 1.155 7 0.997 0.757 0.120 0.588 12

Illinois 0.293 0.472 0.144 0.332 31 0.257 0.240 0.261 0.229 30 0.573 0.475 0.146 0.442 15

Indiana 0.613 1.220 0.308 1.540 4 0.459 0.469 0.393 0.505 15 0.882 0.816 1.392 0.636 10

Iowa 0.375 0.646 0.105 0.484 25 0.339 0.352 0.201 0.389 17 0.497 0.474 0.037 0.249 28

Kansas 0.251 0.743 0.443 0.462 27 0.151 3.040 0.395 0.144 36 0.365 2.366 0.506 0.366 18

Kentucky 0.330 0.245 0.078 0.208 38 0.384 0.260 0.355 0.302 24 0.499 0.818 0.301 0.332 23

Louisiana 1.389 7.781 5.539 1.890 2 0.814 3.333 3.831 0.241 28 2.283 5.986 4.217 0.616 11

Maine 1.378 1.770 0.484 1.247 7 1.443 0.528 0.468 0.765 10 1.216 0.595 0.245 0.149 36

Maryland 0.492 1.034 0.226 0.578 21 0.265 0.258 0.214 0.323 23 0.378 0.468 0.107 0.360 19

Massachusetts 0.174 0.364 0.011 0.223 37 0.065 0.061 0.007 0.079 39 0.097 0.088 0.006 0.044 41

Michigan 0.200 0.638 0.107 0.563 22 0.254 0.228 0.234 0.195 35 0.164 0.264 0.149 0.257 26

Minnesota 0.321 0.604 0.219 0.453 28 0.177 0.291 0.123 0.301 25 0.148 0.232 0.199 0.215 32

Mississippi 0.248 0.920 0.154 0.550 23 0.818 1.565 0.507 1.274 5 0.554 1.090 0.527 1.040 7

Missouri 0.722 0.860 0.175 0.624 18 0.370 0.340 0.144 0.217 32 0.721 0.373 0.229 0.250 27

Montana 14.202 2.930 1.826 5.573 1 8.890 1.815 5.171 0.822 9 6.044 3.274 2.181 1.723 4

Nebraska 0.243 1.509 0.076 0.417 29 0.209 0.659 0.111 0.361 19 0.126 0.337 0.018 0.246 29

New Hampshire 0.195 0.271 0.064 0.235 36 0.233 0.089 0.063 0.091 38 0.075 0.068 0.111 0.114 38

New Jersey 0.131 0.482 0.087 0.259 34 0.237 0.277 0.109 0.294 26 0.135 0.248 0.013 0.205 34

New Mexico 17.074 2.072 0.152 1.146 8 15.493 10.249 0.597 1.890 4 8.529 8.436 0.564 4.988 2

North Carolina 0.182 0.374 0.105 0.312 32 0.283 0.220 0.190 0.237 29 0.277 0.284 0.204 0.258 25

North Dakota 1.344 1.916 0.673 1.100 10 1.730 0.939 0.095 2.088 3 8.392 4.379 0.227 2.949 3

Ohio 0.528 0.689 0.096 0.667 16 0.400 0.304 0.573 0.136 37 0.368 0.273 0.280 0.352 21

Oregon 0.106 1.403 0.030 0.188 40 0.148 0.661 0.121 0.226 31 0.190 0.327 0.161 0.172 35

Pennsylvania 0.383 0.479 0.115 1.061 11 0.677 0.298 0.541 0.198 34 0.302 0.404 0.351 0.359 20

Rhode Island 0.094 0.272 0.016 0.191 39 0.041 0.061 0.027 0.075 41 0.040 0.065 0.003 0.064 39

South Carolina 0.398 0.897 0.274 0.599 20 0.400 0.463 0.170 0.570 12 0.520 0.542 0.202 0.551 13

Tennessee 0.409 0.835 0.230 0.607 19 0.415 0.602 0.325 0.723 11 0.619 0.630 0.368 0.758 9

Texas 1.007 3.298 1.153 1.433 5 1.032 3.694 2.323 2.106 2 1.134 2.964 0.726 1.104 6

Utah 2.334 1.527 0.464 1.007 12 1.010 1.043 0.406 1.260 6 0.680 1.521 0.564 1.401 5

Virginia 0.516 1.086 0.258 0.693 15 0.440 0.475 0.226 0.511 14 0.652 0.621 0.136 0.540 14

Washington 0.664 1.760 0.326 1.116 9 0.960 0.322 0.679 0.367 18 0.435 0.455 1.411 0.217 31

Wisconsin 0.304 0.954 0.061 0.645 17 0.383 0.303 0.069 0.340 20 0.379 0.292 0.138 0.237 30

Wyoming 2.110 4.968 6.260 1.817 3 6.383 12.161 5.568 10.921 1 14.410 35.603 10.193 14.899 1
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the column DQb
t,t+1 display that five states: New

Mexico, Louisiana, North Dakota, Arkansas and

Kansas recorded substantially high average annual

growth rates—all well beyond 10%—in the emission

of pollutants and that an additional 12 states had

positive growth rates. However, New Jersey, Wash-
ington and Rhode Island were depicted as being the

most successful states in reducing the emission of

pollutants at rates above 10% per annum. A compar-

ison of annual growth rates of the composite measure

of pollution emissions with those of crude measures

also reveals the advantage of the former with respect



Table 2

Growth rates of pollutants

States Infeasible Average annual growth rates Rank

solutions
SOx NOx CO DQb

t,t+1

Alabama 0.963 1.032 0.930 1.025 11

Arkansas 1.094 1.076 1.100 1.154 4

California 0.950 0.951 0.922 0.922 34

Colorado 1 0.940 1.080 0.866 1.095 6

Connecticut 0.908 0.902 1.039 0.916 36

Delaware 0.901 1.012 0.974 0.948 27

Florida 0.968 0.961 0.988 0.997 18

Georgia 0.988 1.027 1.007 1.009 15

Idaho 0.937 0.965 1.090 0.959 25

Illinois 0.973 1.002 0.823 0.940 29

Indiana 0.935 0.892 0.883 0.947 28

Iowa 0.996 0.978 0.793 0.966 23

Kansas 2 0.979 1.124 0.938 1.114 5

Kentucky 0.975 1.098 0.954 1.008 16

Louisiana 6 0.977 1.057 0.872 1.346 2

Maine 0.970 0.973 0.937 1.064 8

Maryland 0.906 0.955 0.932 0.972 20

Massachusetts 0.925 0.942 0.919 0.909 37

Michigan 0.911 0.840 0.912 0.934 32

Minnesota 0.914 1.037 0.913 0.919 35

Mississippi 1.081 1.076 1.023 1.081 7

Missouri 0.922 0.960 0.943 0.938 30

Montana 0.841 0.922 0.909 0.907 38

Nebraska 1 0.946 0.940 0.859 0.965 24

New Hampshire 0.954 0.991 1.044 0.970 22

New Jersey 0.940 0.967 0.777 0.834 41

New Mexico 1 0.962 1.173 1.096 1.401 1

North Carolina 1.006 1.002 0.994 1.005 17

North Dakota 1 1.127 1.166 1.028 1.248 3

Ohio 0.893 0.933 0.893 0.937 31

Oregon 0.989 0.953 1.138 1.015 13

Pennsylvania 0.893 0.845 0.963 0.933 33

Rhode Island 0.877 0.918 0.854 0.878 39

South Carolina 0.994 1.009 0.936 1.015 14

Tennessee 0.995 1.030 0.957 1.021 12

Texas 0.997 1.057 0.898 0.972 21

Utah 0.912 1.076 0.963 1.051 9

Virginia 0.967 0.995 0.929 0.982 19

Washington 1 0.915 0.924 1.008 0.836 40

Wisconsin 0.964 0.932 0.983 0.950 26

Wyoming 5 1.068 1.183 0.883 1.026 10
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to the crude measures. Note for example that a

comparison of the crude measures of emission growth

would lead one to falsely claim that environmental

performance in North Dakota deteriorated more than

in Louisiana since growth rate for each pollutant is

higher in North Dakota than the corresponding figures

in Louisiana. But one should also note that the crude

measures of pollution growth do not account for
neither the change in resource use nor the change in

desirable output production. Nevertheless, changes in

resource use and desirable output production are

accounted for in computing the growth of pollution

emissions by the DQb
t,t+1 measure.

The denominator of the change in pollution intensity

DPIt,t+1, requires solution to additional two linear

programming problems which would yield the change

in desirable outputs (i.e., DQy
t,t+1) between period t and

t+1. The solution to

ðDkVt
y ðxkV:t; ykV;tþ1; bkV;tÞÞ�1 ¼ maxhkV;tþ1

st

XK

k¼1

zkb
t
kj ¼ btkVj j ¼ 1; . . . ; J

XK

k¼1

zky
t
kmz hkV;tþ1ytþ1

kVm m ¼ 1; . . . ;M

XK

k¼1

zkx
t
knV xtkVn n ¼ 1; . . . ;N

zk z 0 k ¼ 1; . . . ;K:

problem yields the success of an observation, say k, in

expanding its manufacturing output in year t+1 (with

respect to a common frontier which represent the

technology at t) while using the same level of inputs

and emitting the same level of pollutants as in year t

(i.e., xk,t and bk,t). The second problem, which measures

the expansion of manufacturing output in year t, can be

formulated by replacing hkV,t+1 with hkV,t and ykVm
t+1 on the

right side of the second inequality with ykVm
t .

Table 3 provides average annual growth rates for

composite index of pollution emissions, manufactur-

ing output and pollution intensity. Starting from the

last row of this table which shows the weighted

geometric mean of corresponding columns (where

weights are the share of each state in total manufac-

turing output), we observe that between 1974 and

1986 emissions of pollutants have been decreasing at

the rate of 4.3% per annum. This, coupled with a

2.4% average annual increase in manufacturing out-

put, led to an average annual reduction of 6.5% in

pollution intensity. Note however that, in 10 states

(Louisiana, New Mexico, North Dakota, Arkansas,

Kansas, Wyoming, Colorado, Mississippi, Maine and



Table 3

Growth rate of pollution intensity and its components

States Infeasible Average annual growth rates Rank

solutions
DQb

t,t+1 DQy
t,t+1 DPIt,t+1

Alabama 1.025 1.030 0.995 12

Arkansas 1.154 1.040 1.109 4

California 0.922 1.046 0.881 36

Colorado 1 1.095 1.049 1.043 7

Connecticut 0.916 1.024 0.894 35

Delaware 0.948 1.015 0.934 28

Florida 0.997 1.057 0.943 22

Georgia 1.009 1.046 0.965 17

Idaho 0.959 1.038 0.924 31

Illinois 0.940 0.995 0.945 21

Indiana 0.947 0.999 0.949 20

Iowa 0.966 1.025 0.943 23

Kansas 2 1.114 1.021 1.091 5

Kentucky 1.008 1.005 1.003 10

Louisiana 6 1.346 1.009 1.333 1

Maine 1.064 1.038 1.026 9

Maryland 0.972 1.010 0.962 18

Massachusetts 0.909 1.038 0.876 38

Michigan 0.934 1.000 0.935 27

Minnesota 0.919 1.045 0.879 37

Mississippi 1.081 1.042 1.037 8

Missouri 0.938 1.022 0.919 33

Montana 0.907 0.982 0.923 32

Nebraska 1 0.965 1.032 0.936 25

New Hampshire 0.970 1.078 0.899 34

New Jersey 0.834 1.008 0.827 40

New Mexico 1 1.401 1.075 1.303 2

North Carolina 1.005 1.033 0.973 15

North Dakota 1 1.248 1.049 1.189 3

Ohio 0.937 1.002 0.935 26

Oregon 1.015 1.016 0.999 11

Pennsylvania 0.933 0.994 0.938 24

Rhode Island 0.878 1.017 0.863 39

South Carolina 1.015 1.044 0.972 16

Tennessee 1.021 1.032 0.990 14

Texas 0.972 1.043 0.931 29

Utah 1.051 1.058 0.994 13

Virginia 0.982 1.031 0.953 19

Washington 1 0.836 1.015 0.824 41

Wisconsin 0.950 1.026 0.926 30

Wyoming 5 1.026 0.951 1.079 6

Weighted geo.

Mean

0.957 1.024 0.935
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Kentucky) pollution emissions have increased at

faster rates than manufacturing output and hence

leading to increased pollution intensities over time.

In five states (Alabama, North Carolina, Oregon,

Tennessee and Utah), we simultaneously observe

decreasing pollution intensities with increased pollu-
tion emissions which constitute an example to the

criticism that reduced pollution intensity does not

necessarily imply reduced emissions. This is the

rebound effect as commonly referred to in studies

within the framework of MEFA. In all other states,

reduced pollution emissions coupled with increased

manufacturing output, led to the reduction in pollu-

tion intensities.

In studies on MEFA, the changes in resource use

efficiency are mostly attributed to structural changes,

i.e., a shift from industrial to services production, and to

lighter less producing industries within manufacturing.

Hence, in a final analysis, the likely effects of structural

changes on the change in pollution intensities are

analyzed within a pooled regression framework. The

dependent variable DPIt,t+1 is regressed on explanatory

variables: Share of manufacturing in State Gross Prod-

uct (MANSHARE), share of polluting industries in

Gross State Product in manufacturing (POLSHARE)

and the level of pollution, i.e., PI. The square of

MANSHARE and POLSHARE are also included in

order to depict any quadratic relationship between

change in pollution intensities and these variables.

The source of explanatory variables is BEA, which

provides disaggregated data on Gross State Product

from 1977 onwards. In computing the share of pollut-

ing industries in Gross State Product in manufacturing,

paper and allied products (SIC 26), chemicals and

allied products (SIC28), petroleum and coal products

(SIC29), stone clay and glass products (SIC32) and

primary metal industries (SIC 33) are considered as

polluting industries as in Färe et al. (2001). Our pooled

sample consists of all feasible solutions for 41 states

and 7 years. Since our data set do not include year 1984,

the change in pollution intensity between 1983 and

1985 has been discarded to be consistent with annual

observations for explanatory variables.

Table 4 shows the parameter estimates of the

pooled regression with a common intercept estimated

using OLS technique. An F test performed on the

alternative specifications of the fixed effects model

failed to reject the null hypothesis of a common

intercept, against the model with state-specific inter-

cept terms. This is as expected due to difficulties in

capturing state specific effects with only seven obser-

vations over time. In addition, various specification

tests performed reveals that residuals are homoske-

dastic and are not autocorrelated.



Table 4

Pooled regression estimation explaining change in pollution

intensity

Parameter

estimate

t-statistics

CONSTANT 1.7862 7.194

MANSHARE �9.5781 �5.053

(MANSHARE)2 18.8824 4.572

POLSHARE 2.6713 2.218

(POLSHARE)2 �3.9897 �2.117

PI �0.1199 �3.434

Adj. R2 0.095

F statistics 6.5
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The parameter estimates, which are all significant

at 5% significance level, suggest a quadratic relation-

ship between change in pollution intensity and

the two explanatory variables MANSHARE and

POLSHARE. The quadratic relationship between

change in pollution intensity and MANSHARE is of

U type with turning point of 0.25. This indicates that

increased share of manufacturing in gross state product

over 25% puts an upward pressure on the growth of

pollution intensities. The quadratic relationship be-

tween change in pollution intensity and POLSHARE

variable is of inverse U type with a turning point of

0.34. This suggests that, increased share of polluting

industries in the manufacturing industry puts an up-

ward pressure on the growth of pollution intensities

until the share of polluting industries in manufacturing

industry reach to 34%. As the share of polluting

industries increase beyond this turning point, there is

a downward pressure on the change in pollution inten-

sities, which may be due to regulatory constraints

which are binding especially when some threshold

level of emission levels are reached. The negative

and significant coefficient of the pollution intensity va-

riable PI indicates that there is a downward pressure on

the growth of pollution intensities as the level pollution

intensity increase and hence supports the view that

regulatory constraints become increasingly more bind-

ing for states which reach certain emission levels.
4. Conclusions

In decomposing the total emissions into scale and

pollution intensity, the conventional approach uses the

total output as a measure of scale, and hence ignores
the fact that pollution is mainly a byproduct of the

manufacturing activity. This study recognizing that air

pollution is mainly a byproduct of manufacturing

activity proposes a new definition of pollution inten-

sity—pollution per unit of manufacturing output—,

and a new technique to measure the aggregate pollu-

tion intensity. The index used is a variant of Malm-

quist quantity index and satisfies well-established

axiomatic properties. One other focal point of this

study is the overtime comparisons of pollution inten-

sities, i.e., change in pollution intensity, using indexes

that are firmly established in productivity growth

literature.

An empirical application on U.S. State manufac-

turing sectors (by using a new data set on state

level manufacturing production and emission of

pollutants) the study provides both cross sectional

and overtime comparisons of environmental perfor-

mance for individual states between 1974 and 1986.

In a final analysis, the likely effects of structural

changes on the growth of pollution intensities are

analyzed within a pooled regression framework. The

results suggest that, share of manufacturing in total

state product and share of polluting industries in

total manufacturing activity are two important fac-

tors determining change in pollution intensities

overtime.
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