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Abstract

In this paper we propose a new approach to estimating systematic risk (the beta of an
asset). The proposed method is based on a wavelet multiscaling approach that decomposes
a given time series on a scale-by-scale basis. The empirical results from different economies

show that the relationship between the return of a portfolio and its beta becomes stronger as
the wavelet scale increases. Therefore, the predictions of the CAPM model should be
investigated considering the multiscale nature of risk and return.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965)
has received considerable attention in financial studies.1 In its simplest form, the
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gsk.com (B. Whitcher).
1 As of February 2002, a keyword search of ‘‘CAPM’’ in the Journal of Economic Literature (JEL)

database returned 411 articles while the keyword ‘‘systematic risk’’ resulted in 311 articles.
0261-5606/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jimonfin.2004.10.003

https://core.ac.uk/display/52922142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:gencay@sfu.ca
mailto:faruk@bilkent.edu.tr
mailto:brandon.j.whitcher@gsk.com
mailto:brandon.j.whitcher@gsk.com
http://www.elsevier.com/locate/econbase


56 R. Gencxay et al. / Journal of International Money and Finance 24 (2005) 55–70
CAPM predicts that the excess return of a stock (return over the riskless rate of
return) should be proportional to the market premium (market return over the
riskless rate of return). The proportionality factor is known as the ‘‘systematic risk’’
or the ‘‘beta’’ of an asset.2

Early empirical studies on the CAPM such as Black et al. (1972) and Fama and
MacBeth (1973) were supportive of the implications of the model. That is, the
average return of high beta stocks was higher than the average return of low beta
stocks. Furthermore, the relationship was roughly linear, although the slope was too
flat to strongly support the CAPM (Campbell, 2000). Later studies focused on beta
estimation issues in detail. Some examples of the concerns on beta estimation are as
follows: the stability of beta over time (Harvey, 1989), borrowing constraints (Black,
1972), the impact of structural change and regime switches (Garcia and Ghysels,
1998), the effect of world markets and volatility (Bekaert and Harvey, 1995, 1997;
Harvey, 1991), non-synchronous data issues (Scholes and Williams, 1977), time
horizons of investors (Levhari and Levy, 1977) and the impact of the return interval
(Brailsford and Josev, 1997; Brailsford and Faff, 1997; Cohen, et al., 1986;
Frankfurter, et al., 1994; Hawawini, 1983; Handa, et al., 1989, 1993).

Studies on the impact of the return interval of beta estimates point out the
importance of the time scale issue. An early study by Levhari and Levy (1977)
showed that if the analyst used a time horizon shorter than the true one3, the beta
estimates were biased. Fama (1980, 1981) provided evidence that the power of
macroeconomic variables in explaining the stock prices increased with increasing
time length. Handa et al. (1989) reported that different beta estimates were possible
for the same stock if different return intervals were considered. Similarly, Handa
et al. (1993) rejected the CAPM when monthly returns were used but failed to reject
the CAPM if the yearly return interval was employed. Cohen et al. (1986) and
references therein provided ample evidence that the beta estimates were sensitive to
return intervals. By using Australian equity market data, Brailsford and Faff (1997b)
reported that the CAPM (with a GARCH-M specification) was supported for
weekly and monthly interval returns while the greatest support was found in the
weekly return intervals. The daily return interval in that study did not support the
CAPM. Hawawini (1983) proposed a model to overcome the interval effect in beta
estimation.

In this paper, we propose a new approach to estimating systematic risk (the beta)
in a CAPM. The proposed method is based on wavelet analysis that enables us to
decompose a time series, measured at the highest possible frequency, into different
time scales. It provides a natural platform on which to investigate the beta behavior
(systematic risk) at different time horizons without losing any information. The
empirical results from different economies show that the relationship between the
return of a portfolio and its beta becomes stronger as the scale increases. Therefore,

2 See Campbell (2000) and Cochrane (1999) for a survey of the recent developments in the finance

literature in general and asset pricing in particular.
3 The ‘‘true’’ time horizon is defined as the relevant time horizon implicit in the decision making process

of investors.
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predictions of the CAPM are more relevant in a multiscale framework as compared
to short time horizons.

This paper is structured as follows. The CAPM model is presented in Section 2.
Wavelet analysis, the wavelet variance and the wavelet covariance are presented in
Section 3. Multiscale beta estimation with S&P 500 stocks in the United States,
Financial Times Stock Index (FTSE) stocks in the United Kingdom and DAX stocks
in Germany is studied in Section 4. We conclude afterwards.

2. Capital asset pricing model (CAPM)

The capital asset pricing model (CAPM) naturally arises from the utility
maximization problem of a representative agent.4 Consider a consumer with
a horizon of T periods who wants to maximize his present discounted value of
expected utility

max E0

�XT�1

tZ0

1

ð1CqÞt
UðctÞ

�
; ð1Þ

where E0 denotes expectation conditional on information at time 0, q is the
subjective rate of time preference, U(�) is the utility function and ct is consumption.
Suppose that the consumer can allocate his wealth among n� 1 risky assets with an
rit rate of return and a riskless asset with a rate of return r0t. The maximization
results in n first-order conditions in the following form

U#ðctÞZ
E
�
U#ðctC1Þð1CritÞ

�
1Cq

; iZ0;.;n� 1: ð2Þ

These first-order conditions show that the consumer must choose a consumption
path such that the marginal utility of consumption for this period equals the
discounted expected marginal utility of the consumption for the next period. The
first-order conditions must hold regardless of the characteristics of the assets,
whether they are risky or riskless. By rearranging the first-order conditions in
Eq. (2),

E
�
U#ðctC1Þðrit � r0tÞ

�
Z0; iZ1;.;n� 1; ð3Þ

which may be rewritten as

E
�
U#ðctC1Þ

�
E½rit � r0t�CCov

�
U#ðctC1Þ; rit

�
Z0; iZ1;.;n� 1: ð4Þ

At equilibrium, the return from asset i must satisfy the following equation

EðritÞZr0t �
Cov

�
U#ðctC1Þ; rit

�
E
�
U#ðctC1Þ

� ; iZ1;.;n� 1: ð5Þ

4 See Blanchard and Fischer (1989, Ch. 10) and Gençay et al. (2001a, Ch. 3) and Gençay et al. (2001a,

Ch. 7).
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According to Eq. (5), the investor will invest in an asset with an expected rate of
return less than the risk-free rate of return if the asset return has a positive
relationship with the marginal utility of consumption. This is because the asset is
a hedging tool for consumption smoothing, as it provides a higher rate of return
when the marginal utility of consumption is high and a lower rate of return when the
marginal utility of consumption is low.5

Suppose there exists an asset m such that its return is negatively related with the
marginal utility of consumption in the next period, so that U#(ctC1)Z�grmt for
some positive g. It follows that Cov

�
U#ðctC1Þ; rit

�
Z� gCovðrit; rmtÞ. Eq. (5) must

hold for asset m as well, such that

EðrmtÞZr0t �
Cov

�
U#ðctC1Þ; rmt

�
E
�
U#ðctC1Þ

� Zr0tC
gs2

m

E
�
U#ðctC1Þ

�; ð6Þ

where sm
2 is the return variance for asset m. It follows that

EðritÞZr0tC

�
Covðrit; rmtÞ

s2
m

�
½EðrmtÞ � r0t�: ð7Þ

Notice that the return from asset m is assumed to be negatively correlated with the
marginal utility of consumption next period. If we assume that m is a market
portfolio (all traded assets in the market), Eq. (7) is known as the security market line
in the CAPM of Sharpe (1964) and Lintner (1965). Eq. (7) implies that the excess
return from asset i (in excess of the risk-free asset return) should be proportional to
the market premium (market return in excess of the risk-free asset return). The
proportionality factor is known as systematic risk, or the beta of an asset,

biZ
Covðrit; rmtÞ

s2
m

: ð8Þ

In empirical finance, the usual estimator for bi is the OLS estimate from the
following regression

ðrit � r0tÞZbiðrmt � r0tÞCeit; ð9Þ

where eit is a white noise disturbance term. We now propose an alternative multiscale
estimator for the systematic risk or beta of an asset in Eq. (8).

3. Wavelets

Wavelet filters provide an easy vehicle in which to study the multiscale properties
of a process. It is important to realize that economic/financial time series need not
follow the same relationship as a function of time horizon (scale). Hence, a transform
that decomposes a process into different time horizons is appealing as it differentiates

5 Because of the diminishing marginal utility assumption, the marginal utility of consumption is high

when the level of consumption is low and the marginal utility of consumption is low when the level of

consumption is high.
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seasonalities, reveals structural breaks and volatility clusters, and identifies local and
global dynamic properties of a process at distinct time scales.

With respect to economics and finance, the works of J. B. Ramsey and co-authors
first introduced wavelets into the mainstream literature. Ramsey and Zhang (1997)
performed a time-frequency analysis of foreign exchange rates using wavelets. They
found that wavelet analysis succinctly captured a variety of nonstationary events in
the series. Ramsey and Lampart (1998a,b) decomposed economic variables across
several wavelet scales in order to identify different relationships between money and
income, and between consumption and income. See Ramsey (1999) for a recent
review article on wavelets in economics and finance.

Gençay et al. (2001a) presented a general framework for the basic premise of
wavelet filtering within the context of economic/financial time series. The authors
illustrated that a number of concepts such as nonstationarity, multiresolution and
approximate decorrelation emerged from wavelet filters. Wavelet filtering provides
a natural platform on which to deal with the time-varying characteristics found in
most financial time series, and thus the assumption of stationarity may be avoided.
Gençay et al. (2001b) proposed a simple method for intraday seasonality extraction
that was free of model selection parameters. Their methodology is based on
a wavelet multiscaling approach which decomposes the data into its low- and high-
frequency components. Gençay et al. (2001c) investigated the scaling properties of
foreign exchange volatility through a multiscale decomposition of the variance and
covariance between two time series on a scale-by-scale basis. It was shown that
foreign exchange rate volatilities follow different scaling laws at different horizons.

3.1. Multiscale analysis

Suppose the economy consists of several agents with different time horizons when
it comes to making a consumption-saving decision. Hence, predictions of the CAPM
should be investigated at different time scales. Different estimates of beta for the
same asset at different return intervals, documented by empirical research, probably
reflects this fact.6 Wavelet analysis is a natural tool for investigating different time
scale properties of beta by decomposing returns on a scale-by-scale basis.

Unlike the Fourier transform, that uses sine and cosine functions on which to
project the data, the wavelet transform utilizes a wavelet function that oscillates on
a short interval in time. The Haar wavelet is a simple example of a wavelet function
that may be used to obtain a multiscale decomposition of a return series. The Haar
wavelet filter coefficient vector, of length LZ 2, is given by hZðh0; h1ÞZ�
1=

ffiffiffi
2

p
;�1=

ffiffiffi
2

p �
. Three basic properties characterize a wavelet filter7:X

l

hlZ0;
X
l

h2lZ1; and
X
l

hlhlC2nZ0 for all integers ns0: ð10Þ

6 Bjornson et al. (1999) investigate the influence of low- and high-frequency macroeconomic forces on

asset pricing and show that different frequency dynamics have different effects on the systematic risk.
7 We are specifically concerned with the Haar and other compactly supported orthogonal wavelets such

as those of Daubechies (1992).
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That is, the wavelet filter sums to zero, has unit energy, and is orthogonal to its even
shifts. These properties are easily verified for the Haar wavelet filter. The first
property guarantees that h is associated with a differencing operation and thus
identifies changes in the data. The second ensures that the coefficients from the
wavelet transform will have the same energy as the data, where energy is defined to
be the sum of squares. Thus, neither extra information has been added through the
wavelet transform nor has any information been excluded. The third property allows
for efficient construction of an orthogonal transform and therefore efficient
implementation on a computer. The complementary filter to h is the Haar scaling
filter gZðg0; g1ÞZ

�
1=

ffiffiffi
2

p
; 1=

ffiffiffi
2

p �
, which possesses the following attributes:

X
l

glZ
ffiffiffi
2

p
;

X
l

g2lZ1; and
X
l

glglC2nZ0 for all integers ns0: ð11Þ

The scaling filter follows the same orthonormality properties of the wavelet filter,
unit energy and orthogonality to even shifts, but instead of differencing consecutive
blocks of observations, the scaling filter averages them. Thus, g may be viewed as
a local averaging operator. Additional information regarding wavelet filters,
including the Haar and other compactly supported orthogonal wavelets, and
their properties may be found in, for example, Mallat (1998) and Gençay et al.
(2001a).

The Haar wavelet filter coefficient h, when applied to a return series rt, produce
the following wavelet coefficientsffiffiffi

2
p

~w1tZh0rtCh1rt�1; tZ0;1;.;T� 1: ð12Þ

The factor of
ffiffiffi
2

p
is necessary to guarantee that the squared norm of the wavelet

coefficients is equivalent to the squared norm of the return series. We do not
reference a particular asset with rt in Eq. (12) in order to simplify notation. Thus, the
wavelet coefficient ~w1t is a weighted difference between consecutive returns. The
Haar scaling filter coefficient vector g is used to produce the scaling coefficients

ffiffiffi
2

p
~v1tZg0rtCg1rt�1; tZ0;1;.;T� 1: ð13Þ

In contrast to ~w1, the scaling coefficients ~v1 are based on local averages (of length
two) of the original returns. By collecting both sets of coefficients into ~wZð ~w1; ~v1Þ,
we have separated (or filtered) the high-frequency and low-frequency content from
the original returns.

The wavelet coefficients ~w1 are associated with the high-frequency (rapidly
oscillating) content of the returns rt. From fundamental properties of the spectral
density function of a stationary process, the spectrum of rt spans all frequencies f
between zero and 1/2 cycles per time unit (e.g., a second, an hour or a day). The
wavelet coefficients ~w1 are associated with the upper half of frequencies of rt,
1/4! f% 1/2. The scaling coefficients ~v1 are associated with the lower half of
frequencies, 0% f% 1/4. Thus, all the frequencies in the spectrumof rt are contained in
one of the two vectors from the wavelet transform. The coefficients

�
~w1; ~w1

�
are an

alternative representation of rt associated with differences and averages at two distinct
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scales.We can apply the convolutions in Eqs. (12) and (13) to the scaling coefficients ~v1
(instead of the returns rt) in order toproduce thewavelet coefficients ~w2, associatedwith
frequencies 1/8! f% 1/4, and scaling coefficients ~v2 associated with the frequency
interval 0% f! 1/8. This procedure may be repeated on each subsequent vector of
scaling coefficients up to the level J% log2T. The final collection ofwavelet and scaling
coefficients may be organized into the vector ~wZ

�
~w1; ~w2;.; ~wJ; ~vJ

�
. The wavelet

coefficients from level jZ 1, 2, ., J are associated with the frequency interval
1/2( j C 1)! f% 1/2j while the remaining scaling coefficients ~vJ are associated with
the remaining frequencies 0% f% 1/2( j C 1). The procedure of filtering output
from a previous filtering operation is known as a filter cascade and allows one
to relate the final filtered series to the original series via a single filter. This topic will
not be introduced here, but the interested reader is invited to consult Gençay et al.
(2001a).

The interpretation of wavelet coefficients as the difference of averages formed
using 2j�1 returns is natural when using the Haar wavelet filter. Likewise, scaling
coefficients are a simple average of 2j returns. When decomposing rt using the
wavelet transform, we are actually separating layers of information associated with
different time scales that increase with the level of the transform. Although beyond
the scope of this paper, longer wavelet filters8 also retain this interpretation as the
difference of weighted averages. After the wavelet coefficient vector is associated with
changes at the longest time scale, the remaining information (frequencies) is captured
in the scaling coefficients.

3.2. Wavelet variance and covariance

An important characteristic of the wavelet transform is its ability to decompose
(analyze) the variance of a time series. When discussing the wavelet transform in the
previous section, we pointed out that a vector of wavelet coefficients is associated
with changes at a particular scale. This means that each wavelet coefficient was
constructed using a difference of two (weighted) averages. Applying the wavelet
transform to a return series produces a decomposition on a scale-by-scale basis.

If we assume that dependence structure of our return rmt is independent of time
(this is true for a stationary time series), then we may define the time-independent
wavelet variance, or just the wavelet variance, of asset m associated with level j to be
s2mjZVarð~wmjÞ. That is, the level j wavelet variance is simply the variance of the
wavelet coefficients at level j and may be estimated using wavelet coefficients not
affected by the boundary (Gençay et al., 2001a, Ch. 7).

Let rmt and rnt be the return from two distinct assets m and n. We obtain a wavelet
decomposition for each asset by applying the wavelet transform to rmt and rnt
individually yielding the wavelet coefficient vectors ~wm and ~wn, respectively. The
wavelet covariance between rmt and rnt for level j is given by Covð~wmj; ~wnjÞ and
unbiased estimation is provided in Gençay et al. (2001a, Ch. 7). Notice that the
squared wavelet coefficients from this decomposition at each scale capture a certain

8 The compactly supported wavelet filters of Daubechies (1992) have been widely used.
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part of the energy in returns and enable us to decompose the total energy across
scales. In other words, covariances and variances might be significantly different at
certain scales, implying different betas at different scales.

4. Empirical results

4.1. United States

Our data set consists of all the stocks listed in the S&P 500 index between January
1, 1973 and November 1, 2000 for portfolio construction purposes. The S&P 500
index is taken to be the corresponding market portfolio. The risk-free rate of return
r0t is assumed to be the daily rate of return from the 10-Year Treasury bill.9 The
sample size is 7263 market days or roughly 28 years.

The daily return of each stock is calculated as the log price difference
ritZ log Pit� log Pit�1, where Pit is the price of asset i at day t. The market return
rmt is taken as the log difference of the S&P 500 index rmtZ log St� log St�1, where
St is the index value at day t. During the entire sample period, the beta of each
individual stock is calculated from a one year subsample using the wavelet beta
estimator bwij utilizing the LA(8) wavelet filter10 bwijZ½Covð~wmj; ~wijÞ�=s2mj, for scales
jZ 1, 2, ., 6, where s2mjZVarð~wmjÞ is the wavelet variance of the market premium
(the difference between market return rmt and the risk-free return r0t, see Eq. (9)) at
the wavelet scale j and Covð~wmj; ~wijÞ is the wavelet covariance at wavelet scale j
between the individual stock premium (the difference between return rit and the risk-
free return r0t) and the market premium. Since we employ daily data in our analysis,
wavelet scales are such that scale 1 is associated with 2–4 day dynamics, scale 2 with
4–8 day dynamics, scale 3 with 8–16 day dynamics, scale 4 with 16–32 day dynamics,
scale 5 with 32–64 day dynamics and scale 6 with 64–128 day dynamics. Since the
portfolio updating is carried out every year, scale 6 is the highest scale at which we
can calculate the beta of each stock because scale 7 corresponds to 128–256 day
dynamics (approximately one year).

The stocks are ranked at each scale according to their estimated wavelet betas for
every year in the sample period. From these rankings, 10 (and 15) portfolios with an
equal number of stocks are constructed such that the first portfolio consists of stocks
with the lowest betas while the final portfolio contains the stocks with the highest
betas. The return from each portfolio (stocks are equally weighted in each portfolio)
during the following year is calculated and the portfolio beta with the corresponding
average return is retained. This process of updating portfolios every year according
to beta sizes and calculating the average return from each portfolio for the next year
is repeated for the entire sample.11

9 The data source for individual stocks and the S&P 500 index is Datastream. The 10-Year Treasury bill

(constant maturity rate) is obtained from the H.15 Release, Federal Reserve Board of Governors. Days are

defined as market days, not calendar days.
10 We denote the Daubechies least asymmetric wavelet filter of length L via LA(L).
11 See Reinganum (1981) for a similar approach to beta estimation and testing the CAPM.
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When the entire sample period is covered, we have average betas for 10 (and 15)
portfolios, from lowest beta portfolios to the largest beta portfolios, and
corresponding average returns at each wavelet scale. If the CAPM is valid, we expect
a positive relationship between the average beta of each portfolio and the
corresponding average return. In other words, we expect that as the average beta
increases, the average return increases as well. Fig. 1 plots average daily portfolio
returns (vertical axis) versus corresponding average portfolio betas at different
wavelet scales. The returns are expressed as a yearly compound rate in percent. Visual
inspection of Fig. 1 reveals that there is a positive relationship between the average
betas of portfolios and average returns at every scale. Furthermore, as the scale
increases from low (Fig. 1a) to high (Fig. 1f), the slope between the beta and the
return increases. In other words, the plots indicate that the well-known smiling face
in many instances is reduced as the scale increases. This observation indicates
that a seemingly nonlinear relationship between risk and return may be a scale
specific phenomenon. Further study on this issue is required by considering
capitalization weighted portfolios to capture possible size effects in multiscale beta
estimation.

Table 1 reports the OLS estimate of the regression coefficient of average portfolio
return (dependent variable) versus average portfolio betas (independent variable) at
different scales for both 10 and 15 portfolios. The OLS estimate of average return
versus average portfolio betas from the raw data is also reported for comparison.
The results in Table 1 show that the positive relationship between the beta of each
portfolio and the corresponding average return is significant at all wavelet scales.
Notice that the magnitude of the regression coefficient increases as wavelet scale
increases. For example, an increase in portfolio beta from bZ 1 to bZ 2 results in
(annual compound) a 4.8% increase in the daily portfolio return at the first wavelet
scale, while the same increase in portfolio beta results in (annual compound) a 15.8%
increase at the sixth wavelet scale.12 We further notice that scales 2 and 5 stand out
from others with higher R2s and lower statistical significance levels of the regression
slope. There is no obvious reason for this difference; however, a strong possibility is
that weekly seasonality (captured primarily by the second wavelet scale) might be
causing a stronger relationship between the average return and beta at these scales.

According to the CAPM, if the return-beta relation is valid then the OLS estimate
of the regression coefficient of average portfolio return (dependent variable) versus
average portfolio betas (independent variable) must be equal to the market risk
premium. The estimated slopes at scales 2 and 3 approximate this premium, implying
that the return-beta relation is a multiscale phenomenon. The estimated slopes at the
lowest scale underestimates the market premium. In other words, the predictions of
the CAPM are more relevant for investors with medium-to long-run horizons as
compared to those with short time horizons.

12 The estimated regression coefficient in Table 1 is 0.000181 at scale one (for both 10 and 15 portfolios).

This means that a one unit increase in portfolio beta (from b Z 1 to bZ 2) results in 0.000181 unit

increase in average daily return. Assuming 260 business days, the corresponding annual compound

increase is 4.8% since (1C 0.000181)260 Z 1.0482.
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4.2. Germany

A comprehensive example of estimating the systematic risk in a multiscale
framework was presented in the previous section. The example utilized daily stock
market data from the US economy, covering approximately 28 years. The estimated
wavelet betas and average returns were calculated for different portfolios every year.
In this section, we utilize a shorter sample period from another economy, Germany.
Our purpose is to show that the wavelet multiscale approach to systematic risk
estimation is robust and provides useful insight about the market developments even
for shorter time periods.
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Fig. 1. Average daily portfolio returns (vertical axis) versus corresponding average portfolio betas at

different wavelet scales. The returns are expressed as yearly compound rate in percent. The wavelet scales

are such that (a) scale 1: 2–4 day periods, (b) scale 2: 4–8 day periods, (c) scale 3: 8–16 day periods, (d)

scale 4: 16–32 day periods, (e) scale 5: 32–64 day periods and (f) scale 6: 64–128 day periods. Notice that as

the scale increases from low (a) to high (f), the slope between the beta and the return becomes larger and it

also better approximates the market risk premium.
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Our data set from Germany consists of all the stocks, except three, included in the
Xetra DAX Index (DAX30) between January 3, 2000 and December 28, 2001.13 The
sample size is 499 days. The daily return of each stock is calculated as the log price
difference ritZ log Pit� log Pit�1, where Pit is the price of asset i at day t. The
market return, rmt is assumed to be the log difference of the DAX30 index
rmtZ logDt� logDt�1, where Dt is the index value at day t. The risk-free rate of
return r0t is assumed to be the daily EURIBOR.14 The beta of each individual stock
for the entire sample period is calculated using the wavelet beta estimator bij

w from
the same LA(8) wavelet filter as before.

Fig. 3 plots average daily stock returns (vertical axis) versus corresponding stock
betas at different wavelet scales in Germany. The returns are expressed in daily
percent. The wavelet scales are such that scale 1 is associated with 2–4 day dynamics,
scale 2 is associated with 4–8 day dynamics and so on. As previously mentioned, if
the beta-return relation is valid then the slope from the regression of the stock return
on the stock beta must be equal to the average market premium E(rmt� r0t) during
the sampling period. The average daily market premium, defined as the sample
average of rmt� r0t is �0.00066 and corresponds to a yearly (compound) rate of
return of 16%. The OLS estimates of the slopes in Fig. 3 indicate that the average
market risk premium is underestimated in the first two scales (�24.5% and �20.5%,
respectively). The estimated slope at the third scale implies an average market
premium of �18.5% which is very close to the realized average market premium. At

Table 1

The OLS estimates of average portfolio return (dependent variable) versus average portfolio beta

(independent variable) at different scales

10 Portfolios 15 Portfolios

Constant Slope R2 Constant Slope R2

Scale 1 0.0376*** 0.0181* 0.16 0.037*** 0.0181* 0.17

Scale 2 0.026** 0.0293*** 0.49 0.024*** 0.0303*** 0.48

Scale 3 0.025** 0.0287** 0.35 0.024** 0.0293** 0.31

Scale 4 0.016 0.0358** 0.34 0.014 0.0370** 0.32

Scale 5 0.004 0.0461*** 0.52 0.001 0.0486*** 0.49

Scale 6 �0.004 0.0565** 0.30 �0.004 0.0560** 0.31

Raw 0.025** 0.306** 0.52 0.024** 0.315** 0.51

The raw data is also reported for comparison. The wavelet scales for (a)–(f) are defined as in Fig. 1. The

results are obtained from 10 different portfolios (left) and 15 different portfolios (right) constructed

according to the beta ranking of stocks. Both slope and intercept are multiplied by 100 for reporting

purposes. One star (*) indicates that the coefficient is significant at the 10% level of significance, two stars

(**) at 5%, and three stars (***) at 1%.

13 Infineon Tech., Henkel Kgaa., and Deutsche Post are excluded because of missing prices for certain

days during the sample period.
14 The data source for individual stocks and the DAX30 is http://finance.yahoo.com. Stock prices are

adjusted for dividends and splits. The daily EURIBOR is taken from http://www.euribor.org. EURIBOR

(Euro Interbank Offered Rate) is the rate at which euro interbank term deposits within the euro zone are

offered by one prime bank to another.

http://finance.yahoo.com
http://www.euribor.org
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higher scales, the market premium is overestimated again. We conclude that the third
scale (capturing dynamics with a period of 8–16 days) explains the return-beta
relationship much better than other scales during the sample period.

4.3. The United Kingdom (UK)

In the German example, we utilized a shorter time period and assumed that the
market return could be captured by a popular stock market index, the DAX30. A
multiscale analysis of stocks included in the DAX30 was equivalent to analyzing the
entire market. Although it is a common approach in applied work, the assumption of
a stock market index representing the market and its components is rarely valid in
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Fig. 2. Average daily stock returns (vertical axis) versus corresponding average stock betas at different

wavelet scales in the UK. The returns are expressed in daily percent. The wavelet scales for (a)–(f) are

defined as in Fig. 1. As the scale increases from low (a) to high (f), the slope between the beta and the

return gets larger and it better approximates the market premium, except at the sixth scale.
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practice, and the robustness of our analysis could benefit from being tested in a more
realistic framework.

Our data for the UK consist of a random sample of thirty stocks included in the
Financial Times Stock Index (FTSE100) between January 4, 2000 and December 28,
2001.15 The corresponding market portfolio is taken to be the FTSE100. The risk-
free rate of return r0t is assumed to be the daily rate of return from the 1-month UK
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Fig. 3. Average daily stock returns (vertical axis) versus corresponding stock betas at different wavelet

scales in Germany. The returns are expressed in daily percent. The wavelet scales for (a)–(f) are defined as

in Fig. 1. Notice that as the scale increases from low (a) to high (f), the slope between the beta and the

return becomes larger and it better approximates the market premium.

15 The following stocks were chosen randomly among the FTSE100 stocks: Anglo American, Boots Co.,

Northern Rock, BP, Shell, Schroders, Prudential, Scottish Power, Cadbury Schweppes, Smith & Nephew,

Next, BAE Systems, Severn Trent, Marks & Sp., Six Continents, Granada, Lloyds, Scot & New Castle,

Dixons Group, Canary Wharf, Amersham, British Sky B., Old Mutual, Aliance & Leicense, BT Group,

Hays, Allied Domesq., HBOS, Shire Pharm., Abbey National.
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treasury bill middle rate.16 The sample size is 491 days. With this example, we ex-
amine a situation in which a researcher captures only part of the market.

The daily return of each stock and the FTSE100 is calculated as the log price
difference. During the entire sample period, the beta of each individual stock is
calculated using the wavelet beta estimator bij

w from the LA(8) wavelet filter. Fig. 2
plots average daily stock returns (vertical axis) versus corresponding stock betas at
different wavelet scales in the UK. The returns are expressed in daily percent. The
wavelet scales are such that scale 1 is associated with 2–4 day dynamics, scale 2 is
associated with 4–8 day dynamics and so on. The yearly market premium
(compound) rate of return during the sample period in the UK is 15.6%, a figure
very close to the German average. The OLS estimates of the slopes in Fig. 3 indicate
that the average market risk premium is underestimated in the first two scales
(�31.3% and �27%, respectively). The estimated slope at the third scale implies an
average market premium of �17.5%, the fourth scale �16.2% and the fifth scale
�18%. Once again, the return-beta relationship is captured at higher scales much
better than at the lower wavelet scales. These findings enforce our earlier conclusion
that the return-beta relationship is a multiscale phenomenon and longer time scales
are more relevant in explaining the relationship when compared to short time scales.

5. Conclusions

In this paper we propose a new approach for estimating the systematic risk or the
beta of an asset in a capital asset pricing model (CAPM). The proposed method is
based on a wavelet multiscaling approach that decomposes a given time series on
a scale-by-scale basis. At each scale, the wavelet variance of the market return and
the wavelet covariance between the market return and a portfolio are calculated to
obtain an estimate of the portfolio’s systematic risk (beta). The empirical results
show that the relationship between the return of a portfolio and its beta becomes
stronger as the scale increases. That is, predictions of the CAPM are more relevant at
medium- to long-run horizons as compared to short time horizons.
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