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Joint Source-Channel Coding and Guessing
with Application to Sequential Decoding

Erdal Arikan, Senior Member, IEEEand Neri MerhavSenior Member, IEEE

Abstract—We extend our earlier work on guessing subject to value of d(U, ffj) We shall refer to this type of decoder as
distortion to the joint source-channel coding context. We consider a guessing decodeand denote the number of guesses until

a system in which there is a source connected to a destination via g ,~~assful reconstruction (which is a random variable) by
a channel and the goal is to reconstruct the source output at .
Gy (U]Y) in the sequel.

the destination within a prescribed distortion level with respect o ! . . .
to (w.rt) some distortion measure. The decoder is auessing The main aim of this paper is to determine the best attainable

decoder in the sense that it is allowed to generate successivegperformance of the above system under the performance
estimates of the source output until the distortion criterion is goal of minimizing the average decoding complexity, as
met. The problem is to design the encoder and the decoder SO measured by the momeng[Gy(U[Y)”], p > 0. We also

as to minimize the average number of estimates until successful tudy the cl | lated bl f findina tiaht b d
reconstruction. We derive estimates on nonnegative moments StUdy the closely refated probiem or Tinding tig ounds on

of the number of guesses, which are asymptotically tight as the probability Pr[Gn(U]Y) > V%] that an exponentially
the length of the source block goes to infinity. Using the close large number of guesses will be required until successful
relationship between guessing and sequential decoding, we givereconstruction. We have two motivations for studying these
a fight lower bound to the complexity of sequential decoding ropjems. First, the present model extends the basic search
in joint source-channel coding systems, complementing earlier del treated : > h th bl t th
works by Koshelev and Hellman. Another topic explored here model treated in [ ]’ where the problem was Olguess X e
is the probability of error for list decoders with exponential list Output of a source in the absence of any coded information
sizes for joint source-channel coding systems, for which we obtain supplied via a channel. Second, and on the more applied
tight bounds as well. It is noteworthy that optimal performance  side, the guessing decoder model is suitable for studying the
w.r.t. the performance measures considered here can be aChieVEdcomputationaI complexity otequential decodingwhich is
in a manner that separates source coding and channel coding. . . b .
S _ _ a decoding algorithm of practical interest. Indeed, through
Index Terms—Guessing, joint source-channel coding, list de- this method, we are able to solve a previously open problem
coding, rate distortion, sequential decoding. relating to thecutoff rate of sequential decoding in joint
source-channel coding systems.
|. INTRODUCTION In the remainder of this intr(_)duction, we _shall ou.tlir)e the
ONSIDER the joint source-channel coding system iﬁ?sults O.f this paper more precge!y. We begin by pointing O.Ut
. . S e relationship of the present joint source-channel guessing
Fig. 1 where a source is connected to a destination \ia

a channel and the goal is to reconstruct the source Outér&mework to earlier work on guessing. In [2], we considered

at the destination within a prescribed per-letter distortion a guessing problem which is equivalent to the rather special

. . . case of the joint source-channel guessing problem where there
with respect to (w.r.t.) some distortion measurerhe source . . ; . .
is no channel (i.e., the decoder receives no coded information

generates a random vectdf = (UL, ---, UJ,V) Whlch 'S aboutl before guessing begins). There, the number of guesses
encoded into a channel input vectdf = (X1, -, Xi) 0 qenoted b7 »(U) and an asymptotic quantity called the
and sent over the channel. The decoder observes the chafie] <. N . ymp q y

. Jeéssing exponentas defined as
outputY” = (Y1, ---, Yi) and generates successive guesseg
(reconstruction vectorsy/;, Us, and so on, until a gueds; is L 1 .
produced such thaU, U;) < ND. At each step, the decoder E(D, p)= lim_ N an n BlGx(U)] (1)

is informed by a genie whether the present gﬁ;satisfies S ded that the limi ) | h h
d(U, U;) < ND, but receives no other information about th(%Or p = 0, provided that the limit exists. It was shown that,
or any discrete memoryless source (DMB)and additive
(single-letter) distortion measuké
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Fig. 1. Joint source-channel coding and guessing system.
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Lossless joint source-channel guessing system

Fig. 2. Separation of source coding and channel coding.

exists, as of (U,Y) is influenced by the choice of the encodey;
thus it is subject to design, at least partially. In [2], a single-
letter expression was given for the exponéit|y (D, p)
that applies to guessing with (uncoded) side-information. It
where ey denotes an encoding function that maps Sourge immediate from the definitions that

sequences of lengthy into channel sequences of lengkh. ) L

In letting N — oo, we setK = [AN] for some constanh Ese(D, p) = lim {N" min Eyy(D, p)}y ()

that represents the ratio of the channel signaling rate to source , i ,

symbol rate. The main result of this paper is that for anyhere the exponent on the right-hand side applies to an
DMS P, discrete memoryless channel (DM@}, and single- nsemble(U, Y) such thatlU is a source block of length

letter distortion measuréd, the joint source-channel guessingN' Y is_a_ channel output bl(.)Ck of length’ = [ANT],
exponent has a single-letter form given by and the joint I_D_MFP(u, y) is given by the product of t_h_e
source probabilityP(«) and the channel transition probability
Ew(D, p) = [E(D, p) — AEo(p)]* @

W (ylen(w)). Unfortunately, the term on the right-hand side
of (5) is not in a single-letter form. The main accomplishment
in this paper is to give a single-letter form fék..(D, p).
Next, we explain the relationship of guessing to coding,
specifically to list decoding and sequential decoding, and
Thus the exponent..(D, p) is determined by the dif- outline our results in this regard. Recall that a list decoder
ference of a source-related terms(D, p), and a channel- generates a fixed number> 1, of guesses (estimates) and a
related termAEq(p); the channel term\Ey(p) represents the decoding failure is said to occur if none of the guesses approx-
potential benefit of having a channel. This result indicatésates the source output within the desired distortion level. On
that thepth moment of G (U[Y) for any such system mustthe other hand, a guessing decoder is fully determined by the
grow exponentially in the source blocklengthif E(D, p) > sequence of guess€ky(Y) = {U;, Uy, ---} that it would
AEo(p). Conversely, forE(D, p) < AEo(p), the pth moment generate if at each stage of guessing the desired distortion
can be kept from growing exponentially itV by suitable criterion remained unmet. So, a guessing decoder may be
design of the encoder and the decoder. viewed conceptually as a list decoder, whose output is the
We prove (4) in Sections Il and IV. The proof exhibitspossibly infinite listGy(Y'). A list-¢ decoder can be obtained
a separation principle for such systems in the sense tifi@m a guessing decoder by truncating the §st(Y") to its
an optimal encoder can be built as a two-stage device: thist £ elements. Fof = 1, we have ordinary decoding and the
first stage maps the source output vector to a rate-distortiosual performance criterion is to have the average distortion
codeword, independently of the channel characteristics; whiatisfy E[d(U, U,)] < ND. This is the original setting for
the second stage encodes the rate-distortion codeword itite joint source-channel coding problem and Shannon’s joint
a channel codeword, independently of the source statistissurce-channel coding theorem (see, e.g., [9, Theorem 9.2.2,
The guesser then essentially aims to recover the rate-distortprl49]) addresses the conditions under which this requirement
codeword in a lossless manner (Fig. 2). can be met. Fo¥ > 1, a common performance criterion
The joint source-channel guessing problem that we considerthe probabilityPr[Gn(U]Y) > {] that none of the first
here is also closely related to another guessing problem condidguesses meet the desired distortion threshold. The best
ered in [2], namely, guessing withncodedside-information attainable performance under this criterion has been studied
(as opposed toodedside-information of the present context)by Csisar [4] for £ = 1 as N — oo; however, the exact
In the case of uncoded side-information, the @&ir Y') has asymptotic performance remains unknown.
a given joint PMF that is not subject to design in any manner. In this paper, we are interested in the performance of list
In the case of coded side-information, however, the joint PMiiecoders with exponential list sizes,= ¢¥*, L > 0, for

E..(D, p)= lim 1 min ln E[GNyUY)]  (3)

N—oo en,GnN

where Ey(p) is the Gallager function fobV [9] and

[z]T 2 max{0, z}.



1758 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 5, SEPTEMBER 1998

which we obtain an exact asymptotic result. Specifically, we The remainder of this paper is organized as follows. In

define thesource-channel list-error exponeas Section I, we define the notation and give a more formal
1 . definition of the guessing problem. The single-letter form (4)
Foe(L, D) = lim  sup —y PrGy(UIY) > e™]  is proved in Section Il for the lossless cag = 0, and
N720 en G 6) in Section IV for the lossy cas® > 0. In Section V, we

whenever the limit exists. (In taking the limit, we s&t — prove the single-letter form (7) for the source-channel list-error

[ANT].) In Section V, we prove that for any DM&, DMC exponent. In Section VI, we apply the results about guessing
W. additive distortion measuré andL > 0 to sequential decoding. Section VIl concludes the paper by

summarizing the results and stating some open problems. We
Fo(L, D)= mln[F(R D)+ XE,[(R—L)/A]] (7) also discuss in Section VII the possibility of using a stochastic
encoder in place oéx and show that there is no advantage
where F(R, D) is Marton’s source-coding exponent [15], ando be gained.
E.,(+) is the sphere-packing exponent [9, p. 157] For.
List decoders with exponential list sizes are not practical;
however, bounds on the probability of error for such decoders Il. PROBLEM STATEMENT:
may have applications to the analysis of concatenated and NOTATION, AND DEFINITIONS
hierarchical coding systems. In fact, an immediate applicationWe assume, unless otherwise specified, that the system in
of these results is given in Section VI, where we obtain Rig. 1 has the following properties. The source is a DMS with
lower bound to the distribution of computation in sequential PMF P over a finite alphabet/. The channel is a DMC
decoding. with finite input alphabetY, finite output alphabefy, and
As stated before, one of our main motivations for studyingansition probability matrix#”. The reconstruction alphabet
joint source-channel guessing systems is for its suitability ag/ais finite as well. The distortion measudeis a single-letter
model for sequential decoding. We now summarize our resultgasure, i.e., it is a functiod: ¢/ x ¢/ — [0, oo), which is
in this regard. Sequential decoding is a decoding algorithm fextended td/™ x 24V by settingd(u, @) = Zﬁ;l AU, Gin),
tree codes invented by Wozencraft [18]. The use of sequentigl (v, ---, uy), % = (44, -- -, 4x). Also, for eachu € U,
decoding in joint source-channel coding systems was proposgére exists somé € I/ such thatd(u, ) = 0.
by Koshelev [14] and Hellman [12]. The attractive feature Throughout, scalar random variables will be denoted by
of sequential decoding, in this context, is the possibility afapital letters and their realizations by the respective lower
generating aD-admissible reconstruction sequence, with agase letters. Random vectors will be denoted by boldface
average computational complexity that grows only linearlycapital letters and their realizations by lower case boldface
with NV, the length of the source sequence. To be mojgters. Thus e.gl/ = (U1, ---, Uy) will denote a random
precise, letCy denote the amount of computation by thgector, whileu = (u1, ---, un) a realization of. PMF’s of
sequential decoder to reconstruct the fittsource symbols scalar random variables will be denoted by upper case letters,
within distortion level N D. Then,Cy is a random variable, e.g., P, P, Q, S. For random vectors, we will denote the

which depends on the level of channel noise, as well as th&1F’s by upper case letters indexed by the length of the
specific tree code that is used and also the source and chagaetor, e.g.,Py, Pi, etc. We will omit the index~ for
parameters. For practical applications, it is desirable to haggyduct-form PMF's; e.g., we writé®(u) instead of Py (u)
E[Cy]/N, the average complexity per reconstructed sourgghen Py is a product-form PMF. The probability of an
digit, bounded independently df. Koshelev [14] studied this event A w.r.t. a probability measuré” will be denoted by
problem for the lossless cag® = 0) and gave a sufficient p/(4). When the underlying probability measure is specified
condition; in our notation, he showed tha#if0, 1) < AEo(1)  unambiguously, we also use a notation suchPa@, y) to
then it is possible to hav&[Cy]/N bounded (independently denote the joint PMF ot/ andY, or Pr(i, A) to denote the
of N). Our interest in this paper is in converse results, i.gyrobability of joint occurrence o/ = % and an event. The
necessary conditions for the possibility of having a bounde§pectation operation is denoted .

E[CN]/N. For a given vectow € A", the empirical PMF is defined

In Section VI, we point out a close connection betweegnsQ = {Q(x); x € A}, WhereQg(z) = Ny(z)/N, Ng(x)
guessing and sequential decoding, and prove, as a SiM{hg the number of occurrences of the lettein the vector
corollary to (4), that for any DMS?, DMC W, and additive 4 The type clasg}, of z is the set of all vectorg’ € AY
distortion measurd, E[C}] must grow exponentially Wit sych that),, = @,. When we need to attribute a type class
(thus E[CY]/N cannot be bounded) if to a certain PMFQ rather than to a vector, we shall use the

notation 75,.
ED, p) > Ao(p). ® In the same manner, for sequence péirsy) € A~ x BY,

For the special casB = 0 andp = 1, this result complements the joint empirical PMF is the matriQsy, = {Qzy(z, v);
Koshelev’s result, showing that his sufficient condition is alse € A, y € B}, whereQyy(z, ) = Nyy(z, y)/N, Npy(z, y)
necessary. This result also generalizes the converse resulbéing the number of joint occurrencesof= z andy; = .
[1], where lossless guessirid = 0) was considered for an For a stochastic matrixV (y|z): = € A, y € B}, the V-shell
equiprobable message ensemble. These issues are discutgéd) of a sequence € A" is the set of sequencgsc BY
further in Section VI. such thatQ.y(z, ) = Qx(x)V (y|x) for all x andy.
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Next, we recall the definitions of some information-theoretic Definition 1: A D-admissible guessing strategy for the set
functions that appear in the paper. For a PM)Fover an of sequence#(" is an ordered lisGy = {ug, w2, --- } of

alphabetA, the entropy ofQ) is defined as vectors inf™ such that
H(Q)=-3 Q(z)ln Q(x) 9) U BGu, D) =u™. (19)
zCA %
and its Renyi entropy of ordery > 0, o # 1, as [16] In other words G is an ordered covering of the skt¥ by
1 the “D-spheres”B(u;, D).
Ho(Q)=1——In ) Q)" (10) . . . .
—a = Definition 2: The guessing function7x(-) induced by a

i ) D-admissible guessing strate@y, is the function that maps
Sometimes we writd{ (X) and H, (X to denote the entropy ocn,, « 24V into a positive integer, which is the indexof
functions for a random variabl&. For two PMF's@ andQ’ the first guessing word; € Gy such thatd(x, i) < N.D.
on a common alphabed, the relative entropy function is ! T =

) ) We now extend these definitions to the case where some
D) = Qz) W[Q(z)/Q (=)]. (11)  side-informationvectory € VX is provided.
zCA
_ _ _ Definition 3: A D-admissible guessing strategy for"
For a stochastic matri{V(ylz); @ € A,y € B}, and @ i gide-information spac®’X is a collection{Gx (y)} such
PMF @ on A, the mutual information function is defined as that for eachy € VX, G (y) is a guessing strategy far™y

IQ, V)= Q@)V(yle) m[V(yle)/V'(y)] (12) In the sense of Definition 1.

yeB zcA Definition 4. The guessing functiorGx(-|-) induced by
where a D-admissible guessing strategy with side-information,
{Gn(9)}, is the function that maps eaehc /" andy € Y
/ —
Vily) = 24Q($)V(y|x)' into a positive integerGy (uly), which is the indexj of the
TE

first guessing word:,; € Gn(y) such thatd(u, ;) < ND.
The rate-distortion functiod(D, @) for a DMS @ on ¥/,

w.r.t. a single-letter distortion measut@ni{ x4, is defined as We shall omit the subscrigV from the guessing functions and

simply write G(+|-), etc., when there is no room for ambiguity.
R(D, Q) = min I(Q, V) (13) Notice that the above definitions make no reference to a
v probability measure. In the context of joint source-channel
where the minimum is taken over all stochastic matri¢es guessing, we regartf” as the sample space for the source
such that vectorlU, and)® as that for the channel output vecir The
Z Z Qu)V (itfu) d(u, @) < D. (14) joint PMFfoS\y,Y iirg_iven byPr(u,_ Y) = P(y)W(y|eN(u))
whereen: U — X'* is the encoding function. The decoder
observes the channel output realizatignand employs a
Marton’s source-coding exponeit(R, D) for a DMS P is  guessing strateg§y () to find a D-admissible reconstruction

wCl ety

given by of the source realizatiom. Under such a strateg§ y (U]Y")
F(R, D) = min D(Q||P). (15) equals the.rarldom ngmber of guesses untiD-admissible
Q:R(D,Q)>R reconstructionl of U is found.

Throughout,o(N) will denote a positive quantity that goes

For a DMC W, we recall the following definitions. The Do
to zero asN goes to infinity.

channel capacity is defined 86= maxg I(S, W), where the
maximum is over all PMF's on the channel input alphabejy T g | ossLESSSOURCECHANNEL GUESSING EXPONENT

Gallager’s auxiliary functions are defined as ) , i ,
In this section, we consider the source-channel guessing

1+p .
_ (tp) problem for th_e lossless ca_ls@ = 0, i.e., the case where
Eo(p, §)=—1In Z Z S(@)W (y|x) (16)  the reconstruction alphabet is the same as the source alphabet
v L= and we desire exact reconstruction of the source output. This

for any PMF S on the channel input alphabet and any 0; case is of interest in its own right. Also, the general lossy

and guessing problenyD > 0) is reduced to the lossless one by
an argument given in the next section.

Eo(p) = max Eo(p, 5). (I7) " For lossless guessing, a guessing straté@yy)} that

generates its guesses in decreasing ordera gfosteriori

probabilities Pr[U' = u|Y = y] achieves the minimum

E,(R) = sup[Ey(p) — pR]. (18) possible value for the momenB{G(U|Y)”] of the associated
=0 guessing function. This is easily seen by simply writing

Next, we define the guessing problem more precisely. Fo
@c N, let i?[G(U|Y)P]:Z PrlY =y] > Pr{U=ulY =u|G(uly)’.
y u

B(#, D) £ {u e U™ : d(u, &) < ND}. (20)

The sphere-packing exponent function is defined as
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Note that such an optimal ordering of guesses depends on B{&/(U|Y)”] < <(p) by a suitable choice of the encoder and
encoderey since the joint PMF is given by the guessing strategy.
It is interesting that the conditiongf(P) < AC and
PrlV =u, Y =y] = P(w)W (ylen (w)). H(P) > \C are also the conditions for the validity of the
The fact that optimal guessing strategy is known for th%irect and converse parts, respectively, of Shannon's joint
Hrce—channel coding theorem for the lossless case [3, p. 216].

lossless case facilitates the characterization of the associzﬁ% . . .
This suggests an underlying strong relationship between the

guessing exponent, denoted Wy.(p). Our main result in N .

this section is the following singe-letter expression for thigroblems.of '). being able to keeE[G(U_JY)”] from growing

exponent exponentially inV, for somep > 0, and ii) being able to make
' the probability of erroPr[G(U]Y") > 1] arbitrarily small as

Theorem 1:For any DMS P and DMC W, the lossless N — oc. However, we have found no simple argument that

joint source-channel guessing exponent is given by would explain why the conditions for the two problems are
B B i identical. We propose this as a topic for further consideration.
Eqc(p) = [pH1/14p)(P) — AEo(p)]™ (21) " \We end this section by discussing monotonicity and con-

vexity properties for the functio..(p). It is clear from the

Since the proof of (21) is rather lengthy, it is deferred to th&efinition that E..(p) must be a nondecreasing function of

Appendix. In fact, in the Appendix we prove a stronger form > 0. This property, and further properties BE.(p), can be

Of. Theorem 1, which applies to sources W'.th Memory as Wepained analytically by considering the form (21). For this,
Since the proofs for lossy guessing require the treatment

. . refer to Lemma 1 (see the Appendix), which states that,
sources with memory (as the coded channel input may not e any fixed PMFS
memoryless), we state this stronger result for future reference

as the following proposition. flp, S) 2 PH1)(140)(P) — AEo(p, S)

Proposition 1: For any discrete source with a possiblyg 4 convex function, which is strictly increasing in the range
nonmemoryless PMRPy for the first V source letters, and ¢ p > 0 where f(p, S) > 0. We have

any fixed p > 0, there exists a lossless guessing function
G(U|Y) such that E.c(p) = [min f(p, $)" = minlf(p, $)]".

E[GU|Y)"| < c(p) exp{N[pH1 /14 (Pn)/N — AEo(p)]*}  Since the minimum of a family of increasing functions is
(22) increasing, it follows thatt.(p) is increasing in the range
where it is positive.
where ¢(p) is a constant, independent of the source andAs for convexity, Fs.(p) is convex wheneveFy(p) =
channel, and of the lengtly. Conversely, for any guessingming Fo(p, S) is concave; this is true in particular for those
function GU|Y) andp > 0 channels where the minimum is achieved by the saffer
E , all p > 0, such as the binary-symmetric channel. There are
[GUIY)] channels, however, for whicky(p) is not concave [9], and
> exp{N[pH1,14,)(Pn)/N — AEo(p) — o(N)]*}. (23) hence it is possible to construct examples for whig(p) is
not convex. (For example, tak as the uniform distribution
n inary alph h P) = pln(2). L
Proposition 1 implies, in particular, that for a memoryleso)‘sj0 (2) %eanzn?:gn(?:ve;.S‘F)h:;na:’%ﬂgge)(egoug hpEsc((p)) wiﬁt
sourceP, the pth moment ofG(U|Y’) can be kept below the be nonconvex.)

constantc(p) for all N > 1 if

Hyj14,)(P) < XEo(p)/p- (24) IV. THE LOSSY SOURCECHANNEL GUESSING EXPONENT

(This cannot be deduced from (21) since it leaves Ope%\;/)\fr are now in a position to prove the main result of this
the possibility of subexponential growth of the moment. '
Conversely, it follows directly from (21) that if Theorem 2: For any DMS P, DMC W, and single-letter
distortion measurd, the joint source-channel guessing expo-
Hyy110)(P) > AEo(p)/p (25)  nentE..(D, p) has a single-letter form given by

thn_Esc(p) >0 a_md thepth moment of G(U]Y) must go to E..(D, p) = [E(D, p) — MEo(p)]F. (26)
infinity exponentially in V.

SinceHy 14, (P) is increasing andy(p)/p is decreasing Proof:
as functions ofp > 0, the termHy (14, (P) — AEo(p)/p is Direct Part: We need to show

minimized in the limit asp — 0 (this is proved formally E..(D,p) < [E(D,p) — MEo(p)]™
below), with the limiting valueH(P) — \C, where C is = ’
the capacity ofi¥. Thus we conclude that itH(P) > AC, To obtain an upper bound on the minimum attainable

then E[G(U|Y)*] must go to infinity exponentially inv for E[G(U]Y)”], we consider a two-stage source-channel cod-
all p > 0. Conversely, ifH(P) < AC, then there exists aing scheme (Fig. 2). In the first stage, the source output
p > 0 such that, for any givenV, it is possible to have U is encoded into a rate-distortion codewokdl such that
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d(U, ff) < ND. In the second stage, a joint source-channelhere we may have strict inequality iu, #') < ND for
guessing scheme is employed, aiming at lossless recovensome € Cq such that
U. The details are as follows. 1
The encoding ofU/ into a channel input blockX is de- Golly) < Golfowly)
pendent on the type oF/. Let fo : To — Co be a rate- (i.e., whenu falls in the D-sphere of a codeword’ that
distortion encoder for the type clask, ¢ U~ such that precedesfo(u) in the order they are generated by,(y)).
d(u, fo(u)) < ND for eachu € Ty and the codebook Taking expectations of both sides of (30) w.r.t. the conditional
Cg has sizee (R(D, @+o(N)  Sych an encoder exists by theprobability measur@®:[U = u, U=14,Y =ylU e Ty (note
type-covering lemma [5, p. 150]. Let, : Co — X' denote that this conditional PMF equals zero unldss= fo(u)), we
a channel encoder that maps the codeb6gkinto channel obtain
codeyvords. The two-stage encher first 'checks the tydé, of E[GoUIY)*|U € To] < E[GQ(ﬁ|Y)p|U €Ty (31)
and if U € Tj, then the encoding functionf, and gq are
applied to generate the channel input bld¢k= g5 (fo(U)). BY Proposition 1, we know that the channel encogdigrcan
The guesser in the system does not know in advance the tfjgechosen so that
of U. To overcome this difficulty, we employ B-admissible E[GQ(ﬁ|Y)P|U € 1)

guessing strategyG(y); y € Y&} for &Y which interlaces n
the guesses by a family db-admissible guessing strategies < o) expiN[pH1 ) (PN)/N = AEo(p)]"} (32)

{Go(y);y € Y™} forteY, indexed by types) overd™. Tobe where Py is the conditional PMF o/ givenU € Ty, i.e.,
precise, letQ, ---, Q, be an enumeration of the types. Forp, is a PMF onCq with

any fixedy € Y%, the interlaced guessing strate¢g(y)}

generates its guesses in rounds. In the first round, the firdtn (%) = Pr[U = a|U € Tg)] > P(u)/P(1g).
guesses by, (y), ¢ =1, ---, v, are generated, respectively; uCTq: fo(u)=n

in the second round, the second guesses are generated, and (33)
so on. (If at some round, there are no more guesses by s

Offie Renyi entropyH Py) i -bounded b
Goly), dummy guesses are inserted.) W@tu|y), Go(uly) Nyt entropyHyi+,)(Fv) is upper-bounded by

be the guessing functions f@i(y), G, (y), respectively. Due In|Cq| = N[R(D, Q) + o(N)]
to interlacing, we haveé7(uly) < vGo(uly) for all u, y, and ¢4
@, hence N
E[GoUIY)"|U € Tg]
EGUY)] < c(p) exp{N[pR(D, Q) = AEo(p) + o(N)]*}. (34)
_ . Now recalling thatP(Tg) < exp[-ND(Q||P)] [5, p. 32],
= %: PiU € TlE[GU|Y)*|U € Tg] @) e e @
<N PifU € To E[GoUIY )Y |U € Tp]  (28) mgx{P(TQ)E[GQ(ﬁ Y)"|U € Tol} (35)
@ < ofp) exp{N max[=D(Q||P) + pR(D, Q)

< v max{P(TQ)E[Go(U|Y)*|U € Tol}. (29)
@ — AEy(p) + o(N)] T} (36)
= c(p) exp{N[E(D, p) — AEo(p) + o(N)[*}  (37)

where the last line follows by (2), proved in [2]. Substituting

guesses by (y) consist of an enumeration of the elementdiS into (29) and noting that < (1 + N)lil’ we have the

of Cq in descending order of the conditional probabilitie®r0f that Exe(D, p) < [E(D, p) = AEo(p)]T

Pr[U =a|U € Ty, Y = y]; the remaining guesses are immacConverse Part:We need to show

terial so long as they are chosen to ensure the validity of the +

hypothesis thafio (y) is D-admissible fo/YY. Observe that Eie(D, p) 2 [E(D, p) = ABo(p)]"

Go(y) is also a lossless guessing strategyder furthermore, Consider an arbitraryD-admissible joint source-channel

due to the way it has been specified, it is optimal as a losslegsessing strategyG(y): y € Y} for &V, with associated

guessing strategy fo€y, in the sense of minimizing the guessing function7(uly). Let Ug, Y denote the random

conditional momenta‘?[GQ(U|Y) |U € Tg), for all p > 0. variables whose joint PMF equals the conditional PMRUof

(It is important to note thati,(U|Y) denotes the guessingY’ givenU € Ty; i.e., Ug has a PMF which is uniform on

function associated witl§,(y), when the latter is regardedZq. andYg, is the channel output random variable when the

as a lossless guessing Strategy (f@j WhereaS’GQ(U|Y) channel codeword fOUQ is transmitted. Then

denotes the guessing function whép(y) is regarded as a

D-admissible guessing strategy faf".) EGUIY)] = Z P(ITo)E[GUU|Y)|U € Tg) (38)
Now, we observe that

Next, we specifyGo(y) so that it is an “efficient” guesser
when U € Tgy. For this, we suppose that the firkiy)|

= Z P(To)E[G(UqlY o). (39)
Goluly) < Go(fo(w)ly),  forallueTy  (30)
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Next we lower-bound the moments 6f(Uy|Y o). For any
fixed y, let Gy o(y) be a guessing strategy @i, which is
obtained fromG(y) as follows. For each guedsproduced by

G(y), Go, o(y) produces, successively, the elements of the set

B(u, D) = {u € Tg : d(u, u) < ND}. Clearly, Gy o(y) is

lossless forly, and has an associated guessing function that

satisfies the bound

Go, o(uly) < BunaxG(uly), for eachu € T (40)
where
Buax = max |B(@&, D).
aciN
It is known [4] and also shown in the Appendix that
Bpax < exp{N[H(Q) — R(D, Q) + o(N)]}. (41)

Now, by Proposition 1, and since
Hij14p)(Ug) = (1/N) In|Ig| > H(Q) — o(N)
(for the inequality, see, e.g., [5, p. 30]), we have

E[Go,o(Uq|YQ)"] 2 exp{N[pH(Q) — \Eo(p) — o(N)]*}.

(42)
Combining (39)—(42), and using the bound
P(Tq) = exp{=N[D(Q||P) + o(N)]}
[5, p. 32], we obtain
E[GUIY)]2 ) en{N[-D(Q||P) + pR(D, Q)
’ — AEy(p) — o(N)] T} (43)
> max exp{N[=D(Q|IP) + pR(D. Q)
— AEo(p) — o(N)]*} (44)

= exp{N[E(D, p) - \Eo(p) — o(N)[*}. (45)

This completes the proof of the converse part. O
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b) For fixedD > 0, E..(D, p) is a continuous function of
p > 0, which is strictly increasing in the range where it
is positive. We haveZ,.(D, p) > 0 for all p > 0 if and
only if R(D, P) > AC, whereC is the channel capacity.
The functionE.(D, p) is convex inp wheneverEy(p)
is concave.

Proof: For the most part, this proposition is straightfor-
ward and we omit the full proof. We only mention that in
part a), the convexity and monotone decreasing property of
E..(D, p) as a function ofD follow from the fact, proved
in [2], that for fixedp > 0, E(D, p) is a strictly decreasing,
convex function ofD in the range where it is positive.

For part b), we recall the fact, shown in [2], thB{D, p)
is a convex function op > 0 (for fixed D). Since Ey(p, S)
is a concave function op > 0 for any fixed PMFS [9, p.
142], e(p, S) 2 E(D, p) — AEo(p, S) is a convex function
of p > 0. By convexity and the fact that(0, S) = 0,
the functione(p, S) is strictly increasing in the range of
wheree(p, S) > 0. (This last statement is proved in the same
manner as in the proof of Lemma 1.) SinEe.( D, p) is given
by mins[e(p, S)]T, it is also strictly increasing where it is
positive (the minimum of a family of increasing functions is
increasing).

We haveE,.(D, p) > 0 for all p > 0 if e(p, S) > 0 for
all p > 0 and all S. Sincee(p, S) is a convex function op
with ¢(0, ) = 0, e(p, S) > 0 for all p > 0 if and only if
(0, S) > 0. But

(0, 8) = L [E(D, p) — Ao (p)l/p
— R(D, P) — \(S, W).

It follows that E(D, p) > 0 for all p > 0 if and only
if R(D,P) > AC = Amaxs I(S, W). Since E(D, p) is
convex, it is clear tha®..(D, p) is convex wheneveEy(p)

is concave. (Howevetz..(D, p) is in general nonconvex, as
shown for the lossless cade = 0 in the previous section.)
This completes the proof.

It is interesting that, as we have just provedRifD, P) >
AC, then E..(D,p) > 0 for all p > 0, and hence,
E[G(U|Y)?] must go to infinity asN goes to infinity for
all p > 0. Conversely, ifR(D, P) < AC, then there exists

As mentioned in the Introduction, the special case of Thg-, > 0 such that it is possible to keeB[G(U|Y)”] from
orem 2 forA = 0, which corresponds to having no channegrowing exponentially inV. The conditionsR(D, P) < AC

was proved in [2].

and R(D, P) > AC are also the conditions for the validity

Further insight into Theorem 2 can be gained by studying the direct and converse parts, respectively, of Shannon’s

the properties of the functio&.(D, p).

joint source-channel coding theorem [9, p. 449] for the lossy
se. This is analogous to the problem already mentioned in

Proposition 2: The joint source-channel guessing exponer‘fta
function E..(D, p) has the following properties. the lossless case, and the same type of remarks apply.

a) For fixedp > 0, E..(D, p) is a convex function of
D > 0, which is strictly decreasing in the range where
it is positive. There is a finitd)y, given by the solution
of E(Dy, p) = AEy(p), such thatE..(D, p) = 0 for
D > D,. For any distortion measure such that there Theorem 3:For any DMSP, DMC W, L > 0, andD > 0,
exists no reconstruction symbol which is at distance zetae source-channel list-error exponent is given by
to more than one source symbol, we have

E.o(0, p) = [pH1/ 110 (P) = AEo(p)] .

V. SOURCECHANNEL LIST DECODING EXPONENT
The aim of this section is to prove the following result.

Fi(L. D) = min[F(R, D) + AE[(R - L)/X]|.  (46)
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Before we give the proof, we wish to comment on somiote, in particular, thafo is a random variable over the rate-
aspects of this theorem. We remark that for the special cafigtortion codeCq,. The even'G(fo|YQ) > v teN T may be
A = 0, determiningF,.(L, D) is equivalent to determining interpreted as an error event in a communication system with
the “error exponent in source coding with a fidelity criterion,3 message ensemblé;, of rate
a problem solved by Marton [15]. In this problem, one is
interested in the probability that a rate-distortion codebook H(fIQ)/K < (1/K) In|Cq| < [R(D, @) + o(N)]/A
C c UN of size e contains no codeword which is within
distanceN D of the random vectol/ € U/~ produced by a and with a list-decoder of list-rate
DMS P. Marton’s exponentt’(L, D) is the best attainable

exponential rate of decay of this probability & — oc. (1/K) Infv=te™ME] = [L — o(N)]/ .
Indeed, forA = 0, we haveF..(L, D) = F(L, D), in
agreement with Marton’s result. By a well-known random-coding bound on the best attainable

It will be noted that the casé = 0 is excluded from the probability of error for list-decoders [7], [17], the channel
theorem. Fo. = 0, we have a list of sizeé, independent ofV. encoderg, can be chosen so that
As mentioned in the Introduction, list-df-decoding in joint
source-channel coding systems was considered by &sad Pr[G(f]Q|YQ) > v e
the error exponent remains only partially known. We also note _ _ _
that if L = 0 is interpreted as the list size going to infinity at < exp{=NDEG(RD, Q) = L)/A] = o]} (52)
a subexponential rate, then the theorem holds alsd.fer0. By (49) and (52), and using the fact that
We do not prove this statement, since subexponential list sizeys '
are not of interest in the present work. P(Ty) < exp[-N(D(Q||P)]
Finally, we wish to re-iterate that though list-decoders with -
exponential list sizes are not viable in applications, the aboyg, ow have
theorem serves as a tool to find bounds on the distribution
of computation in sequential decoding, as shown in the nexp,(q(U7y) > V5]
section.

Proof of Theorem 3: < Z exp{—N[D(Q||P) + AL, [(R(D, Q) — L)/A]
Direct Part: We need to show Q —o(N)]} (53)
Fo(L, D) 2 min{ F(R, D) + ABop[(R — L)/A]}- < v exp{=N min[D(Q||P) + AE,[(R(D, Q) = L)/A]
—o(NV)]} (54)

To obtain an upper bound on the minimum attainable _
probability of list decoding error, we consider a two-stage = exP{—N min[F(E, D)+ AE[(R — L)/A]
encoding scheme and an interlaced guessing strategy, just as in —o(M)]} (55)
the proof of Theorem 2. Then, for any fixgglamong the first
eI guesses by(y), there are at leasty™!c" | guesses \yhere in the last line, the termwas absorbed by(XV), and

by eagth(y). So, we have (writingp=*e™% in place of e ysed the following equality:
|v~teNE| for notational convenience)

m}izn{F(R, D)+ AER[(R— L)/}

Pr[GUJY) > ¢V ) )
<3 P(Ig) Pr[GoUIY) > v MU e Tp] @47) TR o iBroyzrt VI T AL B =L)AL} (56)
Q =min min {D(Q||P)+ AE,[(R—L)/A]}  (57)
. Q@ R<R(D,Q)
~ 2@) P(Tg) Pr{Go(Uq|¥ q) > vteME] “8 min{D(Q||P) + AE,[(R(D, Q) ~ L)/\l}.  (58)
< z@: P(Ig) PrlGo(UqlYq) > v™'c"] “9) |, (58), we made use of the monotone decreasing property of

E,,,. Note that sinceb,,(-) is infinite for negative arguments

whereUg, fJQ, Y, are random variables whose joint PMFand F(&, D) is infinite for

equals the conditional joint PMF df, Uy, givenU € 15,.

A
To be precise -

B> Rmax(D) InQaX R(D, Q)

=u,Yg=1y| the minimum overR in (55) can be restricted to the range
= PiU = u, U—a Y= y|U € 1] (50) _[L, _E.max(D)], prowd_ed, of course,.tha@ < Rma}_{(_D)_. Tr_ns
Pu)W (ylgo(@))/ P(T0) weT justifies the use ofnin rather thaninf in the m_|n|m|zat|on
Q Q) Lo over R. (For L > Ry,.(D), the probability of failure can be
u=folw (51) trivially made zero). This completes the proof of the direct
0, otherwise. part_
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Converse Part:We need to show into channel input sequences so that at each step the encoder
F..(L, D) < }?n;nL{F(R’ D)+ \E,,[(R— L)/A]}. receivesn source symbols and emits = An channel input

symbols. Thus each node of the tree h&§™ branches
We follow the method Csise [4] used in lower-bounding emanating from it, and each branch is labeled wviitthannel
Pr[GU|Y) > 1]. Let {G(y)} be an arbitraryD-admissible symbols. Consider the set of nodes at a fixed ledekource
guessing strategy far”Y, andG(uly) the associated guessingsymbols (orK = AN channel symbols) into the tree code.
function. As proved in Appendix C, each guess= ¢/~ by Each node at this level is associated in a one-to-one manner

G(y) covers, within distortion levelVD, at most with a sequencey of length IV in the source ensemble. Only
one of these nodes lies on the channel sequence that actually
exp{NH(Q) — (D, @) +o(N)]} gets transmitted in response to the source output realization;

we call this node theorrect node The correct node at levé¥

is a random variable, which we identify and denotelbythe
exp{N[L + H(Q) — (D, Q) + o(N)]} first N symbols of the source. We IéX denote the channel

elements ofl,. Thus conditional od/ € Ty, GU|Y) > ¢NE  input sequence of length” corresponding to the correct node

corresponds to making an error with a list size of at most U, andY the channel output sequence of lendththat is

NIL 4+ H(O)— R(D N received whenX is transmitted.
CPINIL+ H(Q) (D, @) + o]} Now we use an idea due to Jacobs and Berlekamp [13]

So, by the sphere-packing lower bound for list decoding [17%}, rejate guessing to sequential decoding. Any sequential
we have decoder, applied to the above tree code, begins its search at the
Pi[GU|Y) > NEU € Tg) origin and extends it branch by branch eventually to examine a
> exp[—-NME[(R(D, Q) — L)/ + o(N)]].  (59) nodev’ at level N, possibly going on tp explore nodes beyond

©'. We assume that & #£ «/, i.e., if &’ is not the correct node
at level Vv, then the decoder eventually retraces its steps back
to below levelN and proceeds to examine a second n@dat
level N. If U £ v”, then eventually a third node at leval is
examined, and so on. Thus for any given realizajaiY’, we
Pr[GU|Y) > N1 have an ordering of the nodes at lev¢) in which a nodex is

> exp{—N min[D(Q||P) + M\Es,p[(R(D, Q) — L)/ ] preceded by those nodes that the sequential decoder examines

Q beforew, whenw is the correct node. We le¥(u|y) denote

elements offy,. Thuse™L guesses cover at most

(Note that the argument o, is obtained as the difference
of the source rated(Q))/A and the list ratelL + H(Q) —
R(D, Q)]/\) Since P(T3) > exp{—N[D(Q||P) + o(N)]},
we obtain

+ o(N)]} (60) the position ofu in this ordering wherY” = y. (By definition
which completes the proof in view of (56)—(58). of sequential decoding, the val@&u|y) is well-defined in the
sense that, for any fixed sequential decoder and fixed tree code,
VI. APPLICATION TO SEQUENTIAL DECODING the order in which nodes at levé¥ are examined does not

Sequential decoding is a search algorithm introduced B¢pend on the portion of the channel output sequence beyond
Wozencraft [18] for finding the transmitted path through a trdevel X; it depends only ory.)
code. Well-known versions of sequential decoding are due toClearly, G(uly) is a lower bound to the number of compu-
Fano [6], Zigangirov [19], and Jelinek [10]. The computationdftional steps performed by the sequential decoder in decoding
effort in sequential decoding is a random variable, dependifitg first.V symbols of the transmitted sequence, wilér- u
on the transmitted sequence, the received sequence, andafiéY = y. Let Cy denote the (random) number of steps by
exact search algorithm. Our aim in this section is to expldiie sequential decoder to correctly decode the fi¥ssource
the relationship between guessing and sequential decoding¥gbols. Then, lower bounds to the mome#+(U|Y)’]
obtain converse (unachievability) results on the performane@nstitute lower bounds t&[C7]. By Proposition 1
of sequential decoders.

Koshelev [14] and Hellman [12] considered using a corE[G(mY)p]
volutional encoder for joint source-channel encoding and > exp{N[pH1 14+, (Pn)/N — AEo(p) — o(N)]T}. (61)
a sequential decoder at the receiver for lossless recovery
(D = 0) of the source output sequence. For the class 8 if
Markov sources, Koshelev showed that the expected computa- )
tion per correctly decoded digit in such a system can be kept h}\ff;lop PH1j(40) (Px) /N > AEo(p)
bounded if the Rnyi entropy of orderl/2 for the source,
limy oo H1/2(Pn)/N, is smaller thanAEy(1). Here, Py then E[GU|Y)?] grows exponentially withNV (for some
denotes the joint probability distribution for the firdt source subsequence), and so daBECK ). In particular, if
letters. In this section, we first prove a converse result which _
complements Koshelev's achievability result. Subsequently, h]l\}lsule/?(PN)/N > AEo(1)
we prove a converse for the lossy case. T

Consider an arbitrary discrete source (not necessarily M#énen the average computation per correctly decoded digit is
kovian) with distribution Py for the first N source letters. unbounded and sequential decoding cannot be used in practice.
Consider an arbitrary tree code that maps source sequenceédle summarize this converse result as follows.
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Proposition 3: Suppose a discrete source, with distributiosymbols per source symbol, and a sequential decoder is used
Py for the first N source letters, is encoded, using a treat the receiver. Le€y be the amount of computation by the
code, into the input of a DMO#4 at a rate of A channel sequential decoder to generatédaadmissible reconstruction
symbols per source symbol, and a sequential decoder is usédhe first N source letters. Then, for any > 0, the mo-
at the receiver. LeCy be the amount of computation byment E[C%;] must grow exponentially withV if E(D, p) >
the sequential decoder to correctly decode the firssource AEq(p).
symbols. Then, theth moment ofCy grows exponentially

with &V if the “source rate” This result exhibits the operational significance of the

functions E(D, p)/p and Ey(p)/p. Note that asp — 0,

limsup Hy /14,y (Pn)/N E(D, p)/p — R(D, P) and Ey(p)/p — C, leading to the
N—oo expected conclusion that R(D, P) > A\C, then E[CX/]/N
exceeds) times the channel “cutoff rateEq(p)/p. must go to infinity asV increases, for alp > 0.

We conjecture that a direct result complementing Propo-
This result complements Koshelev's result [14], mentioneglion 4 can be proved. In other words, we conjecture that
above. Note that it applies for any > 0, while Koshelev there exists a system, employing tree coding and sequential
was concerned only with = 1. We also note that this resultdecoding, for whichE[C%]/N is bounded independently of
generalizes the converse in [1], where the source was restricigdfor any givenp > 0 satisfying E(D, p) < AEo(p). The
to be a DMS with equiprobable letters. proof of such a direct result would be lengthy and will not
Next we consider the lossy case. First, we need to makg pursued here.
precise what successful guessing means in this case, sincgs a final remark, we note that the lower bound in Section
we are dealing here with piecemeal generation of a rg-on the probability of list decoding error directly yields the

construction sequence of indefinite length. We shall insigdllowing lower bound on the distribution of computation in
that for any realizatioru,, us, --- of the source sequence,sequential decoding:

the system eventually produces a reconstruction sequence
i, o Sueh thatdl, o wxs i, i) S VD iy > oM 2 exp{—N[Fe(L, D)+ o(N)]}. (63)
for all N > Ny, where Ny is a constant independent of ) ’
the source and reconstruction sequences. This means that we L i )
desire to have a reconstruction sequence that stays clos is a generalization of the result in [13] about the Paretian
the source sequence, with the possible exception of a fingghavior of the distribution of computation in sequential
initial segment. decoding.
As in the lossless case, the tree encoder receives successive
blocks ofn symbols from the source and for each such block
emitsk = An channel input symbols. The sequential decoder
works in the usual manner, generating a guess at each nodé/e considered the joint source-channel coding and guessing
it visits. The guess associated with a node at leVeis a Problem, and gave single-letter characterizations for the guess-
reconstruction blocki = (i, -- -, @) of length N, which ing exponentEs.(D, p) and the list-error exponedt.(L, D)
stays fixed throughout. We assume a prefix property for ther the case where the source and channel are finite and
guesses in the sense that the guess at a node is the prefifo@moryless. We applied the results to sequential decoding and
the guesses at its descendants. gave a tight lower bound to moments of computation, which,
Fix N > No. For any source block = (uy, ---, uy) and in the lossless case, established the tightness of Koshelev's
channel output blocky = (41, -- -, y~), let G(uly) denote achievability result.
the number of nodes at leveV visited by the sequential The results suggest that, as far as tle moment of the
decoder before it first generates a guéss: (i, ---, 4y) guessing effort is concerned, the quantityD, p)/p can be
satisfying d(u, #) < ND. It is possible that the sequentialinterpreted as the effective rate of a DMS, aBg(p)/p as
decoder subsequently revises its filstadmissible guesa at the effective capacity (cutoff rate) of a DMC. The operational
level N, but eventually it must settle for sonf@-admissible significance of these information measures has emerged in
guess if it ever produces A-admissible reconstruction of theconnection with sequential decoding.
entire source sequence. In any caSéu|y) is a lower bound ~ One may consider extending the joint source-channel guess-
to the number of computational steps by the sequential decothgr framework that we studied here by allowirsgochastic
until it settles for its finalD-admissible guess about the sourcencoderswith the goal of improving the guessing performance.
block u, wheny is the channel output block. Now assumindy @ stochastic encoder we mean an encoder that maps any
that the source in the system is a DMS, we have by Theorengpecific source output block to a channel input block:
with a certain probabilityV (z|u), whereV is a transition
E[GU|Y)’] = exp{N[E(D, p) — AEo(p) — o(N)I}. (62) probability matrix that characterizes the stochastic encoder. A
. . deterministic encoder is a special case of a stochastic encoder
We thus obtain the following converse result on the comput]%-r which V(z|u) takes the values or 1 only. Now we show
tional complexity of sequential decoding. . y.
by a straightforward argument that stochastic encoders offer no
Proposition 4: Suppose a DMS is encoded, using a treeadvantage over deterministic ones. By a well-known fact, any
code, into the input of a DMO#4 at a rate of A channel stochastic encodér can be written as a convex combination

VII. CONCLUSIONS
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of a number of deterministic encodef¥; } Thus

Viah = 2 ni¥ilalo 69 Eowyy) <Y Pru. w{E FP‘T(Z% 1/<1+p>}"

u’

w,y

wherep; > 0 and) . p; = 1. In light of this, encoding by "™ e
V may be seen as a two-stage process. First, one draws a = Z Z Pr(u, y)'/ 0+ . (A.3)
sample from a random variablé that takes the valué with vy Lu

probability p;. The sample value of indicates which of the . . . i
deterministic encoder§; is to be used in the second stage, Now, we employ a technique used in the sequential decod

mg literature to upper-bound the moments of computation [11].

Now, consider two guessers for a system employing sucl]: . s
T . IX 0 and letn be the integer satisfying — 1 < n.
stochastic encoder. The first guesser observes only the chal elf] > " 9 fying <psn

outputY and tries to recover the source blddkas best it can.

The second guesser observes the random varfabieaddition

to Y. Suppose both guessers employ optimal strategies for l
their respective situations so as to minimize gl moment

of the number of guesses. It is clear that any guessing strategy

available to the first guesser is also available to the second. So, = [Z Z Pr(u, y)l/(1+”)
the second guesser can do no worse than the first, and we have uy

14p
X et 04

uw

WUWp 41

E[G*(U\Y)] > E[G*U\Y, 2)* 65 s
£ > £
[ WUYY] 2 EIG"(UY, 2)] (65) Pr, ey, )00 A
=Y pEGUIY, Z=0f]  (66)
g . . S|
where all guessing functions are optimal ones, i.e., they S wmu T M| =L
achieve the minimum possible value for thth moment (in (1+p)/(14n)
particular, G*(U|Y, Z = i) is an optimal guessing function -Pr(u;, y)™/ ) (A.5)
for the encodet;). This shows that the performance achieved
by using a stochastic encoder cannot be better than that (L+p)/(14n)
achievable by deterministic encoders.
. ) ) ) (A.6)
A topic left unexplored in this paper is whether there

= > as(y)
S

exist universal guessing schemes, for which the encoder and 140)/(14n
the guessing strategy are designed without knowledge of the = Z as(y)( e, (A7)
source and channel statistics and yet achieve the best possible s
performance. Other topics that may be studied further are time (A.5), we rewrote the summation in terms of partitions
problems mentioned at the end of Sections Il and 1V, and tkie= {51, ---, S|g/} of the set{1, ---, n + 1}. Each element
conjecture stated at the end of Section VI. S; of a partition denotes the group of sums on the right-hand
side of (A.4) whose indexes;, j € S;, are restricted to remain
identical (as they range through the set of all possible source
blocks). In (A.5),m; denotes the cardinality of;. Note that
since sums belonging to differeft’'s must assume distinat;

We carry out the proof for an arbitrary finite-alphabet sourggylyes, we have the restrictian, # ui, ---, u;_1 in (A.5).
with distribution Py for the first V- source letters. Note that gquation (A.6) defines the notatians(y), and (A.7) follows
this proof also covers Theorem 1 by takify as a product- py 3 variant of Jensen’s inequality [9, ineq. (f), p. 523].

APPENDIX A
PROOF OF PROPOSITION 1

form distribution. Before we proceed, we illustrate the above partitioning by
Direct Part: Fix an arbitrary encodeey. Let Pr(u,y) @n example. Suppose = 2. Then, there are five partitions:
denote the joint probability assignment So = {{L, 2, 3}}, 1= {{1, 2}, {3}}, Sa = {{1, 3}, {2}},
3= y Sa = ; and, any sum o
Ss = {{2.3}, {11}, S: = ({1}, {2}, {3}}; and, any sum of
Pr(u, y) = Pnv(uw)W (ylen(u)). (A.1) the form
We use a guessing stratef§i¥x (y)} such thatGx (y) generates Z Z Z a; 050k
its guesses in descending order of the probabilife@:, y). ik

We let G(U|Y) denote the associated guessing function. B\X

ith indexes running through a common set, can be written as
Gallager's method [8], we have for any> 0 9 9

the sum of the sum’, 37, 34 i ; @i, 225 22 5 ata;
Pr(v/, y) 1/(1+p) (repeated three times), and, a3.
G(uly) < Z [W’)} (A.2) To continue with the proof, le§, denote the trivial partition
o’ ¥ which has only one element, i.65,| = 1 andm; = n + 1.
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We shall treat this partition separately. By the same variant of 1S 1 mi/(14n)
Jensen’s inequality mentioned above, we have <1+ Z H Z y) (L)
S#£Sy i=1 L y
Z as, () () o0
(14p)/(14n) where (A.20) is by Mlder’s inequality (note thad . m; =
=D | Prlu, gt/ (ag) ™11 Now,
> Bil)
< Pr(u, y) (A9) ¥
z”: z“:  qatpy
Yy u

Combining (A.3), (A.7), and (A.10), we obtain
EGUIY)Y <1+ Z Z as(y) /A (A 11) = Z [Z Z S* () Py (1) OO W (y|z) "/ +0)
Y

] (1+p)/i
S#SO Y

(A.22)
We shall now consider choosing the encodgrat random.

Specifically, we suppose that each source bledk assigned
the codeworde with probability S*(z), independently of all
other codeword assignments. The PMFis of product form
with single-letter distributionS* chosen so as to achieve the Z
maximum in (17). Denoting expectation w.r.t. the random code
ensemble by an overline, we have

(I+p)/i
Z Pr(u Z/(1-1—/7)]

Z S*(z)W (y|z) Z/(1+/7)

— exp{N iy (PY)IN — Aol S} (A24)

EGUY) <1+ Y > as(y@/0+)  (A12) yhere we have defined; = (1 + p — 4)/i. Note that for
S#S0 ¥ 1 <i < n, we haved < p; < p.
<1+ Z Z as(y)AHA/A+m) (A 13) For shorthand, let us write
S#ESo ¥ F(r) = rHy 40y (Pn) /N — XEo(r, S*). (A.25)
where (A.13) is by Jensen’s inequality. Now we can writ;

(1+p)/i
] (A.23)

: 0 continue we need the following fact which is proved in
(A.14)—(A.17) shown at the bottom of this page, where (A.1 pendix B
is by the independence of codeword assignments to distin(g '
messages, and (A.16) is simply by removing the restrictionLemma 1: f(r) is a convex function of > 0; f(0) = 0;
w A up, e, Uiy and f(r) is increasing in the range where it is positive.

Now define Now we consider two cases. Cagép) < 0: Then, for

‘ (+p)/(14n) all i = 1,---,n, we have f(p;) < 0, and by (A.24)
Bi(y) = lz Pr(u, y)"/ “*’01 (A.18) 3, i(y)4+™)/ < 1.Using this in (A.20) (note that < m; <
u n for § # Sp), we obtain

and use (A.13) and (A.17) to write E[GUY)"]
15| 1S| m;/(14+n)
EGUYY <1+ > > [[8=® (A.19) <1+ > ]I lz i <1+">/mz] (A.26)
S#£85) v i=1 S#£8 i=1
|S|
:Z Z Z H Pr(w;, y)™i/(+p) (A.14)
U1 wpEup U5 | FUL, U s -1 =1
|S|
— Z Z - Z H PI‘(’U,Z‘, y)"li/(1+ﬂ) (A15)
Ul weFUp w|s| AU, -, U g1 =1
|S|
< Z Z ...... Z H PI‘('U:Z‘, y)"li/(l'H’) (A16)
U U2 U|s| =1
|S|
— H Z Pr(tu'7 y)"li/(1+/7) (Al?)

=1 =
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151 where
<1+ > It (A.27) P () /40)
S£8, i=1 Pi(u) = (A.36)
— o(p) (A.28) Z Py (u)V/ (+7)
wherec(p) has been defined as the number of partitiShs  and
Casef(p) > 0: Now, for alli =1, ---, n, f(p) > f(p:), Plg) — P! A.37
and by (A.24) ~(2) u&MN%:(u):m v (u). (A.37)
. 14+n)/< i
> By < exp[N f(p)]. Equation (A.35) follows by the parallel channels theorem
v [8, Theorem 5]. Thus
Using this in (A.20), and recalling that E[GUY)]
Z mi=ntl 2 exp{N[pH1/(14+,)(Pn)/N — AEo(p) — o(N)]}.  (A.38)
we obtain This, together with the obvious fact th&#[G(UY)”] > 1,
N completes the proof.
ElGUY)
|51 ms/(14m) APPENDIX B
<1+ Z H [Z (1+n)/m ] (A.29) PROOF OF LEMMA 1
e Zl ST P/Fisr;t(,:;H]L /(14 (£') is convex inr > 0 for any distribution
<1+ Y [[ exolVf(p)ymi/ (1 +n)] (A.30) "
S#Sy i=1
P 1/(1+1
< c(p) exp[NF(p)]. (A31) = [2n ]

Combining (A.28) and (A.31), we conclude that
E[GUY)"] < c(p) exp{N[f(p)]*}.

Thus there must be an encoder such that the resulting j
source-channel guessing scheme satisfies

satisfies, by Hlder’s inequality [9, ineq. (b), p. 522],
g(r1)%g(r2)t =% > glary + (1 — a)ra)

OI!or anyr; > 0, ro > 0, and0 < « < 1. Since it is also known
that Eo(p, S) is a concave function of > 0 [9, p. 142], the
E[GU|Y)"] < e(p) exp{N[f(p)]T}. convexity of f(r) follows.
. . That f(0) = 0 is due to Fy(0, S) = 0 [9, p. 142]. Thus
Thésoﬁsgglgtﬁs( tgi Fg&?tfrgytiigéfgésa; d an arbitrary the function f(r) starts at0 and may dip to negative values
guessing schem&(U[Y). Let initially; then, it will become positive (excluding trivial cases)

for r large enough. To see th@{r) is increasing in the range

Pr(u, y) = Pn(u)W (yley (w)). where it is positive, consider any < 1 < r» such that
By [1, Theorem 1 f(r1) > 0, f(r2) > 0. Let &« = r1/r2. Then, by convexity,
vl ] (1—a)f(0)+ af(rz) = f(r1). But £(0) = 0, so we have
EGUIYY]=(1+ N )= f(ra) 2 (ra/r1)f(r1) > f(r1).
Y
I+e APPENDIX C
Z Pr(u, y) /7| . (A32) UPPER BOUND ON B
* We wish to upper-bound the size of
Now
14p B(ut, D) = {u € Ty : d(u, &) < ND}
SIS Pru, )/ s _
for arbitraryu € &™. Let @ denote the type ok, i.e, suppose
v L € T, C UN. Consider the sets
14p Q
= |>_ Pv(w “*’”] Sy (@, D) £ B(a, D) N Ty (@).
I+p Ty (u) is empty unless the shel is consistent with the
Z Z Pl(w)W (ylen (u ))1/(1+p)] (A.33) marginal compositions, i.e.,
Y
.Z‘ u
= exp le/(1+/7)(P/\ )] Z Q@Y (i)
14+p
Assume henceforth thaf is consistent in this sense. We have
> Z Pl (2)W (y|z) 1/<1+P>] (A.34) 5. p. 31]
v T

> exp(N[oHy s (P)/N ~ AEn(e)]}  (A35) [Ty (@)] < exp{N[H(Q) ~ I(Q. V)]}.  (A39)
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Now, note thatSy-(u

/\

i, D) is empty unless

ZQ

IIIz

Vix|a)

d(z, 4) < D.

However, if d(Q, V) < D, then we have by definition,
R(D, Q) < I(Q V), and hence by (A.39)
Ty ()] < exp{N[H(Q) — R(D, Q)]}. (A.40)
The proof is now completed as follows.
|B(a, D)
=" |Sv(@, D) (A.41)
v
< Z [Ty ()] (A.42)
V:d(Q,V)<D
< Y. exp{NH(Q -RD, QI (A43)
V:d(Q,V)<D
= exp{N[H(Q) — R(D, Q) + o(N)]} (A.44)

(3]
(4]

(5]
(6]
(7]

(8]

El
[20]

[11]

[12]

(13]

where in the last line we made use of the fact that the numq%

of shellsV grows polynomially in/V.
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