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Abstract
Background: A variety of cell types can be identified in the adherent fraction of bone marrow
mononuclear cells including more primitive and embryonic-like stem cells, mesenchymal stem cells
(MSC), lineage-committed progenitors as well as mature cells such as osteoblasts and fibroblasts.
Different methods are described for the isolation of single bone marrow stem cell subpopulations
– beginning from ordinary size sieving, long term cultivation under specific conditions to FACS-
based approaches. Besides bone marrow-derived subpopulations, also other tissues including
human umbilical cord (UC) have been recently suggested to provide a potential source for MSC.
Although of clinical importance, these UC-derived MSC populations remain to be characterized. It
was thus the aim of the present study to identify possible subpopulations in cultures of MSC-like
cells obtained from UC. We used counterflow centrifugal elutriation (CCE) as a novel strategy to
successfully address this question.

Results: UC-derived primary cells were separated by CCE and revealed differentially-sized
populations in the fractions. Thus, a subpopulation with an average diameter of about 11 μm and a
small flat cell body was compared to a large sized subpopulation of about 19 μm average diameter.
Flow cytometric analysis revealed the expression of certain MSC stem cell markers including
CD44, CD73, CD90 and CD105, respectively, although these markers were expressed at higher
levels in the small-sized population. Moreover, this small-sized subpopulation exhibited a higher
proliferative capacity as compared to the total UC-derived primary cultures and the large-sized
cells and demonstrated a reduced amount of aging cells.

Conclusion: Using the CCE technique, we were the first to demonstrate a subpopulation of small-
sized UC-derived primary cells carrying MSC-like characteristics according to the presence of
various mesenchymal stem cell markers. This is also supported by the high proliferative capacity of
these MSC-like cells as compared to whole primary culture or other UC-derived subpopulations.
The accumulation of a self-renewing MSC-like subpopulation by CCE with low expression levels of
the aging marker senescence-associated β-galactosidase provides a valuable tool in the regenerative
medicine and an alternative to bone-marrow-derived MSC.
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Background
MSC were first identified in the bone marrow [1] and
characterized as a population of non-hematopoetic
multipotent stem cells. Similar to other stem cell types
MSC possess the potential for self-renewal and for differ-
entiation into highly specialized cells upon appropriate
stimulation. For example, MSC differentiation into cell
types of the mesodermal lineage has been extensively
investigated [2,3]. Moreover a variety of studies have
demonstrated that MSC may also generate mature cells
typically arisen from endoderm [4-6] or ectoderm [7-9]
suggesting that cultures of bone marrow MSC may repre-
sent an admixture of phenotypically, functionally and
biochemically different cells [10-12]. Indeed, besides
MSC a variety of different cell types of predominantly
mesodermal origin could be identified in the adherent
fraction of bone marrow mononuclear cells including
more primitive and embryonic-like stem cells, lineage-
committed progenitors as well as mature cells such as
osteoblasts and fibroblasts [13-16]. Therefore bone mar-
row MSC cultures appear to provide a broad spectrum of
stem cells with various differentiation potential. How-
ever, the amount of primitive stem cells in these cultures
is rare and can vary depending on the age of donor,
method of cell isolation or cultivation respectively
[17,18].

The research over the last decade has demonstrated that
bone marrow is not the exclusive source for MSC. Cells
with similar characteristics can be extracted from virtually
all post-natal [19] as well as extra-embryonic tissues such
as amniotic membrane [20], placenta [21] and UC [22-
24]. However, the in vivo immunophenotype of MSC and
distinct unique surface markers for the exact identification
of MSC in the various tissues remains unclear [12]. In
2004, the International Society for Cellular Therapy
appointed a set of standard criteria to facilitate a more
uniform characterization of MSC. This current statement
corroborates the prevalent opinion that the simultaneous
expression of cell surface markers including CD44, CD73,
CD90 and CD105 with a concomitant absence of CD45
and CD34 expression represents a specific phenotype for
cultured MSC [25].

Different methods are described for the isolation of sin-
gle bone marrow stem cell subpopulations – beginning
from ordinary size sieving [26,27], long term cultivation
under specific conditions [15,28,29] to FACS-based
approaches [30,31] and previous work has suggested cer-
tain differentially-sized subpopulations of small, rapidly
proliferating cells with high differentiation capacity
[16,30]. In this context, it was the aim of the present
study to identify possible subpopulations in cultures of
MSC-like cells obtained from human UC and we are the
first using CCE as a novel strategy to successfully address
this question.

Methods
MSC-like cell isolation from umbilical cord tissue
Human umbilical cords were obtained from consenting
patients (n = 3) delivering full-term (38–40 weeks)
infants by Cesarean section. The use of this material has
been approved by the Institutional Review Board, project
#3037 in an extended permission on 17th June, 2006.
After removing the blood cells from the UC with PBS
(phosphate buffered saline) enriched with 5 g/l glucose
(Sigma Aldrich Chemie, Deisenhofen, Germany), 50 μg/
ml gentamicin (PAA Laboratories GmbH, Pasching, Aus-
tria), 2.5 μg/ml amphotericin B (Sigma), 100 U/ml peni-
cillin and 100 μg/ml streptomycin (PAA Laboratories
GmbH), the UC tissue was cut into approx. 0.5 cm3 large
pieces and then incubated in αMEM (Invitrogen GmbH,
Karlsruhe, Germany) reinforced with 15% of allogous
human serum (kindly provided by the Division of Trans-
fusion Medicine, Medical University Hannover, Ger-
many) and 50 μg/ml gentamicin at 37°C in a humidified
atmosphere with 5% CO2. The medium was changed
every second day. A beginning outgrowth of an adherent
cell layer from single tissue pieces was observed after
approx. 10 days. After 2 weeks the UC tissue was removed
and the adherent cells were harvested by accutase treat-
ment according to the manufacturer's protocol (PAA Lab-
oratories GmbH) for 5 min at 37°C. The obtained cell
suspension was centrifuged at 200 × g for 5 min and the
cells were resuspended in αMEM supplemented with 10%
human serum and 50 μg/ml gentamicin and subcultured
at a density of 4,000 cells/cm2. Following the second sub-
confluent passage, cells were harvested for the following
characterization experiments or cryopreserved. Cryocon-
servation was performed with about 1.5 × 106 cells/ml in
αMEM containing 10% (v/v) DMSO (Sigma) and 80% of
human serum in liquid nitrogen.

Counterflow Centrifugal Elutriation (CCE)
The CCE was performed using the Beckmann J6-MC with
the JE-5.0 rotor and the appropriate 5 ml-standard elutri-
ation chamber (Beckman Coulter GmbH, Krefeld, Ger-
many) as previously described [32]. Approximately 4 ×
108 MSC-like cells in an exponential growth phase were
harvested, resuspended in PBS and applied to the stand-
ard chamber (1,600 rpm at 24°C) using a digital flow
controller (Cole-Palmer Instruments Inc., Chicago, IL,
USA). Subsequent fractions of 100 ml aliquots of the elu-
triated samples were collected upon progressive increase
of the pump speed (table 1). Elutriated cell fractions were
examined for viability, cell number and cell size distribu-
tion in a Vi-CELL Series Cell Viability Analyzer (Beck-
man).

Phenotypic analysis by flow cytometry
MSC were harvested by use of accutase for 5 min at 37°C,
recovered by centrifugation at 200 × g for 5 min, washed
twice in ice-cold PBS supplemented with 2% FCS (PAA
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Laboratories GmbH) and resuspended to a concentration
of about 105 cells/antibody test. Thus, 20 μL of a pre-
diluted PE-conjugated mouse anti-human CD44, a PE-
conjugated mouse anti-human CD73, a FITC-conjugated
mouse anti-human CD90 antibody (all from BD Bio-
sciences, Heidelberg, Germany) and a R-PE-conjugated
mouse anti-human CD105 antibody (Invitrogen GmbH,
Karlsruhe, Germany) was used, respectively. Negative
control staining was performed using a FITC-conjugated
mouse IgG1 κ isotype, a PE-conjugated mouse IgG1
kappa isotype (all BD Biosciences) and a R-PE-conjugated
mouse IgG1 isotype antibody (Invitrogen), respectively.

After storage for 20 minutes at room temperature in the
dark, 400 μL of PBS supplemented with 2% FCS were
added and analyzed in the EPICS XL/MCL flow cytometer
(Beckman Coulter GmbH). Living cells were gated in a dot
plot of forward versus side scatter signals acquired on lin-
ear scale. At least, 10,000 gated events were acquired on a
LOG fluorescence scale. Positive staining was defined as
the emission of a fluorescence signal that exceeded levels
obtained by >99% of cells from the control population
stained with matched isotype antibodies. For the antigen
expression which was normalized to cell size, the fluores-
cence of the conjugated monoclonal antibodies as well as
the forward scatter signals were measured on linear scale.
The ratios of fluorescence signals versus scatter signals
were calculated by the EPICS XL/MCL flow cytometer
(Beckman Coulter). Histograms were generated using the
software WinMDI 2.8 (Joseph Trotter).

Determination of cell proliferative activity
Immediately after CCE, the small-sized population (cells
of the elutriation fraction 1), the large-sized population
(cells of the elutriation fraction 6) and the UC-derived pri-
mary control population before elutriation was seeded at

a density of 500 cells/cm2 and cultivated in 25 cm2 cell
culture flasks (Sarstedt, Nuembrecht, Germany) in culture
medium containing 10% human serum over 4 passages
(P5–P8). After approx. 90% of confluency in the most
rapidly proliferating subculture, cells from all three cul-
tures were simultaneously harvested and replated at the
same cell density. The cell number within the individual
passages was determinate by the use of phase-contrast
microscopy and trypan blue exclusion test.

Determination of cell senescence
The amount of senescent cells was determined in the
small-sized population (cells of the elutriation fraction 1),
the large-sized population (cells of the elutriation fraction
6) and the UC-derived primary control population by the
use of the Senescence β-Galactosidase Staining Kit (Cell
Signaling Technology, Danvers, USA) and DAPI (4',6-Dia-
midin-2'-phenylindoldihydrochlorid) (Roche Diagnos-
tics GmbH, Mannheim, Germany) fluorescence
counterstain in accordance to the manufacturers' instruc-
tions. Thus, the 3 different populations were cultured for
6 days after elutriation, passaged and seeded at a density
of 6,000 cells/cm2 for 48 h before senescence-associated β-
galactosidase (SA-β-gal) staining. After completion of the
staining procedures, 4 representative images were taken
from diverse areas of each cell culture using phase-con-
trast microscopy, fluorescence microscopy and CellBImag-
ing Software (Olympus GmbH, Hamburg, Germany). For
the calculation of the percentage of senescent cells the
total number of cell nuclei and number of cell nuclei sur-
rounded by cyan dye were enumerated.

Results
Cell fractions obtained during CCE
UC-derived primary cultures were found to be heteroge-
neous regarding cell size and morphology (figure 1a–c).

Table 1: Parameters for CCE, cell size distribution and cell viability in the obtained CCE fractions and in the UC-derived primary cell 
population

Fraction Flow rate
(ml/min)

Avg. diameter
(μm)

Cell viability
(%)

1 0.8 11.1 ± 1.3 65.0 ± 15.3

2 1.2 12.4 ± 1.1 88.3 ± 0.7

3 1.,5 14.0 ± 1.9 94.5 ± 3.9

4 2.0 14.3 ± 1.0 86.9 ± 9.4

5 2.8 15.4 ± 1.1 80.7 ± 10.8

6 stop 2.8 (without centrifugation) 19.1 ± 3.1 75.1 ± 9.4

Primary cell population (control) non-elutriated 15.0 ± 1.8 83.9 ± 5.2
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Thus, large sometimes binucleated cells with a morphol-
ogy varying from elongate to broad as well as small flat
cells with an apparent increased nucleus-to-cytoplasm
ratio were observed via phase-contrast microscopy (figure
1b). To further characterize this heterogeneous popula-
tion, cell separation according cell size was performed
using CCE.

During this procedure, six separate cell fractions with con-
tinuously increasing cell size were obtained (Table 1).

Two clearly distinct cell subpopulations consisting of
small cells with an average diameter of 11.1 ± 1.3 μm (elu-
triation fraction 1; figure 1d–f) and large cells with the
diameter of 19.1 ± 3.1 μm (elutriation fraction 6; figure
1g–i) were isolated from primary cultures of human
umbilical cord tissue. The small-sized subpopulation rep-
resented about 4,1% and the large-sized cells about 40%
of the entire population. A similar distribution was
observed in the UC-derived primary cultures of all 3
patients.

Cell size distribution in the UC-derived primary culture (a, b, c) and in the subpopulations of small-sized (d, e, f) and large-sized (g, h, i) cells obtained after CCEFigure 1
Cell size distribution in the UC-derived primary culture (a, b, c) and in the subpopulations of small-sized (d, e, 
f) and large-sized (g, h, i) cells obtained after CCE. Cell size was investigated using Vi-CELL Series Cell Viability Analyzer 
(a, d, g) and flow cytometry using FSC signals as a measure of cell size (c, f, i). Images of the corresponding cell cultures were 
taken on the next day after cell seeding using phase contrast microscopy (total magnification 100 ×) (b, e, h). Exemplary results 
of one representative experiment are presented (n = 3).
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Cell size determination following elutriation was per-
formed via Vi-CELL Series Cell Viability Analyzer (figure
1a, d, g) and revealed an initial viability of 65 ± 15% in the
small cell population and 75 ± 9% in the large cell popu-
lation (table 1). During subsequent culture the viability of
these two populations increased to more than 90%,
respectively. Analysis of the cultures by flow cytometry
confirmed a different size distribution of the CCE-
obtained subpopulations in the forward scatter (figure 1c,
f, i). Moreover, cell cycle analysis demonstrated no signif-
icant differences in the cell cycle distribution of either the
small-sized or the large-sized subpopulations with about
90% of cells in the G1/GO phase (data not shown).

Characterization of the immunophenotype
The immunophenotype of the UC-derived primary cul-
tures was investigated via quantitative flow cytometry. All
cells were highly positive for the surface antigens CD44,
CD73, CD90 and CD105 (figure 2a). Moreover, expres-
sion of the surface molecules CD34 and CD45 were below
detection limit (data not shown). A similar pattern of sur-
face antigen expression was also observed in the differen-
tially-sized subpopulations following CCE. However,
quantitative flow cytometry when measured fluorescence
signals of individual cells are divided by the correspond-
ing forward scatter (FSC) signals revealed a decrease of
antigen expression in the large-sized population (figure

Immunophenotype of cells obtained from human umbilical cord tissueFigure 2
Immunophenotype of cells obtained from human umbilical cord tissue. A. Flow cytometric analysis of surface anti-
gen expression in the UC-derived cultures was performed using the labelled antibody anti CD44-PE; anti CD73-PE; anti CD90-
FITC; anti CD105-R-PE. At least 10,000 events are displayed. B. Exemplary CD90 and CD73 expression normalized on cell 
size: comparison of subpopulations of small- (filled histogram) and large-sized cells (unfilled histogram). The fluorescence of the 
conjugated monoclonal antibodies (anti CD90-FITC and anti CD73-PE) as well as the forward scatter (FSC) signals were meas-
ured on linear scale. The ratios were calculated by the EPICS XL/MCL flow cytometer (Beckman Coulter).
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2b, unfilled histograms) versus the small-sized cells (fig-
ure 2b, filled histograms) as demonstrated for CD73 and
CD90, suggesting a more prominent expression of these
mesenchymal stem cell markers in the small-sized popu-
lation. The fluorescence distributions were compared
using the Kolmogorov-Smirnov test and both populations
were found to be different at the 99.9% confidence level.

Proliferative activity of elutriated cells
Analysis of the proliferative capacity revealed the small-
sized subpopulation most potent as compared to the origi-
nal UC-derived primary cultures and the large-sized CCE-
obtained subfraction. This increased proliferation potential
in the small-sized subpopulation sustained during longer
term culture at least until passage 8 after 31 days in culture
(Fig. 3) Accordingly, the subpopulation of small cells
passed 21.4 ± 0.03 cell population doublings after 31 days,
whereas in the same time range the original UC-derived pri-
mary cultures reached 20.6 ± 0.3 and the subpopulation of
large cells performed only 18.6 ± 0.2 cell population dou-
blings. Exemplary data in quadruplicates of one represent-
ative experiment (n = 3) was demonstrated (Fig. 3).

Analysis of senescence in the original UC-derived primary 
cultures and in the CCE-enriched small- and large-sized 
subpopulations
Original UC-derived primary cultures and subpopula-
tions of CCE-enriched small- and large-sized cells were

cultivated over the same period for 6 days post elutriation.
Following subsequent passage, the cells were seeded at a
density of 6,000 cells/cm2 and cultured for further 48 h.
Exemplary images of the original primary culture (figure
4A), the small-sized subpopulation (figure 4B) and the
large-sized cells (figure 4C) were obtained after SA-β-gal
staining. Senescent cells are marked by cyan dye in the
perinuclear area. Quantitative analysis revealed 6.3 ±
0.9% of senescent cells in the original primary culture and
18.0 ± 5.5% of senescence in the small-sized subpopula-
tion. In contrast, 90.1 ± 2.3% of the large-sized subpopu-
lation displayed features of a senescent phenotype (figure
4d). Thus, SA-β-gal positive and simultaneously binucle-
ated cells were observed in the investigated cultures and
appeared predominantly in the large-sized subpopulation
indicating the presence of aberrant mitosis (figure 4C,
arrows).

Discussion
Culture of umbilical cord tissue pieces yielded an adher-
ent growing cell population with a diverse morphology of
small and large cells. Flow cytometric analysis revealed
high levels of CD44, CD73, CD90 and CD105 expression
whereas the expression of CD-proteins typical for hemat-
opoietic cells remained undetectable. These findings sug-
gested the presence of mesenchymal stem cell-like cells
according to MSC standard criteria of the International
Society for Cellular Therapy [25]. Moreover, a distinct
subpopulation of the UC-derived primary cells demon-
strated the potential to differentiate along the osteogenic
pathway as evaluated by increase of alkaline phosphatase
activity and increased mineralization (data not shown).
This differentiation potential discriminated the UC-
derived subpopulation from fibroblasts which are also
most likely present in the original primary culture and
carry a similar immunophenotype.

We observed marked morphological and cell size differ-
ences in the UC-derived primary cultures despite the rather
homogeneous immunophenotype. For separation of these
morphologically different cells, we applied CCE as a new
approach. This technique yielded two subpopulations dis-
playing distinct differences both, in cell size and morphol-
ogy. Whereas the CCE-derived small-sized subpopulation
exhibited the highest proliferative capacity and the most
pronounced expression of mesenchymal stem cell markers,
similar properties were observed in subpopulations of
small-sized and rapidly-growing multipotential stem cells
derived from human bone marrow [15,26,33].

Together, these findings suggested that the identified small-
sized subpopulation of primary UC-derived cells exhibits
MSC-like characteristics which may indicate a high rele-
vance for applications in the area of regenerative medicine.
This is also supported by the significant lower proliferative
activity of the large-sized cells as well as the high portion of

Cell proliferative activity in cultures generated from the UC-derived primary cultures and from subpopulations of small- and large-sized cellsFigure 3
Cell proliferative activity in cultures generated from 
the UC-derived primary cultures and from subpopu-
lations of small- and large-sized cells. Proliferation was 
measured by counting the total number of obtained intact 
cells. Following CCE, cells were seeded at a density of 500 
cells/cm2 and cultivated in αMEM containing 10% human 
serum over 4 passages (P5–P8) in quadruplicates. Student’s t-
tests were performed for the recognition of the significant 
differences (marked with asterisks) in comparison to UC-
derived primary cell population.
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senescent cells in these cultures during long-term cultiva-
tion. In this context, the long-term expansion of the small-
sized subpopulation was associated with a gradual loss of
homogeneity displaying an enlarged and more diverse
morphology. Accordingly, we speculate that the small cells
may represent precursors of the larger, more mature cells,
which eventually become senescent.

Conclusion
CCE provides a useful approach to enrich small rapidly-
proliferating MSC-like cells in mixed UC-derived primary
cultures. However, further characterization of these sub-
populations is required with respect to the differentiation
capacity and the application potential in regenerative
medicine.
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