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Abstract. Quality descriptions are parts of the key tasks
of geodetic data processing. Systematic errors should be
detected and avoided in order to insure the high quality stan-
dards required by structural monitoring. In this study, the
iterative closest point (ICP) method was invested to detect
systematic errors in two overlapping data sets. There are
three steps to process the systematic errors: firstly, one of
the data sets was transformed to a reference system by the
introduction of the Gauss–Helmert (GH) model. Secondly,
quadratic form estimation and segmentation methods are
proposed to guarantee the overlapping data sets. Thirdly,
the ICP method was employed for a finer registration and
detecting the systematic errors. A case study was casted in
which a dam surface in Germany was scanned by terrestrial
laser scanning (TLS) technology. The results indicated that
with the conjugation of ICP algorithm the accuracy of the
data sets was improved approximately by 1.6 mm.
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1 Introduction

1.1 Background

Terrestrial laser scanning (TLS), which is an efficient
approach to ascertain near real time 3D points, has fre-
quently been used in structural monitoring. However, the
quality of the data from the TLS is often impaired by var-
ious error sources. Although the magnitude of the errors
may be not significant in some applications, even system-
atic errors which only measure a few millimetres should be
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detected to guarantee the accuracy of data sets in structural
deformation monitoring.

It is possible to render quality of 3D point clouds with
accuracy and precision, as can be identified by such stan-
dard organisations as ANSI, ASTM and ISO [1, 9]. One
indicator of the data quality is accuracy, which is defined,
according to [9], “as the closeness of agreement between
a measured quantity value and a true quantity value of a
measurand”. Another indicator of data quality is preci-
sion, which is given by [9], “as the closeness of agreement
between indications or measured quantity values obtained
by replicate measurements on the same or similar objects
under specified conditions”. It is also noted that “precision”
does not relate to the true value and a measure of precision
is usually expressed in terms of imprecision and computed
as a standard deviation of the test results. Less precision
is reflected by a larger standard deviation. “Accuracy” is a
qualitative concept and the term “precision” should not be
used in place of “accuracy” [5]. Systematic errors indicate
the degree of accuracy and may not be reduced by averaging
vast amounts of data. It is assumed that if there are no sys-
tematic errors, the distance between corresponding points
should be zero after the transformation of point clouds into
a common coordinate system.

A fine registration of two range images was casted by
first aligning feature points, followed by feature surface ele-
ments, which are sets of points corresponding to the image
area determined by the feature [3]. A modified ICP method
[10] was generated to explore the systematic errors in over-
lapping strips of airborne laser scanning data sets for the
detection of systematic errors. The errors usually come
from vegetation or other non-permanent features. Based on
a triangulated irregular network (TIN) structure, Maas [13]
solved the problem that applying matching methods causes
systematic errors of the shift parameters with partial occlu-
sions in laser scanner data. Yoon et al. [20] carried out an
error compensation process for detecting systematic errors
at depth discontinuities. For relevant researches, we refer to
Vosselman [17] and Schreier and Sutton [15].

Various matching algorithms, such as Scale Invariant
Feature Transform (SIFT) [12] and Speeded Up Robust
Features (SURF) [2], are used in many disciplines. How-
ever, for objects without distinctive features, it is hard to
find enough available identical patches, especially for struc-
tures with similar curvature and colour. In this case, many
matching methods may fail. The iterative closest point
(ICP) algorithm was investigated by Besl and McKay [4],
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Yang and Medioni [18], and Zhang [21]. The pros and
cons of the ICP approach have been illustrated by Gruen
and Akca [7]. The basic version of the ICP method is based
on the search for pairs of nearest points in the two sets, and
estimates a rigid transformation. One of the data sets is con-
sidered as a reference surface. The other data set is called
the matching surface. Proper initial values are necessary
to guarantee correct matching. This means a rough trans-
formation needs to be performed before the ICP method is
launched. We introduce the ICP algorithm to adjust for sys-
tematic errors. Strategies were employed to speed up com-
putation time and improve data quality: reduction of the
number of matching points through quadratic form estima-
tion, and speeding up the accuracy of data sets with provid-
ing of proper initial values.

An application in the Harz dam monitoring task was per-
formed for data collection of the dam surface by Trimble
GX 3D scanner. Eling [6] demonstrated the existence of
systematic errors between points from different scanner sta-
tions, even when the calibration of vertical angles and dis-
tances was undertaken before the scanning task. Because
this precalibration may be not sufficient, we propose a fea-
ture matching method which alleviates the systematic errors
in TLS data. The experiments showed that the systematic
errors are allayed approximately by 1.6 mm with the imple-
mentation of the ICP algorithm.

The paper is organised as follows. The proposed method
will be illustrated in Section 2. In Section 3, an application
of dam monitoring will be presented in detail. Conclusions
are drawn in Section 4.

2 Proposed method

The proposed method is illustrated in the following three
steps: First, the Gauss–Helmert model (GH model) rep-
resents the transformation between a scanner station and
a local coordinate system, and this model is performed in
order to estimate the seven transformation parameters by
using identical points. Second, quadratic form parameters
representing the object surface are estimated in order to
build a uniform framework, which is then used to segment
the point clouds into the corresponding small blocks. The
point clouds in one block are estimated as one representing
point. The representing point stands on the points in the
block. Third, the ICP algorithm is then applied as a finer
registration strategy for reducing the discrepancies between
two representing point sets. The two representing point sets
come from two scanner stations.

2.1 Registration with the Gauss–Helmert model

The 3-D similarity transformation of coordinates is a com-
putational procedure that maps one set of coordinates in a
given system onto another. In this scenario, an estimation

of the transformation parameters is achieved by identical
points which provide best fitting of the conversion between
the scanner system and the local system. The transforma-
tion functions can be expressed as follows:

y i
j D �xi

C si R.wi ; �i ; �i /li
j ; (1)

where i D 1; 2; : : : ; p, j D 1; 2; : : : ; q; p and q equal
the total number of scanner stations and identical points,
respectively; y is the vector of coordinates in the local sys-
tem; l is the vector of the coordinates in the scanner system;
�x is the vector of translations of scanner station; s is the
scale; and R is the rotation matrix with three rotation angles
.!; �; �/.

Linearising the above formula by a first-order Taylor
approximation, the GH model is formed as follows:

Bv CAıx D w ; (2)

where B and A are Jacobian matrices with respect to obser-
vation vector and parameter vector; v and ıx are the correc-
tions to the approximate values of observations and param-
eters; w is the misclosure vector.

The solution of unknown parameters in the established
GH model is illustrated by [14, pp. 175–180]:

ı Ox D �.AT .BQllB
T /�1A/�1AT .BQllB

T /�1w ; (3)

where Qll is the weight coefficient matrix of the observa-
tions. The solution can be obtained iteratively, provided
that the Jacobian matrices are correctly updated.

The effects of gross errors to the estimator are eliminated
through a properly built equivalent weight matrix [19]. Fur-
thermore, variance components estimation is proposed for
modifying the precision of observations from three types
[16]. In this study, we classified the observations according
to ranges, horizontal and vertical angles.

2.2 Quadratic form estimation and segmentation

For structure monitoring, a huge data volume and auto-
mated mathematical model need to be considered and han-
dled. In many cases, the shape of the object surface could be
described through quadratic form estimation, where several
parameters stand for curvature of the object [8].

The general equation for the quadratic form estimation
can be read as

xT
k Mxk CmT xk C ˛ D 0; (4)

where xk is the coordinate vector of a single point; k D
1; 2; : : : ; n; n denotes the total number of points scanned
by TLS; M is a 3�3 symmetric coefficient matrix; m is the
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coefficient vector; and ˛ is the scalar. The parameters are
expressed as

xk D

264xk

yk

zk

375 ; M D

0B@a1 a4 a5

a4 a2 a6

a5 a6 a3

1CA ;

m D

264a7

a8

a9

375 ; ˛ D a10: (5)

Equation (4) can be consequently represented by

a1x
2
k C a2y

2
k C a3z

2
C 2a4xkyk C 2a5xkzk

C 2a6ykzk C a7xk C a8yk C a9zk C a10 D 0: (6)

The parameters from a1 to a10 could be estimated by a GH
model with several steps of iteration for convergence. The
determinant method, in which an extended form matrix M�

is constructed, was launched to estimate the four motion
invariant parameters ı, �, B and J (see [11]).

The extended form matrix is identified as

M�
D

 
M m

mT ˛

!
: (7)

For the functions of the four parameters of ı, �, B and J
refer to Eling [6]. The shape of the object was determined
by looking for the test tree of automatic form recognition
[8].

A uniform framework of the object surface is established
in a spherical coordinate system with the parameters calcu-
lated by quadratic form estimation. Based on the frame-
work, the object surface is segmented into small blocks and
the point clouds from the TLS are divided into correspond-
ing blocks. Each block is represented by a representing
point, which is estimated by a least squares method. The
representing points are situated in the centres of gravities of
the blocks when the blocks have enough point clouds for the
least squares adjustment. This reduces the volume of data,
and builds a uniform framework for point clouds from both
different scanner stations and different epochs. The object
surface is then demonstrated and analysed by the represent-
ing points. In other words, the representing points stand for
the 3D representations of the object surface, which we also
call a surface or a feature in this paper.

The GH model processes the random errors both from
observations and from configuration matrix. For the detec-
tion and reduction of systematic errors, the ICP algorithm is
introduced to correct the discrepancies between two match-
ing surfaces.

2.3 Implementation of the ICP method

The idea of the ICP algorithm is to find the closest dis-
tance between two matching surfaces without considering
the scale index. This computation is performed for each
representing point in the matching surface against all repre-
senting points in the reference surface. It iteratively revises
the transformation (translation and rotation) in order to min-
imise the distance between the points of two data sets.

Thus the workflow of the ICP algorithm could be simply
involved as follows:

1. Input: two point sets from a reference model and a
matching model.

2. Initialisation: proper initial values which are benefit for
fast and correct convergence.

3. Iteration: calculate the closest distance and then the
transformation matrix, thus utilising the rigid transfor-
mation to the matching surface. The iteration stops if
the points in the matching model are close enough to the
points in the reference model.

4. Output: a transformation matrix which transforms the
matching surface to the reference model.

For step 3, as the two data sets converge, the correc-
tions of the resulting rigid transformation become smaller,
and the solution iteratively approaches a global minimum.
Once the minimum distances between the matching surface
and the reference surface have been achieved, a covariance
matrix was calculated with the mean values of coordinates
from both surfaces. A quaternion matrix was utilised for the
estimation of a transformation matrix, where arrays of fea-
tures are estimated in a least square sense in closed form.
Therefore, the points in the matching surface are trans-
formed into the reference surface.

One issue for the application of the ICP algorithm is
about initial approximations. This means a satisfaction of
good initial approximations in the beginning of iteration.
With the introduction of registering by the GH model, good
initial values could be reached, and correct convergence
is also guaranteed. Another issue is about the overlap-
ping regions of two surfaces. The adoptions of quadratic
form estimation and segmentation methods throw out the
points that are unique to each surface. Therefore, the two
surfaces iterated in the ICP algorithm are entirely overlap-
ping regions. A finer registration is obtained, and system-
atic errors existing in the first step of transformation are
decreased by the implementation of the ICP algorithm.

Because the deformation of structures is quite small, the
interference of systematic errors lets the analysis of defor-
mation be inaccurate. Thus, the detection method of sys-
tematic errors is very reasonable for monitoring tasks. The
corrected coordinates of the representing points from dif-
ferent epochs are compared for analysing the possible vari-
ations of objects.
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Figure 1. Geodetic monitoring network of the dam [6].

3 Application and discussion

A case study was examined in a monitoring task for a dam
located in the Harz Mountains, Germany. Four scanner sta-
tions (station 1000, 2000, 3000 and 4000) were established
to scan the dam surface for data collection (Figure 1). Pre-
calibration to range and vertical angle was tested before
scanning [6]. The geodetic network with the original sta-
tions 5000 and 6000 was built using a survey of total sta-
tions. Without loss of generality, we issued data sets only
on epoch 4.

In order to get a full representation of the object surface,
the similarity transformation was implemented to trans-
form point clouds into the local coordinate system. At the
beginning of data processing, gross errors were eliminated
because points contaminated by the outliers could influence
the accuracy of registration and stop the ICP algorithm dur-
ing the iteration process. In order to get the resulting weight
matrix of observations and remove gross errors, the equiva-
lent weight matrix and the variance components estimation
were introduced for gross errors detection and robust esti-
mation.

With quadratic form estimation, the shape of the dam
surface was estimated as an elliptic cylinder (Figure 2). The
dam surface was divided into small rectangular blocks with
the criterion of horizontal and vertical angles in the spheri-
cal coordinate system. A representing point, which should
be situated in the gravities of the blocks, was obtained in
the block by the least squares method. The accuracy estima-
tion was achieved by the analysis of the representing points.
Approximately 12,000 blocks were plotted in the dam sur-
face. Unique series numbers were attached with the char-
acter information of each block. The series number of the
block started from the right bottom of the dam surface.

A proper block size warrants the accuracy of estimated
representing points. If the definition of block size is too

 

Figure 2. Elliptic cylinder fitting (the red section is the
registered points. The blue section is the fitted elliptic
cylinder).

large, there may be a significant variation of the block cur-
vature. Smaller deformation of object surface could be hard
to detect. If a block size is too small, not enough point
clouds can be divided into the block. These would cause
deviations of the estimation of representing points.

After registration with artificial targets in the GH model,
approximately 5 mm systematic errors were detected in
point clouds between two scanner stations. Our applica-
tion then employed the ICP algorithm to the representing
points to check and reduce the discrepancies between the
two scanner stations.

The representing points which were unique to one sur-
face model are not included in the transformation compu-
tation. We confirmed the correspondences of representing
points with the unique series number during the segmenta-
tion process. The representing points that are not a portion
of the overlapping surface were removed during the ICP
calculation. This guarantees the exact overlapping areas.

Choosing feature from one scanner station as a reference
model, the ICP algorithm was executed so that the match-
ing model was transformed into the reference system. An
initial alignment, which takes the overlapping surface close
enough, is indispensable for a fast convergence of the ICP
method.

In order to test the validation of the ICP method, we com-
pared the results from the ICP method and the GH model.
We show results from epoch 4. The mean value of the
standard deviation (STD) represents the average distance
between the corresponding representing points (Table 1). If
no systematic errors exist, the distance between represent-
ing points from different stations should be zero. In epoch
4, the mean STD with the ICP approach was 3.4 mm, while
the mean STD with the GH model was 5 mm. In the pro-
cedure of the GH model, the mean value of 1000 vs. 4000
was 6.0 mm, while the mean value using the ICP approach
was 2.8 mm (Table 1).
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Figure 3. Distance difference of the representing points between two scanner stations (the ICP method).

STD (mm) ICP method GH model

1000 vs. 2000 2.8 6.0
1000 vs. 4000 3.7 4.6
2000 vs. 4000 3.7 4.1

Table 1. Mean values of distance between the representing
points.

Figure 3 illustrates the distance differences between the
corresponding representing points in two of the scanner sta-
tions. Comparisons (station 1000 vs. 2000, station 1000 vs.
4000, and station 2000 vs. 4000) are shown from left to
right. The middle parts of the dam are quite stable; mean-
while the largest biases happen in the boundary of the dam.
For station 1000 vs. station 2000, distance difference varies
from 0 mm to 12 mm, while the largest variation appears on
the top right part of the dam. The most obvious difference
of distance occurs at the bottom of the dam with station
1000 vs. station 4000. It is possibly because station 4000
is farthest away from the dam and the distance has a direct
effect on the quality of observations.

For structural deformation analysis, the representing
points were compared in order to test if the corresponding
points had significant variations in different epochs. Defor-
mation of the structure is usually small. Thus, the confirma-
tion and elimination of systematic errors are indispensable
in the task of structure monitoring.

4 Conclusions

We have presented an ICP approach to adjust systematic
errors within TLS data. This is based on identifying sur-
face in a data set and matching it to the overlapping sur-
face in a reference model. The problems associated with

the ICP algorithm are categorised in two ways. The first is
by describing the dam surface with the representing points.
This method decreased the data volume and assured the
overlapping area. The other way is by choosing proper ini-
tial values to guarantee correct convergence and save run-
ning time. In this research, the application of the ICP algo-
rithm reduced the systematic errors by about 1.6 mm.

As explained, a suitable block size is beneficial for
the estimation of the representing points, because the ICP
algorithm was operated with respect to the representing
points, and the accuracy of the estimated representing
points affected the results of the ICP method as well. Large
deviations of the initial values would also lead to ICP
method failure.

Although the implementation of the ICP algorithm does
reduce the systematic errors, 3.6 mm systematic errors still
remain within the data sets. Future work needs to include
configuration and other information in order to detect and
eliminate the systematic errors.
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