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Error expansion for the discretization of

Backward Stochastic Differential Equations
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a ENSIMAG - INPG, IMAG - LMC, BP 53, 38041 Grenoble cedex 9, FRANCE
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Abstract

We study the error induced by the time discretization of a decoupled forward-
backward stochastic differential equations (X,Y,Z). The forward component X is
the solution of a Brownian stochastic differential equation and is approximated by
a Euler scheme XN with N time steps. The backward component is approximated
by a backward scheme. Firstly, we prove that the errors (Y N −Y,ZN −Z) measured
in the strong Lp-sense (p ≥ 1) are of order N−1/2 (this generalizes the results by
Zhang [20]). Secondly, an error expansion is derived: surprisingly, the first term is
proportional to XN − X while residual terms are of order N−1.

Key words: backward stochastic differential equation, discretization scheme,
Malliavin calculus, semi-linear parabolic PDE.
1991 MSC: 60H07, 60F05, 60H10, 65G99

1 Introduction

Let (Ω,F , P) be a given probability space on which is defined a q-dimensional
standard Brownian motion W , whose natural filtration, augmented with P-
null sets, is denoted by (Ft)0≤t≤T (T is a fixed terminal time). We consider
the solution (X, Y, Z) to a decoupled forward-backward stochastic differential
equation (FBSDE in short). Namely, X is the Rd-valued process solution of

Xt = x +
∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs, (1)
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and Y (resp. Z) is a real-valued adapted (resp. predictable Rq-valued) process
solution of

−dYt = f(t, Xt, Yt, Zt)dt − ZtdWt, YT = Φ(XT ). (2)

We assume standard Lipschitz properties on the coefficients, which ensure
existence and uniqueness in appropriate L2-spaces (see Pardoux and Peng
[18], or Ma and Yong [14] for numerous references). During the last decade,
more and more attention has been paid to these equations, because of their
natural applications in Mathematical Finance or in the probabilistic resolution
of semi-linear partial differential equations (PDE in short): see El Karoui et al.
[5] or Pardoux [17].

Our aim is to study the most usual time approximation of (X, Y, Z). For X,
we use the Euler scheme XN with N discretization times (tk = kh)0≤k≤N

(h = T
N

is the time step). For convenience, set ∆Wk = Wtk+1
− Wtk (∆W l

k

component-wise). XN is defined by XN
0 = x and

t ∈ [tk, tk+1], XN
t = XN

tk
+ b(tk, X

N
tk

)(t − tk) + σ(tk, X
N
tk

)(Wt − Wtk). (3)

The backward SDE (2) is approximated by (Y N , ZN) defined in a backward
manner by Y N

tN
= Φ(XN

tN
) and

Y N
tk

=Etk(Y
N
tk+1

) + hEtkf(tk, X
N
tk

, Y N
tk+1

, ZN
tk

), (4)

hZN
tk

=Etk(Y
N
tk+1

∆W ∗
k ), (5)

where Etk is the conditional expectation w.r.t. Ftk and ∗ is the transpose
operator. Additional tools are needed to derive a fully implementable scheme,
in particular for the computations of conditional expectations. We refer to
Bouchard and Touzi [2] for Malliavin calculus techniques, or to Gobet et al.
[6], Lemor et al. [13] for empirical regression methods. In this work, we leave
these further questions and we only address the error analysis between (Y, Z)
and (Y N , ZN).
On the one hand, Zhang [20] proves (in a slightly different form) that the error
maxk≤N ‖Y N

tk
−Ytk‖L2

≤ CN−1/2. This is done under rather minimal Lipschitz
assumptions on b, σ, f, Φ. On the other hand, when f does not depend on
z and the coefficients are smooth, one knows that |Y N

0 − Y0| ≤ CN−1 (see
Chevance [3]). We aim at filling the gap regarding these two different rates of
convergence. In the following, we prove that

• the Chevance’s results extend to the case of f depending also on z.
• the rate N−1 holds true also for the difference |ZN

0 − Z0|.
• more generally, for the other discretization times tk, we expand the error as

∣∣∣Y N
tk

− Ytk − αk · (XN
tk
− Xtk)

∣∣∣ ≤ CN−1 ∨ |XN
tk
− Xtk |2

(for an explicit and bounded random vector αk).
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• an analogous expansion is available for Z.

Since |XN
tk
−Xtk |2 has the same order in Lp than N−1, the error on Y is mainly

due to the error XN
tk

− Xtk . Thus, Zhang’s results are a consequence of this
expansion, and Chevance’s ones as well since XN

0 = X0. The gap is filled.
In addition, we learn from this expansion that if one could perfectly simulate
X (as for Brownian motion with constant drift, geometric Brownian motion
or Ornstein-Uhlenbeck process), the error on the BSDE would be of order
N−1 and not N−1/2 as stated by Zhang’s results. Also, if one could use a dis-
cretization scheme for X of order 1 for the strong error (for instance Milshtein
scheme whenever possible), the error on the BSDE would be of order N−1

(we would need to extend our analysis to other discretization schemes, this is
straightforward for the Milshtein scheme).

The paper is organized as follows. In Section 2, we define the assumptions on
the coefficients, recall the connection between BSDEs and semi-linear PDEs
(which is important for our analysis). Finally, we state our main results. Firstly
in Theorem 6, we extend Zhang’s results to Lp norm. Secondly in Theorem 7,
we expand the error on Y . Lastly in Theorem 8, we deal with the error on Z.
Naturally, stronger and stronger assumptions are required for theses theorems.
Proofs of the three results are postponed to Sections 3, 4 and 5: we combine
BSDE techniques, martingale estimates and Malliavin calculus.

Notation.

• Differentiation. If g : Rd 7→ Rq is a differentiable function, its gradient
∇xg(x) = (∂x1

g(x), ..., ∂xd
g(x)) takes values in Rq ⊗ Rd. At many places,

∇xg(x) will simply be denoted g′(x). If g : Rd 7→ R is a twice differentiable
function, its Hessian Hx(g) takes values in Rd ⊗ Rd: (Hx(g))i,j = ∂2

xixj
g. If

g : Rd × Rq 7→ R, g
′′

xy(x, y) takes values in Rd ⊗ Rq: (g
′′

xy)ij = ∂2g
∂xi∂yj

, for

1 ≤ i ≤ d, 1 ≤ j ≤ q.
• Function spaces. For an integer k ≥ 1, we denote by C

k/2,k,k,k
b the set of

continuously differentiable functions φ : (t, x, y, z) ∈ [0, T ]×Rd ×R×Rq 7→
φ(t, x, y, z) such that the partial derivatives ∂l0

t ∂l1
x ∂l2

y ∂l3
z φ(t, x, y, z) exist for

2l0 + l1 + l2 + l2 ≤ k and are uniformly bounded. The analogous set of
functions that not depend on y and z is denoted by C

k/2,k
b . This set is

denoted by C
(k+α)/2,k+α
b (α ∈]0, 1[) if in addition the highest derivatives

are Hölder continuous with index α w.r.t. x and α/2 w.r.t. t (for a precise
definition, see Ladyzenskaja et al. [12]).

• Norm. For a d-dimensional vector U , we set |U |2 =
∑d

i=1 U2
i . For a d ×

q-dimensional matrix A, Ai denotes its i-th column, and Ai its i-th row.
Moreover, |A|2 =

∑d,q
i,j=1 A2

i,j .
• Constants. Let C denote a generic constant which may depend on the

coefficients b, σ, f, Φ and on the dimensions d and q. We will keep the same
notation K(T ) for all finite, nonnegative, and nondecreasing functions w.r.t.
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T : they do not depend on x and h. The generic notation K(T, x) stands for
any function bounded by K(T )(1 + |x|q), for some q ≥ 0.

• O(U) and Ok(h). A random vector R is such that R = O(U) for a nonneg-
ative random variable U if |R| ≤ K(T, x)U (in particular, R = O(h) means
|R| ≤ K(T, x)h). The notation R = Ok(h

p) means |R| ≤ λN
k hp, where λN

k is
Ftk-measurable, supN E(supk |λN

k |q) ≤ K(T, x), for q ≥ 1.
• Etk

and Vartk
. Etk is the conditional expectation w.r.t. Ftk and Vartk(X) =

Etk(X
2) − (Etk(X))2.

• Malliavin calculus. We use the notations of Nualart [16] for weak spaces
Dk,p.

• Discretization Let s ∈ [tk, tk+1[. We define η(s) = tk.

2 Main results

2.1 Hypotheses

The coefficients b : [0, T ]×Rd → Rd, σ : [0, T ]×Rd → Rd×q, f : [0, T ]×Rd ×
R × Rq → R and Φ : Rd → R satisfy one of the following set of assumptions.

Hypothesis 1 The functions b, σ, f and Φ are bounded in x, are uniformly
Lipschitz continuous w.r.t. (x, y, z) and Hölder continuous of parameter 1

2

w.r.t. t. In addition, Φ is of class C2+α
b for some α ∈]0, 1[ and the matrix-

valued function a = σσ∗ is uniformly elliptic.

Hypothesis 2 Assume Hypothesis 1 and that the functions b, σ are in C
3

2
,3

b ,

f is in C
3

2
,3,3,3

b , Φ is in C3+α
b for some α ∈]0, 1[.

Hypothesis 3 Assume Hypothesis 1 and that the functions b, σ are in C2,4
b ,

f is in C2,4,4,4
b , Φ is in C4+α for some α ∈]0, 1[.

We do not assert that these smoothness and boundedness conditions are the
weakest ones for our error analysis, but they are sufficient. Investigations re-
garding minimal assumptions would be certainly interesting but it is beyond
the scope of the paper.
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2.2 Connection between Markovian BSDE’s and semi-linear parabolic PDE’s

We recall classical results connecting (Y, Z) and the solution and its gradient
of the following semi-linear PDE on [0, T ] × Rd:

(∂t + L(t,x))u(t, x) + f (t, x, u(t, x),∇xu(t, x)σ(t, x)) = 0, (6)

u(T, x) = Φ(x),

where L(t,x) is the second order differential operator

L(t,x) =
1

2

∑

i,j

[σσ∗]ij(t, x)∂2
xixj

+
∑

i

bi(t, x)∂xi

(see for instance Ma and Zhang [15] or Pardoux [17]).

Proposition 4 Under Hypothesis 1, one has

∀t ∈ [0, T ], Yt = u(t, Xt), Zt = ∇xu(t, Xt)σ(t, Xt), (7)

where u is the unique classic solution C1,2
b of the PDE (6).

In addition under Hypothesis 2, u ∈ C
3

2
,3

b , and under Hypothesis 3, u ∈ C2,4
b .

The first result of this Proposition corresponds to Theorem 2.1 of Delarue and
Menozzi [4]. The two last regularity results can be proved in the same way.

In fact for this, we would only need b, σ to be in C
1+α/2,2+α
b ; the additional

smoothness is used later for Malliavin calculus computations.

2.3 Main results

We now turn to the statement of our results. Remind the following well-known
upper bound on the Euler Scheme, which is useful in the sequel.

Proposition 5 Let σ and b be Lipschitz continuous. Then

∀p ≥ 1, [E(sup
t≤T

|XN
t − Xt|p)]

1

p ≤ K(T, x)
1√
N

.

In fact, for all p ≥ 1 one has

[Eti( sup
ti≤t≤T

|XN
t − Xt|p)]

1

p ≤ K(T, Xti)
1√
N

+ |XN
ti
− Xti |. (8)

Our first result is an extension of the L2 estimates in Zhang [20] to Lq estimates
(see also Gobet et al. [6]).
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Theorem 6 Let us assume Hypothesis 1. Let q > 0. We define the error

eq(N) =
[

max
0≤k≤N

E|Ytk − Y N
tk
|q + E(

N−1∑

k=0

∫ tk+1

tk

|ZN
tk
− Zt|2dt)

q

2

] 1

q ,

where Y N and ZN are defined by (4) and (5). Then |eq(N)| ≤ K(T, x) 1√
N

.

By slightly strengthening the smoothness assumptions on b, σ, f and Φ, we are
able to expand the error on Y .

Theorem 7 Let us assume Hypothesis 2. Then, the following expansion holds

Y N
tk

− Ytk =∇xu(tk, Xtk)(X
N
tk
− Xtk) + Ok(

1

N
) + O(|XN

tk
− Xtk |2).

In view of Proposition 5, |XN
tk
− Xtk |2 and N−1 have the same order (in Lp).

Hence it turns out that ∇xu(tk, Xtk)(X
N
tk

− Xtk) is the first order term in
the error Y N

tk
− Ytk . Obviously, this estimate implies that of Theorem 6. As

mentioned in the introduction, the evaluation of Y0 by Y N
0 has still an accuracy

of order N−1 since initial conditions for XN and X coincide. Note that if there
is no discretization error for the process X, Y N

tk
− Ytk = O( 1

N
), a fact which

is not clear from equations (4) and (5). A nice situation corresponds to σ
independent of x (this is a very specific situation where Euler and Milshtein
schemes are equal): in that case ‖XN

tk
− Xtk‖Lp

= O(N−1) and one gets the
order of accuracy N−1 for Y .

For Z which plays the role of a gradient relatively to Y , we get an analogous
result about the error, up to increasing by 1 the degree of smoothness of the
coefficients.

Theorem 8 Let us assume Hypothesis 3. Then, the following expansion holds

ZN
tk
− Ztk =

(
∇x[∇xu σ]∗(tk, Xtk)(X

N
tk
− Xtk)

)∗
+ Ok(

1

N
) + O(|XN

tk
− Xtk |2).

Remark 9 The above results are sufficient to derive the weak convergence of
the renormalized error process [

√
N(Y N

t −Yt)]0≤t≤T and [
√

N(ZN
t −Zt)]0≤t≤T ,

except that one has to define Y N and ZN between discretization times. For
t ∈ [tk, tk+1[, analogously to (4) and (5) we define

Y N
t = Et

(
Y N

tk+1
+ (tk+1 − t)f(t, XN

t , Y N
tk+1

, ZN
t )

)
,

ZN
t =

1

tk+1 − t
Et

(
Y N

tk+1
(Wtk+1

− Wt)
∗
)
.

6



Theorems 7 and 8 can be extended to all t ∈ [0, T ]. We have

Y N
t − Yt =∇xu(t, Xt)(X

N
t − Xt) + Ot(

1

N
) + O(|XN

t − Xt|2),

ZN
t − Zt =

(
∇x[∇xu σ]∗(t, Xt)(X

N
t − Xt)

)∗
+ Ot(

1

N
) + O(|XN

t − Xt|2).

Theorem 3.5 of Kurtz and Protter [11] allows us to establish the weak conver-
gence of the processes

√
N(Y N − Y ), and

√
N(ZN − Z). Indeed, the process

[
√

N(XN
t − Xt)]0≤t≤T weakly converges to the solution of

Ut =
q∑

i=1

∫ t

0
∇xσi(s, Xs)UsdW i

s +
∫ t

0
∇xb(s, Xs)Usds

+
1√
2

q∑

i,j=1

∫ t

0

d∑

k=1

∂xk
σi(s, Xs)σkj(s, Xs)dV ij

s ,

where (V ij)1≤i,j≤q are independent standard Brownian motions and indepen-
dent of W . Furthermore, the convergence is stable (see Jacod and Protter [9]).
Hence, [

√
N(XN

t −Xt),
√

N(Y N
t −Yt),

√
N(ZN

t −Zt), Xt]0≤t≤T weakly converges
to [(Ut,∇xu(t, Xt)Ut, ([∇x[∇xu σ]∗(t, Xt)]Ut)

∗, Xt]0≤t≤T .

3 Proof of theorem 6

Extra notations for all the proofs. For any process U (except the Brownian
increments ∆Wk), we define ∆Uk = UN

tk
− Utk . Let θs denote (s, Xs, Ys, Zs)

and fN
tk

denote f(tk, X
N
tk

, Y N
tk+1

, ZN
tk

).

Ztk is defined as hZtk := Etk

∫ tk+1

tk Zsds and we put ∆Zk = ZN
tk
− Ztk .

If q = 2, the result has already been proved in Gobet et al. [6], under Lipschitz

conditions on b, σ, f, Φ. Thanks to the inequality E|U |q ≤ (E|U |2p)
q

2p for 2p ≥
q, we only need to prove the theorem for q = 2p, where p ∈ N∗.
First, we give some estimates which can be easily established. We have, under
Hypothesis 1, ∀s ∈ [tk, tk+1],

Etk(|Xs − Xtk |2p + |Ys − Ytk |2p + |Zs − Ztk |2p) ≤ Chp. (9)

In the following computations, these estimates are repeatedly used.

3.1 Proof of max0≤k≤N E|Ytk − Y N
tk
|2p = O(hp).

We prove the following result, which is a bit more general.

Proposition 10 maxi≤k≤N Eti |Ytk − Y N
tk
|2p = Oi(h

p) + |∆Xi|2p.
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By taking i = 0, we get max0≤k≤N E|Ytk − Y N
tk
|2p = O(hp).

Assume that we have

|∆Yk|2 ≤ (1 + Ch)Etk |∆Yk+1|2 + Ch|∆Xk|2 + Ch2. (10)

Then, using the inequality (a + b)p ≤ ap(1 + ǫ(2p−1 − 1)) + bp(1 + 2p−1−1
ǫp−1 ) for

0 < ǫ < 1, we deduce

|∆Yk|2p ≤ (1 + Ch)p+1Etk |∆Yk+1|2p + Cphp(|∆Xk|2 + Ch)p(1 +
C

hp−1
).

Take the conditional expectation w.r.t. Fti to get Eti |∆Yk|2p ≤ (1+Ch)Eti |∆Yk+1|2p+
h(hp+Eti |∆Xk|2p). Using (8) for |∆Xk| and Gronwall’s lemma yields maxi≤k≤N Eti |Ytk−
Y N

tk
|2p = Oi(h

p) + |∆Xi|2p. 2

Now we prove the inequality (10). From (2) and (4) we obtain

∆Yk = Etk(∆Yk+1) + Etk

∫ tk+1

tk

(fN
tk

− f(θs))ds. (11)

By applying Young’s inequality, that is (a + b)2 ≤ (1 + γh)a2 + (1 + 1
γh

)b2,
where γ will be fixed later, and using the Lipschitz property of f , we get

|∆Yk|2 ≤ (1 + γh)(Etk(∆Yk+1))
2 + C(h +

1

γ
)[h2 + Etk

∫ tk+1

tk

|Xs − XN
tk
|2ds]

+ C(h +
1

γ
)[Etk

∫ tk+1

tk
|Ys − Y N

tk+1
|2ds + Etk

∫ tk+1

tk
|Zs − ZN

tk
|2ds]. (12)

Let us introduce Ztk (see extra notations at the beginning of Section 3):

Etk

∫ tk+1

tk
|Zs − ZN

tk
|2ds = Etk

∫ tk+1

tk
|Zs − Ztk |2ds + hEtk |Ztk − ZN

tk
|2. (13)

Thanks to the Cauchy Schwarz inequality we have

|Etk(∆Yk+1∆W l
k)|2 ≤ h{Etk(|∆Yk+1|2) − |Etk(∆Yk+1)|2}.

Hence, as hZtk = Etk({Ytk+1
+

∫ tk+1

tk f(θs)ds}∆W ∗
k ), with a bounded f , it

follows that

h2|Ztk − ZN
tk
|2 ≤ d h

(
Etk(|∆Yk+1|2) − |Etk(∆Yk+1)|2

)
+ Ch3. (14)

By plugging (13) and (14) into (12), we get

|∆Yk|2 ≤ (1 + γh)(Etk(∆Yk+1))
2

+ C(h +
1

γ
)[h2 + Etk

∫ tk+1

tk
|Xs − XN

tk
|2ds + Etk

∫ tk+1

tk
|Ys − Y N

tk+1
|2ds]

+ C(h +
1

γ
)[Etk

∫ tk+1

tk

|Zs − Ztk |2ds + Etk(|∆Yk+1|2) − |Etk(∆Yk+1)|2].
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We can write Etk |Ys −Y N
tk+1

|2 ≤ 2Etk |Ys −Ytk+1
|2 +2Etk |∆Yk+1|2. By doing the

same for Xs − XN
tk+1

, and taking γ = C, we obtain

|∆Yk|2 ≤(1 + Ch)Etk |∆Yk+1|2 + Ch|∆Xk|2 + ChEtk |∆Yk+1|2

+ C[h2 + Etk

∫ tk+1

tk
|Xs − Xtk |2ds + Etk

∫ tk+1

tk
|Ys − Ytk+1

|2ds]

+ C[Etk

∫ tk+1

tk
|Zs − Ztk |2ds].

Using (9) yields |∆Yk|2 ≤ (1 + Ch)Etk |∆Yk+1|2 + Ch|∆Xk|2 + Ch2. 2

3.2 Proof of E(
∑N−1

k=0

∫ tk+1

tk |ZN
tk
− Zt|2dt)

p

2 = O(hp).

First of all, we can split this summation into two terms

E
( N−1∑

k=0

∫ tk+1

tk
|ZN

tk
−Zt|2dt

)p ≤ CE
( N−1∑

k=0

∫ tk+1

tk
|Ztk−Zt|2dt

)p
+CE

(
h

N−1∑

k=0

|∆Zk|2
)p

.

Thanks to (9), we have E
( ∑N−1

k=0

∫ tk+1

tk |Ztk−Zt|2dt
)p ≤ T p−1 ∑N−1

k=0

∫ tk+1

tk E|Ztk−
Zt|2pdt = O(hp).

Scheme of the proof of E
(
h

∑N−1
k=0 |∆Zk|2

)p
= O(hp). The first key point is to

slice the summation into small intervals and show that the result is true for
small time intervals. The second key point is to use Rosenthal’s inequality, see
Theorem 2.12 page 23 of Hall and Heyde [8]. By using (14) and taking the
expectation, we can write :

E
(
h

k1∑

k=0

|∆Zk|2
)p ≤ CE

( k1∑

k=0

Vartk∆Yk+1

)p
+ Chp. (15)

We use Rosenthal’s inequality to upper bound

E
( k1∑

k=0

Vartk∆Yk+1

)p ≤ CE
( k1∑

k=0

∆Yk+1 − Etk∆Yk+1

)2p
,

≤ C32p−1
[
E∆Y 2p

k1+1 + E∆Y 2p
0 + E

( k1∑

k=0

(∆Yk − Etk∆Yk+1)
)2p]

.

By plugging this inequality into (15) and using the previous estimate on |∆Yk|,
we get

E
(
h

k1∑

k=0

|∆Zk|2
)p ≤ O(hp) + CE

( k1∑

k=0

(∆Yk − Etk∆Yk+1)
)2p

. (16)

We now tackle the term ∆Yk − Etk∆Yk+1. Using (11), we have
∑k1

k=0(∆Yk −
Etk∆Yk+1 =

∑k1

k=0

∫ tk+1

tk (Etk(f
N
tk

− f(θs)))ds. By doing the same kind of proof

9



as before, that is using the fact that f is Lipschitz and the results on E|∆Xk|2p

and E|∆Yk|2p, we find

E
( k1∑

k=0

(∆Yk − Etk∆Yk+1)
)2p ≤ O(hp) + C(hk1)

pE
(
h

k1∑

k=0

|∆Zk|2
)p

.

By plugging this term back into (16), we can write
(
1−C(hk1)

p
)
E

(
h

∑k1

k=0 |∆Zk|2
)p

=

O(hp). Consequently, if we choose k1 ≤ 1

(2C)
1
p h

we come up with E
(
h

∑k1

k=0 |∆Zk|2
)p

=

O(hp). This result can be extended to any summation involving at most ∆k
terms, where ∆k ≤ 1

(2C)
1
p h

. We can cover the interval {0, · · · , N −1} with a fi-

nite number of elementary intervals of size ∆k and we get E
(
h

∑N−1
k=0 |∆Zk|2

)p
=

O(hp), which completes our proof. 2

From this result and (9), we also deduce

E
(
h

N−1∑

k=0

|∆Zk|2
)p

= O(hp), (17)

which is very useful in the following.

4 Proof of Theorem 7.

To expand the error, we use usual techniques of stochastic analysis, combining
martingale estimates and Malliavin calculus tools.

4.1 Preliminary estimates

Sections 4 and 5 contain proofs with similar calculations, which are quite
technical. In order to be as clear as possible, we state two results really useful
in the sequel, which are related to Malliavin calculus (see Nualart [16]). The
results give sufficient conditions for expectations and conditional expectations
to be small w.r.t. the time step h. They are based on ideas from Kohatsu-Higa
and Pettersson [10] and Gobet and Munos [7].

Proposition 11 Let F ∈ D1,2 with Etk |F |2+suptk≤s≤T Etk |DsF |2 < ∞ and let

U be an It process of the form Ut = U0+
∫ t
0 αsds+

∫ t
0 βsdWs, with suptk≤s≤T Etk |αs|2+

suptk≤s≤T Etk |βs|2 < ∞. Then, ∀(t, t′) such that tk ≤ t ≤ t′ ≤ tk+1,

|Etk [F (Ut − Ut′)]| ≤ (t′ − t)
[
(Etk |F |2) 1

2 ( sup
t≤s≤t′

Etk |αs|2)
1

2

+ ( sup
t≤s≤t′

Etk |DsF |2) 1

2 ( sup
t≤s≤t′

Etk |βs|2)
1

2

]
.

10



This proposition can be easily proved. Assume without loss of generality that
F and U are one-dimensional. From the duality formula, we have Etk [F (

∫ t′

t αsds+∫ t′

t βsdWs)] = Etk [
∫ t′

t (Fαs+DsF ·βs)ds]. Thanks to Cauchy Schwarz inequality
and hypotheses on α and β, we get the result.

Definition 12 F satisfies the condition Rk if F ∈ Dk,∞ and if Ck,p(F ) :=
‖F‖Lp

+
∑

j≤k sup0≤s1,...,sj≤T ‖Ds1,..,sj
F‖Lp

< ∞.

Proposition 13 Let F satisfy the condition R2. For simplicity we set dW 0
s =

ds. Assume that Ut ∈ Rd satisfies the following stochastic expansion property

Ut =
q∑

i,j=0

cU,0
i,j (t)

∫ t

0
cU,1
i,j (s)

( ∫ s

η(s)
cU,2
i,j (r)dW i

r

)
dW j

s , (P)

where {(cU,i1
i,j (t))t≥0 : 0 ≤ i, j ≤ q, 0 ≤ i1 ≤ 2} are adapted processes satisfying

• ∀(i, j), 1 ≤ i, j ≤ q, ∀t ∈ [0, T ], cU,0
i,j (t) satisfies R2, and

CU
2,p := sup0≤t≤T sup1≤i,j≤q C2,p(c

U,0
i,j (t)) < ∞, p ≥ 1.

• ∀(i, j), 1 ≤ i, j ≤ q, ∀t ∈ [0, T ], cU,1
i,j (t), cU,0

0,j (t), cU,0
i,0 (t), cU,1

i,0 (t) satisfy R1, and

CU
1,p := sup0≤t≤T sup1≤i,j≤q{C1,p(c

U,1
i,j (t))+C1,p(c

U,0
0,j (t))+C1,p(c

U,0
i,0 (t))+C1,p(c

U,1
i,0 (t))}

< ∞, p ≥ 1.

• ∀(i, j), 0 ≤ i, j ≤ q, ∀t ∈ [0, T ], cU,2
i,j (t), cU,1

0,j (t), cU,0
0,0 (t) satisfy R0, and CU

0,p :=

sup0≤t≤T sup0≤i,j≤q{C0,p(c
U,2
i,j (t)) + C0,p(c

U,1
0,j (t)) + C0,p(c

U,0
0,0 (t))} < ∞, p ≥ 1.

Thus, there is a constant K(T ) which depends polynomially on C2,p(F ), CU
2,p, CU

1,p, CU
0,p

(for some p ≥ 1) such that |E[FUt]| ≤ K(T )h.

Indeed, we have

E(FUt) =
q∑

i,j=0

E
(
FcU,0

i,j (t)
∫ t

0
cU,1
i,j (s)(

∫ s

η(s)
cU,2
i,j (r)dW i

r)dW j
s

)

=
q∑

i,j=1

∫ t

0

∫ s

η(s)
E

(
Di

r

[
Dj

s{FcU,0
i,j (t)}cU,1

i,j (s)
]
cU,2
i,j (r)

)
dr ds

+
q∑

j=1

∫ t

0

∫ s

η(s)
E

[
Dj

s{FcU,0
0,j (t)}cU,1

0,j (s)cU,2
0,j (r)

]
dr ds

+
q∑

i=1

∫ t

0

∫ s

η(s)
E

[
Di

r{FcU,0
i,0 (t)cU,1

i,0 (s)}cU,2
i,0 (r)

]
dr ds

+
∫ t

0

∫ s

η(s)
E

(
FcU,0

0,0 (t)cU,1
0,0 (s)cU,2

0,0 (r)
)
dr ds.

Then, the result readily follows.
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Remark 14 Under Hypothesis 2, we can show (see later the proof of (41))
that for each t, XN

t − Xt satisfies the expansion P. Hence, if F satisfies R2,
Proposition 13 yields

|E[F (XN
t − Xt)]| = O(h)

uniformly in t ∈ [0, T ], which is a very useful result for the sequel.

4.2 Expansion of Y N
tk

− Ytk

In the following, we assume that Hypothesis 2 is in force. This implies in
particular that u is bounded, of class C

3/2,3
b (see Theorem 4). We also easily

prove that ∀p ≥ 1, ∀k ∈ {0, · · · , N − 1} (see Nualart [16] e.g.)

• Etk( sup
tk≤t≤T

|Xt|2p) < K(T )(1 + |Xtk |2p), sup
tk≤s≤T

Etk( sup
tk≤t≤T

|DsXt|p) ≤ C,

sup
tk≤s,r≤T

Etk( sup
tk≤t≤T

|DrDsXt|p) + sup
tk≤s,r,v≤T

Etk( sup
tk≤t≤T

|DvDrDsXt|p) ≤ C,

(18)

• Etk( sup
tk≤t≤T

|XN
t |2p) < K(T )(1 + |XN

tk
|2p), sup

N,tk≤s≤T
Etk( sup

tk≤t≤T
|DsX

N
t |p) ≤ C,

sup
N,tk≤s,r≤T

Etk( sup
tk≤t≤T

|DrDsX
N
t |p) + sup

N,tk≤s,r,v≤T
Etk( sup

tk≤t≤T
|DvDrDsX

N
t |p) ≤ C.

(19)

Due to the Markov property of (XN
tk

)k, one has Y N
tk

= uN(tk, X
N
tk

) for some
Lipschitz function uN(tk, ·) (see Gobet et al. [6]) with an obvious definition
of uN . Actually, under our assumptions, this function is even three times
differentiable w.r.t. x. Thus, the difference ∆Yk can be written as follows:

∆Yk = (uN(tk, X
N
tk

) − u(tk, X
N
tk

)) + (u(tk, X
N
tk

) − u(tk, Xtk)).

Since u is of class C
3/2,3
b , the last term of the previous inequality becomes

u(tk, X
N
tk

) − u(tk, Xtk) = ∇xu(tk, Xtk)∆Xk + O(|∆Xk|2). (20)

To complete the proof, we apply the following lemma

Lemma 15 Under Hypothesis 2, |uN(tk, x) − u(tk, x)| ≤ K(T, x)h.

The result above is new but not so surprising. Indeed, if f is identically zero,
the difference is only related to the weak approximation of Φ(XT ) by Φ(XN

T ):
from Bally and Talay [1], one knows that this is of order h.

The rest of this section is devoted to the proof of the lemma. We only give the
proof for tk = 0. We want to find a upper bound for |uN(0, x)−u(0, x)| = |∆Y0|.

For the sake of clarity, we split the proof into several steps.

12



Step 1 : linearization of the error. We show that

∆Yk = Etk(∆Yk+1ξk + hf ′
x(θtk)∆Xk + hχk), (21)

with

ξk = (1 + hf ′
y(θtk) + f ′

z(θtk)∆Wk), (22)

χk =
∫ tk+1

tk

(G0(s, Xs) + f ′
y(θtk)Gy(s, Xs) + f ′

z(θtk)Gz(s, Xs))ds (23)

+
∫ 1

0
(1 − λ)

[
∆X∗

kf
′′

xx(θ
λ
tk

)∆Xk + f
′′

yy(θ
λ
tk

)(Y N
tk+1

− Ytk)
2 + ∆Zkf

′′

zz(θ
λ
tk

)∆Z∗
k

+ 2∆X∗
kf

′′

xy(θ
λ
tk

)(Y N
tk+1

− Ytk) + 2∆X∗
kf

′′

xz(θ
λ
tk

)∆Z∗
k + 2(Y N

tk+1
− Ytk)f

′′

yz(θ
λ
tk

)∆Z∗
k

]
dλ,

where θλ
tk

= λ(tk, X
N
tk

, Y N
tk+1

, ZN
tk

) + (1 − λ)θtk and G0, Gy, Gz are bounded
functions. From (11) and by introducing f(θtk), we have

∆Yk = Etk

(
∆Yk+1 + h(fN

tk
− f(θtk)) +

∫ tk+1

tk

(f(θtk) − f(θs))ds
)
. (24)

By applying It’s formula to f(θu) between tk and s we show that, under
Hypothesis 2 ,

∫ tk+1

tk Etk(f(θtk)−f(θs))ds = h
∫ tk+1

tk Etk(G0(s, Xs))ds, where G0

is a bounded function. In the second term, perform a second order expansion
of f around θtk to get

fN
tk

− f(θtk) = f ′
x(θtk)∆Xk + f ′

y(θtk)∆Yk+1 + f ′
z(θtk)∆Z∗

k + f ′
y(θtk)(Ytk+1

− Ytk)

+
∫ 1

0
(1 − λ)

[
∆X∗

kf
′′

xx(θ
λ
tk

)∆Xk + f
′′

yy(θ
λ
tk

)(Y N
tk+1

− Ytk)
2 + ∆Zkf

′′

zz(θ
λ
tk

)∆Z∗
k

(25)

+ 2∆X∗
kf

′′

xy(θ
λ
tk

)(Y N
tk+1

− Ytk) + 2∆X∗
kf

′′

xz(θ
λ
tk

)∆Z∗
k + 2(Y N

tk+1
− Ytk)f

′′

yz(θ
λ
tk

)∆Z∗
k

]
dλ.

Note that Etk(Ytk+1
− Ytk) = Etk

∫ tk+1

tk Gy(s, Xs)ds. If we closely look at (25),
we can see that we need to develop ∆Zk. By using (5), we can write

ZN
tk

=
1

h
Etk(∆Yk+1∆W ∗

k ) +
1

h
Etk(u(tk+1, Xtk+1

)∆W ∗
k ).

Introducing the weak derivative of Xtk+1
(see Nualart [16] p.109), the second

term of this summation equals 1
h
Etk

∫ tk+1

tk ∇xu(tk+1, Xtk+1
)DtXtk+1

dt, where
DtXtk+1

= ∇xXtk+1
(∇xXt)

−1σ(t, Xt). Since Ztk = ∇xu(tk, Xtk)σ(tk, Xtk), one
gets

∆Zk =
1

h
Etk(∆Yk+1∆W ∗

k )

+
1

h

∫ tk+1

tk
Etk

(
∇xu(tk+1, Xtk+1

)∇xXtk+1
(∇xXt)

−1σ(t, Xt) −∇xu(tk, Xtk)σ(tk, Xtk)
)
dt.

The term in the second conditional expectation is equal to ∇xu(tk+1, Xtk+1
)

∇xXtk+1
(∇xXt)

−1σ(t, Xt)±∇xu(t, Xt)σ(t, Xt)−∇xu(tk, Xtk)σ(tk, Xtk): hence,
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two applications of It’s formula (for the first contribution between t and tk+1,
for the second one between tk and t) prove that

∆Z∗
k =

∫ tk+1

tk
Etk(Gz(s, Xs))ds +

1

h
Etk(∆Yk+1∆Wk), (26)

for a bounded function Gz. Plugging this equality and (25) into (24) yields
(21).

Step 2 : another formula of ∆Y0. First of all, we replace Y N
tk+1

− Ytk by
∆Yk+1+Ytk+1

−Ytk in the expression of χk. Then, easy computations combining
Proposition 10 and estimates (9) show that

χ̃k = Etk(χk) = Ok(h) + O(|∆Xk|2 + |∆Zk|2). (27)

From (21), we deduce the following equality

∆Y0 = E(∆YNξ0 · · · ξN−1 + h
N−1∑

i=0

(f ′
x(θti)∆Xi + χ̃i)ξ0 · · · ξi−1). (28)

Now it is enough to show that all terms of this summation are O(h). In the
following, η0 = 1 and ηi = ξ0 · · · ξi−1 for i ≤ N .

Step 3 : some results on ηN = ξ0 · · · ξN−1.
We establish the following results on ηN :

ηk satisfies the condition R2 uniformly in k, i.e. ∀k, ηk ∈ D2,∞

and max
k≤N

C2,p(ηk) < ∞, ∀p ≥ 1, (29)

E( max
0≤k≤N

|ηk|p) + sup
r≤T

E( max
0≤k≤N

|Drηk|p) + sup
r,s≤T

E( max
0≤k≤N

|DrDsηk|p) < ∞. (30)

Proof of (29). We have η0 = 1, and for i ≥ 1

ηi = ηi−1(1 + hf ′
y(θti−1

) + f ′
z(θti−1

)∆Wi−1). (31)

We begin to show that maxk≤N ‖ηk‖Lp
= O(1) for p ≥ 1. Since f ′

y and f ′
z

are bounded, we easily prove that Eti−1
(1 + hf ′

y(θti−1
) + f ′

z(θti−1
)∆Wi−1)

2p ≤
(1+Ch), whence E|ηi|2p ≤ (1+Ch)E|ηi−1|2p. We deduce that maxk≤N ‖ηk‖Lp

=
O(1).

Now, let us show that maxk≤N E|Drηk|p = O(1), uniformly in r. Let r be such
that tk−1 < r ≤ tk. ∀i ≤ k − 1, Drηi = 0. We note that Drηk = ηk−1f

′
z(θtk−1

).

14



For i ≥ k + 1, we have

Drηi = Drηi−1 + hDr(ηi−1f
′
y(θti−1

)) +
q∑

l=1

Dr(ηi−1f
′
zl
(θti−1

))∆W l
i−1,

= ηk−1f
′
z(θtk−1

) + h
i−1∑

j=k

Dr(ηjf
′
y(θtj )) +

q∑

l=1

i−1∑

j=k

Dr(ηjf
′
zl
(θtj ))∆W l

j . (32)

Applying Burkholder-Davis-Gundy’s inequality to the martingale∑i−1
j=k Dr(ηjf

′
zl
(θtj ))∆W l

j yields

E|Drηi|p ≤ CE|ηk−1|p + Cph
i−1∑

j=k

E|Dr(ηjf
′
y(θtj ))|p + C

q∑

l=1

E|h
i−1∑

j=k

|Dr(ηjf
′
zl
(θtj ))|2|

p

2

≤ CE|ηk−1|p + Ch
i−1∑

j=k

E|Dr(ηjf
′
y(θtj ))|p + C

q∑

l=1

h
i−1∑

j=k

E|Dr(ηjf
′
zl
(θtj ))|p

≤ C(1 + E|ηk−1|p) + Ch
i−1∑

j=k+1

E|Drηj |p,

using the boundedness of the derivatives of f , maxj≤N ‖ηj‖q = O(1), idendity
(7), u, σ ∈ C1,2

b , and estimates (18). By applying Gronwall’s lemma, we get
maxk≤i≤N E|Drηi|p ≤ C(1 + E|ηk−1|p), tk−1 < r ≤ tk.
Then, maxk≤N E|Drηk|p = O(1), uniformly in r ∈ [0, T ]. The proof concerning
the derivative of order 2 can be done following the same scheme. 2

Proof of (30). We begin to show that E(maxk≤N |ηk|p) < ∞. The idea is
to use a martingale property in order to apply Doob’s inequality. Since ηi =
ηi−1+hηi−1f

′
y(θti−1

)+ηi−1f
′
z(θti−1

)∆Wi−1, one has ηk = 1+
∑k

i=1 hηi−1f
′
y(θti−1

)+
ηi−1f

′
z(θti−1

)∆Wi−1. Thus,

E(max
k≤N

|ηk|p) ≤ C
(
1 + E(

N∑

i=1

h|ηi−1||f ′
y(θti−1

)|)p + E(max
k≤N

|
k∑

i=1

ηi−1f
′
z(θti−1

)∆Wi−1|p)
)
.

The last term is upper bounded by CE(h
∑N

i=1 |ηi−1f
′
z(θti−1

)|2) p

2 ≤ Ch∑N
i=1 E|ηi−1f

′
z(θti−1

)|p. Using the estimate (29), we get E(maxk≤N |ηk|p) < ∞.
To prove that supr≤T E(maxk≤N |Drηk|p) < ∞, we proceed in the same way,
by starting from (32). For the second derivative, this is analogous.

Step 4 : we prove that E(∆YNηN ) = O(h).
If ηN were equal to 1, the results of Bally and Talay [1] would directly apply.
Here the approach has to be different and we use techniques of Malliavin
calculus. We have E(∆YNηN) = E(ηNΦ(XN

T ) − ηNΦ(XT )). Let us introduce
XN,λ

t = (1 − λ)Xt + λXN
t . Thus, we have

E(∆YNηN) =
∫ 1

0
E

(
ηNΦ′

x(X
N,λ
T )(XN

T − XT )
)
dλ.
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As Φ ∈ C3+α, by using (29), (18) and (19), we note that ηNΦ′
x(X

N,λ
T ) satisfies

R2. By applying Remark 14, we deduce that E(∆YNηN) = O(h).

Step 5 : we prove that E(f ′
x(θti)∆Xiηi) = O(h). This is a very similar proof

to Step 4, in a case where Φ(x) = x.

Conclusion. We now work on hE(
∑N−1

i=0 χ̃iηi), where |χ̃k| ≤ λN
k h+K(T, x)|∆Xk|2+

K(T, x)|∆Zk|2. Hence,

|h
N−1∑

i=0

E(χ̃iηi)| ≤C
N−1∑

i=0

E(λN
i |ηi|)h2 + K(T, x)

N−1∑

i=0

hE
(
|ηi|(|∆Xi|2 + |∆Zi|2)

)

≤K(T, x)h + K(T, x)
N−1∑

i=0

hE(|ηi||∆Zi|2)

≤K(T, x)h + K(T, x)
(
E( max

0≤i≤N−1
|ηi|)2

) 1

2
(
E(h

N−1∑

i=0

|∆Zi|2)2
) 1

2 .

By using (30) on (ηi)i and the upper bound (17) we get that |hE(
∑N−1

i=0 χ̃iηi)| ≤
K(T, x)h. By combining this result and the results of Step 4 and Step 5, (28)
shows that |∆Y0| ≤ K(T, x)h. Lemma 15 is proved. 2

5 Proof of Theorem 8.

As it could be expected, its proof is more difficult. The main extra ingredient
is the convergence of the weak derivative of the discrete BSDE (Y N , ZN), with
the rate of convergence N−1/2. The next paragraph is aimed at proving this
result. In the following, Hypothesis 3 is in force.

5.1 Proof of an intermediate result

Proposition 16 Let r ∈]0, t1[. Under Hypothesis 3, we have max1≤i≤N E|Dr∆Yi|2+
hE

( ∑N−1
i=1 |Dr∆Z∗

i |2
)

= O(h), uniformly in r.

This proposition is analogous to Theorem 6, where q = 2, and the scheme of
its proof as well. However, there is a significative difference: the BSDE solved
by the weak derivatives (see (33-34-35)) has a non Lipschitz driver, which
requires extra technicalities that we detail. In what follows, we fix r ∈]0, t1[
and introduce some specific notations. X̂t stands for DrXt. In the case of Zt,
which is a row vector, Ẑt is a matrix whose the i-th column is Di

rZ
∗
t . It is
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well-known (Proposition 5.3 of El Karoui et al. [5]) that (Ŷt, Ẑt)r≤t≤T solves

Ŷt = Φ′
x(XT )X̂T +

∫ T

t
(f ′

x(θs)X̂s + f ′
y(θs)Ŷs + f ′

z(θs)Ẑs)ds − (
∫ T

t
Ẑs

∗
dWs)

∗.

(33)

Regarding (Ŷ N , ẐN), one obtains

Ŷ N
tk =Etk [Ŷ

N
tk+1

+ h∇xf
N
tk

X̂N
tk + h∇yf

N
tk

Ŷ N
tk+1

+ h∇zf
N
tk

ẐN
tk ], (34)

ẐN
tk =

1

h
Etk [∆WkŶ N

tk+1
], (35)

where we set ∇xf
N
tk

= ∇xf(tk, X
N
tk

, Y N
tk+1

, ZN
tk

) and analogously for ∇yf
N
tk

and

∇zf
N
tk

. Indeed, we can start from (4-5) and interchange conditional expecta-
tions and weak derivatives (see Proposition 1.2.4 in Nualart [16]). Another
way to get (34-35) is to take advantage of the Markov structure of (XN

tk
)k to

write Y N
tk

= yN(tk, X
N
tk

), where the function yN is the solution of a dynamic
programming equation, and then apply the chain rule. We omit further details.

From (7), we also have

Ŷt = ∇xu(t, Xt)X̂t, Ẑt = ∇x(∇xuσ)∗(t, Xt)X̂t. (36)

For the sake of clarity, let us write, for any process V , ∆̂Vk = DrV
N
tk

−DrVtk .

In particular, we have ∆̂Zk = Dr(Z
N
tk

∗−Z
∗
tk

) = ẐN
tk −Ẑ tk , where Ẑtk is defined

as hẐtk = Etk

∫ tk+1

tk Ẑsds (see the beginning of Section 3).

5.1.1 Preparatory estimates

In this part we give some Lp-estimates (p ≥ 1), which are repeatedly used
inthe following calculations.

• sup
i≤j≤N

(Eti |X̂N
tj |2p) ≤ C|X̂N

i |2p, (37)

• E( max
0≤j≤N

|X̂N
tj |2p) = O(1), (38)

• ∀j ∈ 0..N − 1, |Ŷ N
tj |2 ≤ C|X̂N

tj |2, E( max
0≤j≤N

|Ŷ N
tj |2p) = O(1), (39)

• E( sup
0≤t≤T

|X̂t|2p + sup
0≤t≤T

|Ŷt|2p + sup
0≤t≤T

|Ẑt|2p) = O(1), (40)

• Let F satisfy R3. Then, |E(F (X̂N
t − X̂t))| = O(h). Furthermore,

sup
0≤k≤N

E|∆̂Xk|2p = O(hp). (41)

• Analogously to (9), ∀s ∈ [tk, tk+1], we have

Etk

(
|X̂s − X̂tk |2p + |Ŷs − Ŷtk |2p + |Ẑs − Ẑtk |2p

)
= Ok(h

p). (42)
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Note that X̂N
t1 = σ(0, x), and X̂N

tk+1
= (1+hb′x(tk, X

N
tk

)+
∑q

i=1(σi)
′
x(tk, X

N
tk

)∆W i
k)X̂

N
tk

for 1 ≤ k ≤ N . Thus, we easily get Eti |X̂N
tj |2p ≤ (1+Ch)Eti|X̂N

tj−1
|2p, and (37)

follows. The proof of (38) can be done as the proof of (30).

Proof of (39). From (34), we use Young’s inequality and boundedness of ∇f
to get

|Ŷ N
ti |2 ≤ (1 + γh)|Eti Ŷ

N
ti+1

|2 + Ch(h +
1

γ
)
(
|X̂N

ti |2 + Eti |Ŷ N
ti+1

|2 + |ẐN
ti |2

)
. (43)

From (35) and the Cauchy Schwarz inequality, we obtain h|ẐN
ti |2 ≤ C(Eti |Ŷ N

ti+1
|2−

|Eti Ŷ
N
ti+1

|2). Hence, with an appropriate choice of γ, (43) is reduced to |Ŷ N
ti |2 ≤

(1 + Ch)Eti |Ŷ N
ti+1

|2 + Ch|X̂N
ti |2, and thus Gronwall’s lemma yields

|Ŷ N
ti |2 ≤ CEti(|Ŷ N

tN |2 + h
N−1∑

j=i

|X̂N
tj |2) ≤ C sup

i≤j≤N−1
Eti |X̂N

tj |2.

Finally, estimates (37) and (38) complete the proof.

Proof of (40). E(sup0≤t≤T |X̂t|2p) = O(1) follows from (18). The other esti-
mates come from this result and (36).

Proof of (41). Let us introduce X ′
t = ∇xXt(∇xXr)

−1σ(0, x) and write X̂N
t −

X̂t = X̂N
t − X ′

t + X ′
t − X̂t.

Since X̂t = ∇xXt(∇xXr)
−1σ(r, Xr), a direct application of Proposition 11

with Ut = σ(t, Xt) gives E(F (X ′
t−X̂t)) = O(h) for F satisfying R2. Moreover,

simple increment estimates yield supt≤T E|X ′
t − X̂t|2p = O(hp).

It remains to study the impact of the difference X̂N
t −X ′

t. (X̂N
t )t≥r and (X ′

t)t≥r

are solutions of

X̂N
t =σ(0, x) +

∫ t

r
b′x(η(s), XN

η(s))X̂
N
η(s)ds +

q∑

i=1

∫ t

r
(σi)

′
x(η(s), XN

η(s))X̂
N
η(s)dW i

s ,

X ′
t =σ(0, x) +

∫ t

r
b′x(s, Xs)X

′
sds +

q∑

i=1

∫ t

r
(σi)

′
x(s, Xs)X

′
sdW i

s . (44)

For the sake of simplicity, we take b ≡ 0 and d = q = 1. If we set σ′(s) =∫ 1
0 σ′

x(s, Xs + λ(XN
s −Xs))dλ, we observe that ∆Xt solves the linear equation

∆Xt =
∫ t
0 [σ(η(s), XN

η(s)) − σ(s, XN
s )]dWs +

∫ t
0 σ′(s)∆XsdWs, which solution is

18



given by (see Theorem 56 p. 271 in Protter [19])

∆Xt =ǫt

∫ t

0
ǫ−1
s [σ(η(s), XN

η(s)) − σ(s, XN
s )](dWs − σ′(s)ds)

= − ǫt

∫ t

0
ǫ−1
s

[ ∫ s

η(s)
σ′

x(v, XN
v )σ(η(v), XN

η(v))dWv

+ (σ′
t(v, XN

v ) +
1

2
σ′′

xx(v, XN
v )σ2(η(v), XN

η(v)))dv
]
(dWs − σ′(s)ds)

where ǫt = 1 +
∫ t
0 σ′(s)ǫsdWs. This proves that ∆Xt satisfies the property P .

Analogously, if we define σ′′(s) =
∫ 1
0 σ′′

xx(s, Xs + λ(XN
s − Xs))dλ and ǫN

t =
1 +

∫ t
r σ′

x(s, X
N
s )ǫN

s dWs, simple computations lead to

X̂N
t − X ′

t =ǫN
t

∫ t

r
(ǫN

s )−1([σ′
x(η(s), XN

η(s))X̂
N
η(s) − σ′

x(s, X
N
s )X̂N

s ] + σ′′(s)X ′
s∆Xs)

(dWs − σ′
x(s, X

N
s )ds).

From the above representation, it is straightforward to conclude supt≤T E|∆̂Xt|2p =

O(hp). Now, let us upper bound E(F (X̂N
t − X ′

t)) which can be decomposed
into several terms.

• The contribution associated to ǫN
t

∫ t
r (ǫ

N
s )−1[σ′

x(η(s), XN
η(s))X̂

N
η(s)−σ′

x(s, X
N
s )X̂N

s ](dWs−
σ′

x(s, X
N
s )ds) satisfies property P , thus Proposition 13 yields the expected

result.
• The contribution E(FǫN

t

∫ t
r (ǫ

N
s )−1σ′′(s)X ′

s∆Xsσ
′
x(s, X

N
s )ds) is equal to∫ t

r E(FǫN
t (ǫN

s )−1σ′′(s)X ′
s∆Xsσ

′
x(s, X

N
s ))ds = O(h) in view of Remark 14.

• In the same way, the duality relationship ensures that the last contribution
E(FǫN

t

∫ t
r (ǫ

N
s )−1σ′′(s)X ′

s∆XsdWs) =
∫ t
r E(Ds(FǫN

t )(ǫN
s )−1σ′′(s)X ′

s∆Xs)ds is
a O(h) (using here that F satisfies R3).

Proof of (42). In view of X̂t = DrXt = ∇xXt(∇xXr)
−1σ(r, Xr), the estimate

on the increments of X̂t becomes clear. The other ones easily follow. 2

5.1.2 Proof of max1≤i≤N E|∆̂Yi|2 = O(h).

Assume that for some non negative random variable Λk = Ok(h) + |∆Xk|2 +
|∆Zk|2, one has

|∆̂Yk|2 ≤ (1 + Ch)Etk |∆̂Yk+1|2 + h|∆̂Xk|2 + hΛkOk(1). (45)

Take the expectation on both sides, use estimates (41) and those of Proposition
5 to get

E|∆̂Yk|2 ≤ CE|∆̂YN |2 + O(h) + Ch
N−1∑

k=0

E(|∆Zk|2Ok(1)).
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On the one hand, as ∆̂YN = Φ′(XN
tN

)X̂N
tN − Φ′(XtN )X̂tN , clearly E|∆̂YN |2 =

O(h). On the other hand, in view of (17) with p = 2, the summation above is
a O(h). This proves max1≤k≤N E|∆̂Yk|2 = O(h).

Proof of (45). From (33) and (34), we obtain

∆̂Yk = Etk(∆̂Yk+1) + Etk

( ∫ tk+1

tk
[∇xf

N
tk

X̂N
tk − f ′

x(θs)X̂s

+ ∇yf
N
tk

Ŷ N
tk+1

− f ′
y(θs)Ŷs + ∇zf

N
tk

ẐN
tk − f ′

z(θs)Ẑs]ds
)
.

Since f ∈ C2,4,4,4
b , it follows that for any γ > 0 (to be fixed later)

|∆̂Yk|2 ≤(1 + γh)|Etk(∆̂Yk+1)|2 + C(h +
1

γ
)Etk

( ∫ tk+1

tk
[|∇xf

N
tk

X̂N
tk − f ′

x(θs)X̂s|2

+ |∇yf
N
tk

Ŷ N
tk+1

− f ′
y(θs)Ŷs|2 + |∇zf

N
tk

ẐN
tk − f ′

z(θs)Ẑs|2]ds
)

(46)

≤(1 + γh)|Etk(∆̂Yk+1)|2 + C(h +
1

γ
)(T 1

k + T 2
k ), (47)

where we put T 1
k = Etk(

∫ tk+1

tk [|X̂N
tk − X̂s|2 + |Ŷ N

tk+1
− Ŷs|2 + |ẐN

tk − Ẑs|2]ds),

T 2
k = Etk

∫ tk+1

tk (h+|Xs−XN
tk
|2+|Ys−Y N

tk+1
|2+|Zs−ZN

tk
|2)(|X̂s|2+|Ŷs|2+|Ẑs|2)ds.

To get (45), we need to simplify (47), by estimating T 1
k and T 2

k .

Term T 1
k . Firstly, we write Etk |Ŷ N

tk+1
− Ŷs|2 ≤ 2Etk |Ŷtk+1

− Ŷs|2 +2Etk |∆̂Yk+1|2.
We do the same for X̂N

tk − X̂s. Then, the usual increment estimates yield

Etk |Ŷ N
tk+1

− Ŷs|2 + Etk |X̂N
tk − X̂s|2 ≤ Ok(h) + 2|∆̂Xk|2 + 2Etk |∆̂Yk+1|2.

Secondly, analogously to (13), we have

Etk

∫ tk+1

tk

|ẐN
tk − Ẑs|2ds = Etk

∫ tk+1

tk

|Ẑtk − Ẑs|2ds + hEtk |ẐN
tk − Ẑtk |2.

Finally, we obtain T 1
k ≤ Ch(Ok(h) + |∆̂Xk|2 + Etk |∆̂Yk+1|2 + |∆̂Zk|2).

Term T 2
k . Easy calculations combining (9), Proposition 10 and (40) give T 2

k ≤
(Ok(h

2) + h|∆Xk|2 + h|∆Zk|2)Ok(1) = hΛkOk(1).

Conclusion. Plugging the estimates on T 1
k and T 2

k into (47), we get

|∆̂Yk|2 ≤(1 + γh)|Etk(∆̂Yk+1)|2 + Ch(h +
1

γ
)|∆̂Zk|2

+ Ch(h +
1

γ
)(|∆̂Xk|2 + Etk |∆̂Yk+1|2 + ΛkOk(1)). (48)

Note that hẐtk = Etk(∆Wk(Ŷtk+1
+

∫ tk+1

tk [f ′
x(θs)X̂s + f ′

y(θs)Ŷs + f ′
z(θs)Ẑs]ds)),

whence h∆̂Ztk = Etk(∆Wk(∆̂Yk+1 +
∫ tk+1

tk [f ′
x(θs)X̂s + f ′

y(θs)Ŷs + f ′
z(θs)Ẑs]ds)).
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By proceeding as before, we easily prove

h|∆̂Ztk |2 ≤ C(Etk |∆̂Yk+1|2 − |Etk∆̂Yk+1|2) + Ok(h
2). (49)

Combining this upper bound with (48) for a good choice of γ gives (45). 2

5.1.3 Proof of hE
( ∑N−1

k=1 |∆̂Zk|2
)

= O(h).

In view of (42), this is equivalent to prove hE
( ∑N−1

k=1 |∆̂Zk|2
)

= O(h). To

establish this estimate, we start from (49) to get

h
N−1∑

k=1

E|∆̂Zk|2 ≤ C
N−1∑

k=1

(E|∆̂Yk|2 − E|Etk∆̂Yk+1|2) + CE|∆̂YN |2 + O(h). (50)

Now, we work on |∆̂Yk|2 − |Etk∆̂Yk+1|2. The choice γ = 2C2 in (48) leads to

|∆̂Yk|2−|Etk(∆̂Yk+1)|2 ≤ γh|Etk(∆̂Yk+1)|2 + h(
1

2C
+ Ch)|∆̂Zk|2

+ h(Ch +
1

2C
)(|∆̂Xk|2 + Etk |∆̂Yk+1|2 + ΛkOk(1)).

From (41) and the result from Section 5.1.2, we have max1≤k≤N E(|∆̂Xk|2 +

|∆̂Yk|2) = O(h). We also have E(ΛkOk(1)) = O(h) + E(|∆Zk|2Ok(1)). Conse-

quently, for h small enough, one has E|∆̂Yk|2−E|Etk(∆̂Yk+1)|2 ≤ 2h
3C

E|∆̂Zk|2+
O(h2) + ChE(|∆Zk|2Ok(1)). Putting this estimate into (50) yields

1

3
h

N−1∑

k=1

E|∆̂Zk|2 ≤ O(h) + Ch
N−1∑

k=1

E(|∆Zk|2Ok(1)).

Inequality (17) with p = 2 directly shows that the sum above is a O(h). 2

5.2 Expansion of ZN
tk
− Ztk

We recall that u ∈ C2,4
b owing to Hypothesis 3. From (26), we have ∆Zk =

O(h) + 1
h
Etk [(u

N(tk+1, X
N
tk+1

)− u(tk+1, Xtk+1
))∆W ∗

k ]. Let (Xs,x
t )t≥s denote the

solution of the SDE (1) starting at time s from x. We write Xt for X0,x
t . Note

that Xtk+1
= X

tk ,Xtk
tk+1

. In the same way, the Euler scheme starting at time tk
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at x is denoted by (XN,tk,x
tj )j≥k. With this notation we can rewrite ∆Zk

∆Zk =
1

h
Etk [(u

N(tk+1, X
N,tk,XN

tk
tk+1

) − u(tk+1, Xtk+1
))∆W ∗

k ] + O(h),

=
1

h
Etk [(u(tk+1, X

tk,XN
tk

tk+1
) − u(tk+1, Xtk+1

))∆W ∗
k ]

+
1

h
Etk [(u

N(tk+1, X
N,tk,XN

tk
tk+1

) − u(tk+1, X
tk ,XN

tk
tk+1

))∆W ∗
k ] + O(h). (51)

We work on the first two terms separately by proving

Lemma 17 1
h
Etk [(u(tk+1, X

tk,XN
tk

tk+1
)−u(tk+1, Xtk+1

))∆W ∗
k ] = O(|∆Xk|2)+O(h)

+ [∇x(∇xu σ)∗(tk, Xtk)∆Xk]
∗.

Lemma 18 1
h

∣∣∣Etk [(u
N(tk+1, X

N,tk,XN
tk

tk+1
) − u(tk+1, X

tk,XN
tk

tk+1
))∆W ∗

k ]
∣∣∣ = Ok(h).

The combination of these Lemmas completes the proof of Theorem 8.

5.2.1 Proof of Lemma 17.

For the sake of simplicity, let ∆NXk+1 denote X
tk,XN

tk
tk+1

−Xtk+1
(which is different

from ∆Xk+1 = X
N,tk,XN

tk
tk+1

−Xtk+1
). From a Taylor-Lagrange formula, we obtain

u(tk+1, X
tk,XN

tk
tk+1

) − u(tk+1, Xtk+1
) = u′

x(tk+1, Xtk+1
)∆NXk+1

+
∫ 1

0
(1 − λ)(∆NXk+1)

∗Hx(u)
(
tk+1, Xtk+1

+ λ∆NXk+1

)
∆NXk+1dλ.

Thus, using the duality relationship, one has

Etk [(u(tk+1, X
tk,XN

tk
tk+1

) − u(tk+1, Xtk+1
))∆W ∗

k ]

=
∫ tk+1

tk

R1
k(t)dt +

∫ tk+1

tk

R2
k(t)dt +

∫ 1

0
(1 − λ)R3

k(λ)dλ,

with R1
k(t) = Etk [(∆NXk+1)

∗Hx(u)(tk+1, Xtk+1
)DtXtk+1

],

R2
k(t) = Etk [u

′
x(tk+1, Xtk+1

)Dt(∆NXk+1)],

R3
k(λ) = Etk [(∆NXk+1)

∗Hx(u)(tk+1, Xtk+1
+ λ∆NXk+1)∆NXk+1∆W ∗

k ].

Expansion of R1
k(t). Clearly ∆NXk+1 = ∆Xk +Utk+1

−Utk , where U is an Itô

process with drift term αs = b(s, X
tk,XN

tk
s ) − b(s, Xs) and diffusion term βs =

σ(s, X
tk,XN

tk
s )−σ(s, Xs), both being bounded. Thus, we can apply Proposition

11, letting F = Hx(u)(tk+1, Xtk+1
)DtXtk+1

. Because u ∈ C2,4
b and in view of

(18), we get

R1
k(t) = O(h) + (∆Xk)

∗Etk [Hx(u)(tk+1, Xtk+1
)DtXtk+1

].
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We expand the latter factor. As DtXtk+1
= ∇xXtk+1

(∇xXt)
−1σ(t, Xt), we have

Hx(u)(tk+1, Xtk+1
)DtXtk+1

= (Hx(u)(tk+1, Xtk+1
)σ(t, Xt) − Hx(u)(t, Xt)σ(t, Xt))

+ (Hx(u)(t, Xt)σ(t, Xt) − Hx(u)(tk, Xtk)σ(tk, Xtk))

+ (Hx(u)(tk+1, Xtk+1
)[∇xXtk+1

(∇xXt)
−1 − I]σ(t, Xt))

+ Hx(u)(tk, Xtk)σ(tk, Xtk).

The first three contributions in the r.h.s. above can be handled in the same
way and we give a detailed proof only for the first one. It is enough to apply
Proposition 11 with F = σ(t, Xt) and Us = Hx(u)(s, Xs). Then, Etk [F (Utk+1

−
Ut)] is of order h with a constant involving b, σ, u and its derivatives up to
order 4. Finally, this gives

R1
k(t) = O(h) + (∆Xk)

∗Hx(u)(tk, Xtk)σ(tk, Xtk),

uniformly in t ∈ [tk, tk+1].

Expansion of R2
k(t). For tk ≤ t ≤ tk+1, we have

Dt(∆NXk+1) =[∇xX
XN

tk
,tk

tk+1
(∇xX

XN
tk

,tk
t )−1 − I]σ(t, X

XN
tk

,tk
t )

− [∇xXtk+1
(∇xXt)

−1 − I]σ(t, Xt) − (σ(t, Xt) − σ(tk, Xtk))

+ σ(t, X
XN

tk
,tk

t ) − σ(tk, X
N
tk

) + σ(tk, X
N
tk

) − σ(tk, Xtk).

As before, apply Proposition 11 to each of these terms but the last one, with
F = u′

x(tk+1, Xtk+1
), using u, b, σ ∈ C2,4

b and (18). It follows that R2
k(t) =

O(h) + Etk [u
′
x(tk+1, Xtk+1

)](σ(tk, X
N
tk

)− σ(tk, Xtk)). An application of It’s for-
mula yields

R2
k(t) = O(h) +

d∑

i=1

u′
xi

(tk, Xtk)(σ
i(tk, X

N
tk

) − σi(tk, Xtk))

= O(h + |∆Xk|2) +
d∑

i=1

u′
xi
∇x([σ

i]∗)(tk, Xtk)∆Xk,

uniformly in t ∈ [tk, tk+1]. Finally, simple matrix computations lead to

R1
k(t) + R2

k(t) = O(h + |∆Xk|2) + [∇x(∇xuσ)∗(tk, Xtk)∆Xk]
∗.

Upper bound for R3
k(λ). To complete the proof of Lemma 17, note that it

remains to justify that R3
k(λ) = hO(h + |∆Xk|2) uniformly in λ. The duality

formula gives

R3
k(λ) =Etk [

∫ tk+1

tk
Dt[(∆NXk+1)

∗Hx(u)(tk+1, Xtk+1
+ λ∆NXk+1)∆NXk+1]dt.
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The term in the integral equals
∑d

i,j=1[2Dt(∆NXk+1,i)∆NXk+1,j∂
2
xi,xj

u(tk+1, Xtk+1
+

λ∆NXk+1) + ∆NXk+1,i∆NXk+1,jDt(∂
2
xi,xj

u(tk+1, Xtk+1
+ λ∆NXk+1))]. Thanks

to (18) and (19) and successive applications of Proposition 11, we finally prove
our assertion. We omit further details. 2

5.2.2 Proof of Lemma 18

As for Lemma 15, we only do the proof for tk = 0, i.e. we have to show
|Etk [(u

N(t1, X
N,0,x
t1 )−u(t1, X

0,x
t1 ))∆W ∗

0 ]| ≤ K(T, x)h2. We have E[(uN(t1, X
N,0,x
t1 )−

u(t1, X
0,x
t1 ))∆W ∗

0 ] = E[∆Y1∆W ∗
0 ]. By using (21), we come up with

E[∆Y1∆W ∗
0 ] = E[ξ1...ξN−1∆YN∆W ∗

0 ] + E[h
N−1∑

i=1

(f ′
x(θti)∆Xi + χ̃i)ξ1...ξi−1∆W ∗

0 ],

where χ̃i = Eti(χi) (ξi and χi are defined in (22) and (23)). In the following η̃i

denotes ξ1...ξi−1 and η̃1 = 1. We easily prove that (η̃i)1≤i≤N has the analogous
properties to (ηi)0≤i≤N . Estimates (29) and (30) remain valid for η̃ and under
Hypothesis 3, the estimate (29) becomes

η̃k satisfies R3 uniformly in k. (52)

Step 1 : Proof of E[ξ1...ξN−1∆YN∆W ∗
0 ] = E[η̃N∆YN∆W ∗

0 ] = O(h2).
As before, we use the duality formula:

E[η̃N∆YN∆W ∗
0 ] =E

∫ t1

0
(Dt[η̃N ]∆YN + η̃NDt[∆YN ])dt.

Since η̃N satisfies (52), we proceed as in Step 4 of Lemma 15 and we get
E(Dt[η̃N ]∆YN ) = O(h). Furthermore, we have

Dt[∆YN ] = (Φ′(XN
T ) − Φ′(XT ))DtX

N
T + Φ′(XT )(DtX

N
T − DtXT ).

On the one hand, analogously to previous computations, we establish E(η̃N(Φ′(XN
T )−

Φ′(XT ))DtX
N
T ) = O(h).

On the other hand, we prove E(η̃NΦ′(XT )(DtX
N
T − DtXT )) = O(h). Thanks

to (18) and (29), η̃NΦ′(XT ) satisfies condition R3. Then, by applying (41), we
get the result.

Step 2 : Proof of E[h
∑N−1

i=1 f ′
x(θti)∆Xiξ1...ξi−1∆W ∗

0 ] = O(h2).
This is a similar proof to the one done at Step 1, with Φ(x) = x.

Step 3 : Proof of E[h
∑N−1

i=1 χ̃iη̃i∆W ∗
0 ] = O(h2).

A careful inspection of the definition of G0, Gy and Gz appearing in (23)
shows that under Hypothesis 3, these functions are continuously differentiable
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w.r.t. the variable x (with a bounded derivative). Hence, if we write χi =
χ1

i +
∫ 1
0 (1 − λ)χ2

i (λ)dλ with (see (23))

χ1
i =

∫ ti+1

ti
(G0(s, Xs) + f ′

y(θti)Gy(s, Xs) + f ′
z(θti)Gz(s, Xs))ds,

χ2
i (λ) = ∆X∗

i f
′′

xx(θ
λ
ti
)∆Xi + f

′′

yy(θ
λ
ti
)(Y N

ti+1
− Yti)

2 + ∆Zif
′′

zz(θ
λ
ti
)∆Z∗

i

+ 2∆X∗
i f

′′

xy(θ
λ
ti
)(Y N

ti+1
− Yti) + 2∆X∗

i f
′′

xz(θ
λ
ti
)∆Z∗

i + 2(Y N
ti+1

− Yti)f
′′

yz(θ
λ
ti
)∆Z∗

i ,

we note that the random variable χi is in D1,∞. Thus and because χ̃i = Eti(χi),
one has E[χ̃iη̃i∆W ∗

0 ] = E[χiη̃i∆W ∗
0 ] = E[

∫ t1
0 (χiDtη̃i + η̃iDtχi)dt].

The upper bound χ̃i = Eti(χi) = Oi(h) + O(|∆Xi|2 + |∆Zi|2) (see (27)) is
sufficient to show E[

∑N−1
i=1 χiDtη̃i] = O(1) uniformly in t (follow the arguments

of the conclusion of the proof of Lemma 15 and use (30) with η̃).

Now, it remains to establish E[
∑N−1

i=1 η̃iDtχi] = O(1). On the one hand, clearly
Eti [Dtχ

1
i ] = Oi(h) and we conclude E[

∑N−1
i=1 η̃iDtχ

1
i ] = O(1) uniformly in t. On

the other hand, χ2
i can be decomposed into several contributions, which can be

analyzed with the same arguments. Let us detail how to handle one of them,
for instance E[

∑N−1
i=1 η̃iDt(∆X∗

i f
′′

xz(θ
λ
ti
)∆Z∗

i )] which has to be a O(1). We do

the proof for d = q = 1. Write Dt(∆Xif
′′

xz(θ
λ
ti
)∆Zi) = ∆Xif

′′

xz(θ
λ
ti
)Dt(∆Zi) +

Dt(∆Xi)f
′′

xz(θ
λ
ti
)∆Zi + ∆XiDt(f

′′

xz(θ
λ
ti
))∆Zi. As f

′′

is bounded, we have

∣∣∣E[
N−1∑

i=1

η̃i∆Xif
′′

xz(θ
λ
ti
)Dt(∆Zi)]

∣∣∣ ≤ E
[ N−1∑

i=1

|η̃i||∆Xi||f
′′

xz(θ
λ
ti
)||Dt(∆Zi)|

]

≤ C
(
E(

N−1∑

i=1

(|η̃i|2|∆Xi|2))
) 1

2
(
E(

N−1∑

i=1

|Dt(∆Zi)|2)
) 1

2 .

Thanks to Proposition 16, (52) and Proposition 5, we get that
E[

∑N−1
i=1 η̃i∆Xif

′′

xz(θ
λ
ti
)(Dt∆Zi)] = O(1). Analogously, using (52-17-41), we ob-

tain E[
∑N−1

i=1 η̃i(Dt∆Xi)f
′′

xz(θ
λ
ti
)∆Zi] = O(1). It remains to demonstrate that∣∣∣E[

∑N−1
i=1 η̃i∆XiDt(f

′′

xz(θ
λ
ti
))∆Zi]

∣∣∣ = O(1). We have

Dt(f
′′

xz(θ
λ
ti
)) = f

′′′

xzx(θ
λ
ti
)(λDtX

N
ti

+ (1 − λ)DtXti)

+ f
′′′

xzy(θ
λ
ti
)(λDtY

N
ti+1

+ (1 − λ)DtYti) + f
′′′

xzz(θ
λ
ti
)(λDtZ

N
ti

+ (1 − λ)DtZti).

The most difficult term to bound among these three ones is the one which
contains DtZ

N
ti

. If we write λDtZ
N
ti

+ (1 − λ)DtZti = λDt(∆Zi) + DtZti, we
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obtain

∣∣∣E[
N−1∑

i=1

η̃i∆Xif
′′′

xzz(θ
λ
ti
)λDt(∆Zi)∆Zi]

∣∣∣

≤ C
(
E(

N−1∑

i=1

|Dt(∆Zi)|2)
) 1

2 (E(
N−1∑

i=1

(|∆Xi|2|η̃i|2|∆Zi|2))
) 1

2 ,

≤ C
(
E(

N−1∑

i=1

|Dt(∆Zi)|2)
) 1

2
(
E(

N−1∑

i=1

|∆Zi|2)2
) 1

4
(
E( max

0≤i≤N
|η̃i|4 max

0≤i≤N
|∆Xi|4)

) 1

4 ,

Applying Proposition 16, (17), Proposition 5 and (30) (with η̃) lead to
E[

∑N−1
i=1 η̃i∆Xif

′′′

xz(θ
λ
ti
)λDt(∆Zi)∆Zi] = O(1). Proposition 5, (17), (38), (39),

(40) and (52) enable us to prove that the others terms of
E[

∑N−1
i=1 η̃i∆XiDt(f

′′

xz(θ
λ
ti
))∆Zi] are O(1). 2
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