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Mathematical Models and Reconstruction Methods in

Magneto-Acoustic Imaging ∗

Habib Ammari† Yves Capdeboscq‡ Hyeonbae Kang§

Anastasia Kozhemyak¶

Abstract

In this paper, we provide the mathematical basis for three different magneto-
acoustic imaging approaches (vibration potential tomography, magneto-acoustic tomog-
raphy with magnetic induction, and magneto-acoustic current imaging) and propose
new algorithms for solving the inverse problem for each of them.

1 Introduction

In magneto-acoustic imaging, a probe signal such as an acoustic wave or an electric current
(or voltage) is applied to a biological tissue placed in a magnetic field. The probe signal
produces by the Lorentz force an induced signal that is a function of the local electrical
conductivity of the biological tissue [14]. If the probe signal is an acoustic wave, then the
induced signal is an electric current and the Lorentz force causes a local current density.

Induced boundary currents (a) or pressure (b) which are proportional to the local elec-
trical conductivity can be measured to reconstruct the conductivity distribution with the
spatial resolution of the ultrasound. The induced signal is detected and an image of the local
electrical conductivity of the specimen is generated based on the detected induced signal.
Method (a) is referred as the vibration potential imaging and method (b) as magneto-
acoustic tomography with magnetic induction. The vibration potential imaging is also
known as the Hall effect imaging.

Method (a) can be applied to body tissue in vivo and to measurements in suspensions
and cultured cells. The ultrasound beam ensures the excitation of the desired region of in-
terest and the interaction current is collected by means of electrodes. It is a very promising
direction of research for improving the electrical impedance tomography (EIT). EIT is an
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imaging technique focused upon reconstructing the impedance distribution of biological tis-
sue using current injection and noninvasive voltage measurements. In EIT, electrical current
is injected into the object from electrodes attached to the surface, and the corresponding
boundary voltage is measured over the surface of the object in order to reconstruct the
impedance distribution within the volume. It is known that this approach for imaging the
conductivity distribution produces images with deceivingly poor accuracy and spatial res-
olution. The vibration potential imaging relies on innovative measurement techniques that
incorporate structural information. Its intrinsic resolution is of order of the size of the focal
spot of the ultrasound, and thus it should provide high resolution images.

If an electrically active tissue is placed on a magnetic field then an acoustic wave or tissue
displacement is created. This method (c), known as magneto-acoustic current imaging, has
been suggested as a method for reconstructing current dipoles and imaging action currents
arising from active nerve or muscle fibers by detecting the induced pressure signal.

We refer the reader to [14, 12, 13, 17, 18, 8, 15, 16] for physical basic principles of
vibration potential tomography, magneto-acoustic tomography with magnetic induction,
and magneto-acoustic current imaging.

In this paper, we provide the mathematical basis for these three different magneto-
acoustic imaging approaches and propose new algorithms for solving the inverse problem for
each of them.

2 Mathematical Formulations

2.1 Vibration Potential Tomography

We recall that, in mathematical terms, EIT consists in recovering the conductivity map
of a 2D or 3D body Ω (of class C1,α, α > 0), from one or several current-to-voltage pairs
measured on the surface of the body. Denoting by γ(x) the unknown conductivity, the
voltage potential v solves the conduction problem




∇ · (γ∇v) = 0 in Ω,

v = g on ∂Ω.
(2.1)

The problem of impedance tomography is the inverse problem of recovering the coefficients
γ of the elliptic conduction partial differential equation, knowing one or more current-to-
voltage pairs (g, ∂v

∂ν |∂Ω). Throughout this paper, except in Section 4, we assume that g ∈

C1,α(Ω) and the conductivity γ ∈ C0,α(Ω), and is bounded in Ω above and below by positive
constants. The solution v is then in C1,α(Ω). Further, we suppose that the γ is a known

constant on a neighborhood of the boundary ∂Ω and let γ∗ denote γ|∂Ω.
In vibration potential tomography (VPT), ultrasonic waves are focused on regions of

small diameter inside a body placed on a static magnetic field. The oscillation of each
small region results in frictional forces being applied to the ions, making them move. In the
presence of a magnetic field, the ions experience Lorentz force. This gives rise to a localized
current density within the medium. The current density is proportional to the local electrical
conductivity [14]. In practice, the ultrasounds impact a spherical or ellipsoidal zone, of a few
millimeters in diameter. The induced current density should thus be sensitive to conductivity
variations at the millimeter scale, which is the precision required for breast cancer diagnostic.
The feasibility of this conductivity imaging technique has been demonstrated in [6].
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Let z ∈ Ω and D be a small impact zone around the point z. The created current by the
Lorentz force density is given by

Jz(x) = cχD(x)γ(x)e, (2.2)

for some constant c and a constant unit vector e both of which are independent of z. Here
and throughout this paper, χD denotes the characteristic function of D. With the induced
current Jz the new voltage potential, denoted by uz, satisfies




∇ · (γ∇uz + Jz) = 0 in Ω,

uz = g on ∂Ω.

According to (2.2), the induced electrical potential wz := v − uz satisfies the conductivity
equation: 



∇ · γ∇wz = c∇ · (χDγe) for x ∈ Ω,

wz(x) = 0 for x ∈ ∂Ω.
(2.3)

The inverse problem for the vibration potential tomography is to reconstruct the conduc-
tivity profile γ from boundary measurements of ∂uz

∂ν |∂Ω or equivalently ∂wz

∂ν |∂Ω for z ∈ Ω.
Throughout this paper, we assume that γ is constant in D. This assumption is natural

since the resolution can not be lower than the characteristic size of the ultrasonic beam.
Recall that γ is known in a neighborhood of the boundary ∂Ω.

Let |D| denote the volume of D. Since γ is assumed to be constant in D and |D| is small,
we obtain using Green’s identity

∫

∂Ω

γ∗
∂wz

∂ν
gdσ =

∫

Ω

∇ · (γ∇wz)vdx

= c

∫

Ω

∇ · (χDγe)vdx

= −c

∫

D

γe · ∇vdx = −c

∫

D

e · ∇(γv)dx

≈ −c|D|∇(γv)(z) · e. (2.4)

Note that the approximation error in (2.4) is

cγ(z)

∫

D

e · [∇v(x) −∇v(z)] dx,

and it is o(|D|) as one can easily prove using the Lebesgue Theorem. Here, the regularity of
the gradient ∇v is used. Truly, only a local regularity of the gradient around D is required.
Regularity does not affect the reconstruction procedures presented in Section 3.1. In fact,
in Section 4 we consider discontinuous conductivities. The approximation is only used for
the derivation of formula 2.4. When the measurement is taken at a location D where the
conductivity is irregular, this formula is not accurate. However, as it is shown in Section 3
and Section 4, the reconstruction is essentially local, and no spatial diffusion of the error
occurs. This approximation simply tend to slightly smooth the jumps of the conductivity.

The relation (2.4) shows that, by scanning the interior of the body with ultrasound
waves, c∇(γv)(z) · e can be computed from the boundary measurements ∂wz

∂ν |∂Ω in Ω. If we

3



can rotate the subject, then c∇(γv)(z) for any z in Ω can be reconstructed. In practice, the
constant c is not known. But, since γv and ∂(γv)/∂ν on the boundary of Ω are known, we
can recover c and γv from c∇(γv) in a constructive way. To see this, let us put

u := γv, h := c∇(γv), ϕ := (γv)|∂Ω, ψ :=
∂(γv)

∂ν

∣∣∣
∂Ω

.

Note that h, ϕ and ψ are known. The new unknown u satisfies





c∆u = ∇ · h in Ω,

u|∂Ω = ϕ,

∂u

∂ν

∣∣∣
∂Ω

= ψ.

(2.5)

Thus, if c can be evaluated, we can reconstruct u, using either of the boundary data. Let
us define

w(x) :=

∫

Ω

Γ(x − y)∇ · h(y) dy, x ∈ Ω,

where Γ(x) is the fundamental solution of the Laplacian in R
d, then cu − w satisfies





∆(cu − w) = 0 in Ω,

(cu − w)|∂Ω = cϕ − w|∂Ω,

∂(cu − w)

∂ν

∣∣∣
∂Ω

= cψ −
∂w

∂ν

∣∣∣
∂Ω

.

(2.6)

Let us now define Λ as the Dirichlet-to-Neumann map for the Laplacian. Then, (2.6) implies
that

Λ(cϕ − w|∂Ω) = cψ −
∂w

∂ν

∣∣∣
∂Ω

,

and therefore

c
(
Λ(ϕ) − ψ

)
= Λ(w|∂Ω) −

∂w

∂ν

∣∣∣
∂Ω

. (2.7)

Since everything but c is known in (2.7), this gives the value of c provided this identity is not
trivial. Let us now address this point. Note that because γ is constant in a neighborhood
of ∂Ω, ∇ · h is compactly supported in Ω. If Λ(ϕ) − ψ ≡ 0 then ∇ · h is orthogonal to
any harmonic function in Ω and therefore it is naught almost everywhere by the density of
harmonic functions in L2(Ω). This means that either c is zero, or v ≡ 0 in Ω. Thus provided
that the imposed boundary potential g 6= 0, we have proved that c can be computed using
(2.7) and, in turn, u using the first two equations in (2.5). We emphasize that Λ can be
computed easily. In fact, it is the normal derivative of the Poisson integral.

The new inverse problem is now to reconstruct the contrast profile γ knowing

E(z) := γ(z)v(z)

for a given boundary potential g, where v is the solution to (2.1).
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2.2 Magneto-Acoustic Tomography with Magnetic Induction

In the magneto-acoustic tomography with magnetic induction (MAT-MI), pulsed magnetic
stimulation by the ultrasound beam is imposed on an object placed in a static magnetic
field. The magnetic stimulation can be considered as an ideal pulsed distribution over time.
The magnetically induced eddy current is then subject to Lorentz force. This in turn creates
a pressure wave that can be detected using an ultrasound hydrophone [14]. The MAT-MI
uses this acoustic pressure wave to reconstruct the conductivity distribution of the sample
as the focus of the ultrasound beam scans the entire domain.

Let γ be the conductivity distribution of the specimen. Denoting the constant mag-
netic field as B0 and the magnetically induced current density distribution as Jz(x) with z
indicating the location of the magnetic stimulation, the Lorentz force is given by

Jz(x) × B0δt=0 = cχDγeδt=0,

where D is the impact zone which is a small neighborhood of z as before, and c is a constant
independent of z and x. Then the wave equation governing the pressure distribution pz can
be written as

∂2pz

∂t2
− c2

s∆pz = c∇ · (χDγe)δt=0, x ∈ Ω, t ∈]0, T [, (2.8)

for some final observation time T , where cs is the acoustic speed in Ω. The pressure satisfies
the Dirichlet boundary condition

pz = 0 on ∂Ω×]0, T [ (2.9)

and the initial conditions

pz|t=0 =
∂pz

∂t

∣∣∣
t=0

= 0 in Ω. (2.10)

The inverse problem for the MAT-MI is to determine the conductivity distribution γ in
Ω from boundary measurements of ∂pz

∂ν on ∂Ω×]0, T [ for all z ∈ Ω. We will assume that T
is large enough so that

T >
diam(Ω)

cs
. (2.11)

It says that the observation time is long enough for the wave initiated at z to reach the
boundary ∂Ω.

2.3 Magneto-Acoustic Current Imaging

Similarly to MAT-MI, it is possible to detect a pressure signal created in the presence of
a magnetic field by electrically active tissues [8, 15, 16]. A magneto-acoustic technique
has been developed to image electrical activity in biological tissue. In the presence of an
externally applied magnetic field, biological action currents, arising from active nerve or
muscle fibers, experience a Lorentz force. The resulting pressure or tissue displacement
contains information about the action current distribution.

Let z ∈ Ω be the location of an electric dipole, which represents an active nerve or muscle
fiber, with strength c. The wave equation governing the induced pressure distribution pz

can be written as

∂2pz

∂t2
− c2

s∆xpz = ce · ∇δx=z δt=0, x ∈ Ω, t ∈]0, T [, (2.12)
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for some final observation time T , where cs is the acoustic speed in Ω. The pressure satisfies
the Dirichlet boundary condition (2.9) and the initial conditions (2.10).

The inverse problem for the magneto-acoustic current imaging is to reconstruct the
position z and the strength c of the dipole from boundary measurements of ∂pz

∂ν on ∂Ω×]0, T [.
So this problem is to find an active nerve or muscle fiber from boundary measurements of
the wave. Here again we assume the final observation time T is large enough so that (2.11)
holds.

3 Reconstruction Methods

3.1 Reconstruction Methods for the VPT

Recall that the inverse problem for the VPT is to reconstruct the conductivity distribution
γ from the quantity E(z), z ∈ Ω, which can be computed from the boundary measurements
∂vz

∂ν |∂Ω, where vz is the solution to (2.3). The relation between γ and E(z) is approximately
given by

γ(z) =
E(z)

v(z)
, (3.1)

where v is the solution to (2.1).
In view of (3.1), v satisfies





∇ ·
E

v
∇v = 0 in Ω,

v = g on ∂Ω.

(3.2)

If we solve (3.2) for v, then (3.1) yields the conductivity contrast γ. Note that to be able to
solve (3.2) we need to know the coefficient E(z) for all z, which amounts to scanning all the
points z ∈ Ω by the ultrasonic beam. It is quite interesting to compare VPT with MAT-MI
in this respect and we will address this point at the end of the next subsection.

Observe that solving (3.2) is quite easy mathematically: If we put w = ln v, then w is
the solution to 



∇ · E∇w = 0 in Ω,

w = ln g on ∂Ω,
(3.3)

as long as g ≥ 0. Thus if we solve (3.3) for w, the v = ew is the solution to (3.2). However,
taking exponent may amplify the error which already exists in the computed data E . See
Section 4 for the numerical examples. In order to avoid this numerical instability, we solve
(3.2) iteratively. We note that the argument in this paragraph ensures the existence and
uniqueness of the solution to (3.2) as long as ln g ∈ H1/2(∂Ω).

To solve (3.2) we adopt an iterative scheme similar to the one proposed in [2]. Start with
γ0 and let v0 be the solution of




∇ · γ0∇v0 = 0 in Ω,

v0 = g on ∂Ω.
(3.4)
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According to (3.1), our updates, γ0 + δγ and v0 + δv, should satisfy

γ0 + δγ =
E

v0 + δv
, (3.5)

where 


∇ · (γ0 + δγ)∇(v0 + δv) = 0 in Ω,

δv = 0 on ∂Ω,

or 


∇ · γ0∇δv + ∇ · δγ∇v0 = 0 in Ω,

δv = 0 on ∂Ω.
(3.6)

We then linearize (3.5) to have

γ0 + δγ =
E

v0(1 + δv/v0)
≈

E

v0

(
1 −

δv

v0

)
. (3.7)

Thus

δγ = −
Eδv

v2
0

− δ, δ = −
E

v0

+ γ0. (3.8)

We then find δv by solving




∇ · γ0∇δv −∇ ·

(
Eδv
v2

0

+ δ
)
∇v0 = 0 in Ω,

δv = 0 on ∂Ω.

or equivalently 


∇ · γ0∇δv −∇ ·

(
E∇v0

v2

0

δv
)

= ∇ · δ∇v0 in Ω,

δv = 0 on ∂Ω.
(3.9)

Our reconstruction procedure is as follows.

[Iterative Reconstruction Procedure]:

1 Start with an initial guess γ0 for the conductivity contrast.

2 Solve (3.4) to obtain v0.

3 Compute δ = − E
v0

+ γ0.

4 Solve (3.9) to obtain δv.

5 Compute δγ = −
Eδv

v2
0

− δ.

6 Replace γ0 by γ0 + δγ.
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In the case of incomplete data, that is, if E is only known on a subset ω of the domain,
we can follow an optimal control approach as used in [4]. We minimize the functional

J (σ) =

∫

Ω

χω

(
γ −

E

v

)2

(3.10)

over all γ = exp(σ) with σ ∈ L∞(Ω) and γ = γ∗ in a neighborhood D of ∂Ω, where χω is
the characteristic function of ω, and v is the solution of (2.1). Note that J depends on σ
analytically. The derivative of J with respect to σ applied to δ ∈ L∞(Ω) is

DJ (σ) · δ = 2

∫

ω

(
δγ + vδ

1

v2
E

)(
γ −

E

v

)
,

where vδ ∈ H1
0 (Ω) is the solution of

∇ · (γ∇vδ) + ∇ · (δγ∇v) = 0 in Ω.

Let w ∈ H1
0 (Ω) be the solution of the adjoint problem

∇ · γ∇w = χω
1

v2
E

(
γ −

E

v

)
in Ω,

After integrations by parts, we see that the derivative of J can be written

DJ (σ) · δ = 2

∫

Ω

δγ

(
χω

(
γ −

E

v

)
+ ∇w · ∇v

)
.

Therefore, choosing δ of the form

δ = −
1

2γ

(
χω

(
γ −

E

v

)
+ ∇w · ∇v

)
, (3.11)

we obtain

DJ (σ) · δ = −

∫

Ω

γ

(
χω

(
γ −

E

v

)
+ ∇w · ∇v

)2

≤ 0. (3.12)

[Optimal Control Reconstruction Procedure]:

1 Starting from an arbitrary γ for the conductivity and an arbitrary stepsize h.

2 Compute γ̃ := γ(1 + hδ), where δ is given by (3.11).

3.a If J (σ̃) < J (σ), we set γ := γ̃ and increase the step size h.

3.b If J (σ̃) > J (σ), decrease the stepsize h and return to Step 2 (as we know from (3.12)
that for sufficiently small h, the objective J does not increase).

4 Repeat Steps 1,2 and 3 until J is small enough.

Note that the optimal control procedure can also be applied to the case of complete
data. The procedure described before is simpler than the optimal control procedure in the
sense that it does not require the determination of a stepsize. However, the optimal control
approach has the advantage of embedded stability, as it is a minimization procedure.

It is also worth emphasizing that both reconstruction procedures work well for discon-
tinuous conductivities because of their local character.
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3.2 Reconstruction Method for the MAT-MI

The algorithms for the MAT-MI available in the literature are limited to unbounded media.
They use the Spherical Radon transform inversion. However, the pressure field is signifi-
cantly affected by the acoustic boundary conditions at the tissue-air interface, where the
pressure must vanish. Thus, we cannot base magneto-acoustic imaging on pressure mea-
surements made over a free surface. Instead, we propose the following algorithm.

Let v satisfy
∂2v

∂t2
− c2

s∆v = 0 in Ω×]0, T [, (3.13)

with the final conditions

v|t=±T =
∂v

∂t

∣∣∣
t=±T

= 0 in Ω. (3.14)

Because of the presence of the Dirac function at t = 0 on the right-hand side of (2.8), we
extend pz for negative t by defining pz(x, t) = pz(x,−t) for t < 0. Then the extended pz still
satisfies (2.8). We multiply both sides of (2.8) by v and integrate them over Ω × [−T, T ].
After some integrations by parts this leads to the following identity:

∫ T

0

∫

∂Ω

∂pz

∂ν
(x, t)(v(x, t) + v(x,−t)) dσ(x) dt =

c

c2
s

∫

D

γe · ∇v(x, 0)dx. (3.15)

As before we assume that γ is constant D which is reasonable as D is small. Suppose
that d = 3. For y ∈ R

3 \ Ω, let

vy(x, t) :=
δ
(
t + τ − |x−y|

cs

)

4π|x − y|
in Ω×]0, T [, (3.16)

where δ is the Dirac mass at 0 and τ := |y−z|
cs

. It is easy to check that vy satisfies (3.13)
(see e.g. [5, page 117]). Moreover, since

|y − z| − |x − y| ≤ |x − z| ≤ diam(Ω)

for all x ∈ Ω, vy satisfies (3.14) provided that the condition (2.11) is fulfilled. Choosing vy

as a test function in (3.15) and obtain the new identity

cγ(z) =
c2
s∫

D
e · ∇vy(x, 0)dx

∫ T

0

∫

∂Ω

∂pz

∂ν
(x, t)(vy(x, t) + vy(x,−t)) dσ(x) dt. (3.17)

Let us now compute
∫

D
e · ∇vy(x, 0)dx. Note that, in a distributional sense,

∇vy(x, 0) = δ

(
τ −

|x − y|

cs

)
y − x

4π|x − y|3
+ δ′

(
τ −

|x − y|

cs

)
y − x

4πcs|x − y|2
. (3.18)

Thus we have
∫

D

e · ∇vy(x, 0)dx =

∫

D

(y − x) · e

4π|x − y|3
δ

(
τ −

|x − y|

cs

)
dx

+

∫

D

(y − x) · e

4πcs|x − y|2
δ′

(
τ −

|x − y|

cs

)
dx

:= I + II.
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Letting s = |x − y| and σ = x−y
|x−y| , we have by a change of variables (t = τ − s/c − s)

I = −
1

4π

∫ ∞

0

∫

S2

χD(sσ + y)(σ · e) δ

(
τ −

s

cs

)
dσ ds

= −
cs

4π

∫

S2

χD(csτσ + y)(σ · e) dσ,

where S2 is the unit sphere. Since csτ = |y − z|, we have

I = −csAD(0), (3.19)

where AD(t), t ∈ R
1, is defined by

AD(t) :=
1

4π

∫

S2

χD((|z − y| − t)σ + y)(σ · e) dσ. (3.20)

We now compute II. Using the same polar coordinates s and σ centered at y, we have

II = −
1

4πcs

∫ ∞

0

s

∫

S2

χD(sσ + y)(σ · e) δ′
(

τ −
s

cs

)
dσ ds,

and hence

II = −
cs

4π

d

dt

[
(τ − t)

∫

S2

χD(cs(τ − t)σ + y)(σ · e) dσ

]

t=0

=
cs

4π

∫

S2

χD(|z − y|σ + y)(σ · e) dσ −
csτ

4π

d

dt

[∫

S2

χD(cs(τ − t)σ + y)(σ · e) dσ

]

t=0

Thus, we have
II = csAD(0) − cs|z − y|A′

D(0). (3.21)

Combining (3.19) and (3.21) we obtain

∫

D

e · ∇vy(x, 0)dx = −cs|z − y|A′
D(0), (3.22)

and hence

cγ(z) = −
cs

|z − y|A′
D(0)

∫ T

0

∫

∂Ω

∂pz

∂ν
(x, t)(vy(x, t) + vy(x,−t)) dσ(x) dt. (3.23)

Note that the function AD(t) is dependent on the shape of D and the direction e, and
it is not likely to be able to compute it in a close form. But, if we take the source point y
so that z − y is parallel to e and D is a sphere of radius r (its center is z), then one can
compute AD(t) explicitly using the spherical coordinates. In fact, in such a case, we have

AD(t) =
r2

4(|z − y| − t)2
−

r4

16(|z − y| − t)4
, (3.24)

and hence we obtain a formula for the reconstruction of cγ(z) from (3.23). Let us summarize
the formula in the following theorem

10



Theorem 3.1 Choose y ∈ R
3 \Ω so that z − y is parallel to e. If D is a sphere of radius r

with its center at z, then

cγ(z) = −
cs

r2

2|z−y|2 − r4

4|z−y|4

∫ T

0

∫

∂Ω

∂pz

∂ν
(x, t)(vy(x, t) + vy(x,−t)) dσ(x) dt. (3.25)

provided that γ is constant γ(z) on D.

Note that the formula (3.25) is an exact formula. But since r is sufficiently small and we
are using approximation γ ≈ γ(x) on D, it is preferable to use the following approximate
formula.

[Reconstruction Formula for MAT-MI]

cγ(z) ≈ −
2cs|z − y|2

r2

∫ T

0

∫

∂Ω

∂pz

∂ν
(x, t)(vy(x, t) + vy(x,−t)) dσ(x) dt (3.26)

If the impact zone D is the sphere of radius r centered at z and y is chosen so that z − y is
parallel to e.

Formula (3.26) can be used to effectively compute the conductivity contrast in Ω with a
resolution of order the size of the ultrasound beam.

It is worth mentioning that in order to obtain cγ(z) using the MAT-MI, it suffices to
stimulate the point z, while for the VPT we need to stimulate all the points in the body even
if we want to detect the conductivity of a local region. This is due to difference between the
nature of differential equations involved: finite speed of propagation of the wave equation
(MAT-MI) and infinite speed of the elliptic equation (VPT).

3.3 Localization Method for the MACI

Let Σ be a plane in R
3 \ Ω orthogonal to e. Let vy be given by (3.16), where y ∈ Σ. We

have by multiplying (2.12) by vy and integrating by parts that

E(y) :=

∫ T

0

∫

∂Ω

∂pz

∂ν
(x, t)(vy(x, t) + vy(x,−t)) dσ(x) dt = c

(y − z) · e

4π|z − y|3
. (3.27)

The projection on Σ of the location z can be obtained by taking the maximum of E(y)
as y ∈ Σ. The third component of z can be obtained as the point on a line parallel to e
where E(y) changes sign. This algorithm is parallel to the one developed in [11] for anomaly
detection from electrical impedance boundary measurements.

4 Examples of Applications

4.1 Vibration Potential Tomography with FreeFem++

We present a test for iterative procedures proposed for the VPT reconstruction. The domain
Ω is the disk of radius 6 centered at the origin. Next to the boundary, that is, outside of
a disk of radius 5, the conductivity is constant, equal to 1. In the region of the radius 5,

the background conductivity is an oscillating function, sin
(
4
√

x2 + y2

)
+2. We introduced
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three zones where the conductivity is notably different: An area with an irregular boundary
where the conductivity is a piecewise constant function int (8/10 cos(4y) + 9/10) + 1/10,
where int is the integer part function, a small stretched ellipse with constant conductivity
1/10, and an annulus where the conductivity increases rapidly (x + 2)2 + 0.1. The purpose
of choosing this pattern is to demonstrate that the reconstruction methods are very effective
for a large variety of conductivities. The conductivity distribution is presented on the Figure
1. The simulations are done using the partial differential equation solver FreeFem++ [7].

Figure 1: Conductivity Distribution.

Figure 2 shows the result of the reconstruction when perfect measurements (with ’infinite’
precisions) are available. We use two different Dirichlet boundary data, gx = 2 + x/6 and
gy = 2+y/6. In the first approach proposed in Section 3.1, this is implemented by alternating
the procedures with gx and gy. In the optimal control approach, this corresponds to simply
adding the contribution of both correctors. In both cases, the boundary data are positive,
which implies the positivity of u in the domain Ω. The initial guess is depicted on the left:
it is equal to 1 everywhere. The right picture represents the reconstructed conductivity
after three iterations. A 7 digit accuracy in L2 norm and in L∞ norm is reached after five
iterations.

Figure 2: Perfect reconstruction test. From left to right, the initial guess, the reconstructed
conductivity after three iterations

To document the effectiveness of our approach in the case of partial data, we perturb
the measure data. We add 5% noise to the measured data, and we destroy the data on two
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elliptical subdomains, replacing it by 1. If we use solve iteratively, using alternatively the
(perturbed) data corresponding to gx or gy, the algorithm cycles after fives iterations. This
is because we are trying to match mismatched data : the minimum corresponding to gx data
is not the same as the one corresponding to gy, because of the perturbations we applied to
both data sets. The results are presented in Figure 3.

Figure 3: Perturbed reconstruction test. From left to right, the measured data for gx and gy, and
the reconstructed conductivity after five iterations

Note that the pattern is recognizable from the data E itself. This may be expected:
thanks to De Giorgi-Nash estimates, the potential u is continuous, thus the data displays
the discontinuities of γ. However, the value of γ cannot be read from the data. The local
character of the minimization procedure is striking. The solution does not seem to be affected
by a substantial loss of data. If we limit the minimization procedure to the area outside
the elliptical subdomains instead of considering false data, the optimal control procedure
converges to a non-zero minimum, which is due to the background noise. The reconstructed
pattern is very similar to the one presented in Figure 3.

4.2 Magneto-Acoustic Tomographies with Incomplete Data

Suppose that the measurements of ∂pz/∂ν(x, t) are only done on a part Γ of the boundary
∂Ω. Suppose that T and Γ are such that they geometrically control Ω, which roughly means
that every geometrical optic ray, starting at any point x ∈ Ω, at time t = 0, hits Γ before
time T at a nondiffractive point; see [3]. Let β ∈ C∞

0 (Ω) be a cutoff function such that
β(x) ≡ 1 in a subdomain Ω′ of Ω. Following [1], we construct by the geometrical control
method a function ṽ(x, t) satisfying (3.13), the initial condition ṽ(x, 0) = β(x)vy(x, 0) (vy

given by (3.16)), the boundary condition ṽ = 0 on ∂Ω \ Γ, and the final conditions (3.14).
The reconstruction formulae (3.26) and (3.27) should be replaced by

cγ(z) ≈ −
2cs|z − y|2

r2

∫ T

0

∫

Γ

∂pz

∂ν
(x, t)(ṽ(x, t) + ṽ(x,−t)) dσ(x) dt, (4.1)

and ∫ T

0

∫

Γ

∂pz

∂ν
(x, t)(ṽ(x, t) + ṽ(x,−t)) dσ(x) dt = c

(y − z) · e

4π|z − y|3
. (4.2)
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5 Concluding Remarks

In this paper, we have proposed two algorithms for solving the inverse problem in vibration
potential tomography. Both algorithms are based on transforming the conductivity equation
into a nonlinear PDE. The first one follows from a perturbative approach while the second
one follows an optimal control approach and can be applied to the case of incomplete data. It
should be emphasized that from (2.4), an alternative way for solving the VPT problem is to
first obtain j = γ|∇v| in each D and then to replace γ by j/|∇v| in the conductivity equation
(2.1). This yields to exactly the same nonlinear problem as the one extensively investigated
by Seo’s group for Magnetic Resonance Electrical Impedance Tomography (MREIT). An
efficient algorithm for solving the inverse problem in MREIT is the so-called J−substitution
algorithm. See for instance [9, 10]. We believe that if we restrict the resolution in the
J−substitution algorithm to the size of D, it would lead to the same quality of conductivity
images as the one provided in this paper. However, the algorithms developed here for VPT
are simpler and use only one current.

For magneto-acoustic tomography with magnetic induction, we provided explicit inver-
sion formulae. Magneto-acoustic tomography transforms the inverse conductivity problem
into a much simpler inverse source problem. Because of the acoustic boundary conditions,
the spherical Radon inverse transform can not be applied. Our approach is to make an ap-
propriate averaging of the measurements by using particular solutions to the wave equation.
Our approach extends easily to the case where only a part of the boundary is accessible.

It is worth noticing that our approach for the magneto-acoustic tomography can be used
in photo-acoustic imaging (see [19] for a review of the current state-of-the-art of photo-
acoustic imaging). This will be discussed in a forthcoming paper. We also intend to gen-
eralize our inversion formula to the case where the medium is acoustically inhomogeneous
(contains small acoustical scatterers).
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