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Abstract. The Mediterranean basin is a particularly vulner-
able region to climate change, featuring a sharply contrasted
climate between the North and South and governed by a
semi-enclosed sea with pronounced surrounding topography
covering parts of the Europe, Africa and Asia regions. The
physiographic specificities contribute to produce mesoscale
atmospheric features that can evolve to high-impact weather
systems such as heavy precipitation, wind storms, heat waves
and droughts. The evolution of these meteorological ex-
tremes in the context of global warming is still an open
question, partly because of the large uncertainty associated
with existing estimates produced by global climate models
(GCM) with coarse horizontal resolution (∼ 200 km). Down-
scaling climatic information at a local scale is, thus, needed
to improve the climate extreme prediction and to provide rel-
evant information for vulnerability and adaptation studies. In
this study, we investigate wind, temperature and precipita-
tion distributions for past recent climate and future scenar-
ios at eight meteorological stations in the French Mediter-
ranean region using one statistical downscaling model, re-
ferred as the “Cumulative Distribution Function transform”
(CDF-t) approach. A thorough analysis of the uncertainty as-
sociated with statistical downscaling and bi-linear interpola-
tion of large-scale wind speed, temperature and rainfall from
reanalyses (ERA-40) and three GCM historical simulations,
has been conducted and quantified in terms of Kolmogorov-
Smirnov scores. CDF-t produces a more accurate and re-
liable local wind speed, temperature and rainfall. Gener-

ally, wind speed, temperature and rainfall CDF obtained with
CDF-t are significantly similar with the observed CDF, even
though CDF-t performance may vary from one station to an-
other due to the sensitivity of the driving large-scale fields or
local impact. CDF-t has then been applied to climate sim-
ulations of the 21st century under B1 and A2 scenarios for
the three GCMs. As expected, the most striking trend is ob-
tained for temperature (median and extremes), whereas for
wind speed and rainfall, the evolution of the distributions is
weaker. Mean surface wind speed and wind extremes seem to
decrease in most locations, whereas the mean rainfall value
decreases while the extremes seem to slightly increase. This
is consistent with previous studies, but if this trend is clear
with wind speed and rainfall data interpolated from GCM
simulations at station locations, conversely CDF-t produces
a more uncertain trend.

1 Introduction

The Mediterranean basin has a distinctive character that re-
sults both from physiographic conditions and historical and
societal developments. The Mediterranean region generally
defines the lands around the Mediterranean Sea that have a
Mediterranean climate. This climate is characterised by hot,
long and dry summers, mild winters during which rainfalls
occur. K̈open (1936) defined the Mediterranean climate as
one in which winter rainfall is more than three times the
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summer rainfall and Xoplaki et al. (2004) show that wet sea-
son precipitation from October to March, accounts for 20 %
(southern and eastern regions) and 30 % (western and north-
ern regions) of the annual total amounts. The medium to
high mountains that surround the Mediterranean Sea play
a crucial role in steering air flow and the Mediterranean
Sea acts as a moisture and heat reservoir, so that energetic
mesoscale atmospheric features can evolve to high-impact
weather systems such as heavy precipitation during fall, cy-
clogenesis and wind storms during winter or heat waves and
droughts during summer.

Indeed, the Mediterranean Basin records one of the high-
est concentrations of mid-latitude cyclones in the world, es-
pecially in winter (Petterssen, 1956). The Genoa region is
the area of maximum cyclone concentration (e.g., Alpert et
al., 1990; Trigo et al., 1999). In this area, the continental
topography forces cyclonic developments often associated
with strong local winds such as the Mistral and Tramon-
tane (e.g., Drobinski et al., 2001, 2005; Guénard et al., 2005,
2006; Lebeaupin Brossier and Drobinski, 2009; Salameh et
al., 2007). The Genoa low is mainly of lee cyclogenesis ori-
gin (Trigo et al., 1999).

In autumn, high SST of the Mediterranean Sea can desta-
bilize air masses and favour latent heat release during cy-
clone formation which can produce heavy precipitations on
the north-western Mediterranean basin (Ducrocq et al., 2002,
2008; Lebeaupin et al., 2006). Flooding associated with
heavy precipitation, is one of the most devastating natu-
ral hazards in terms of human life loss along with wind-
storms. In France, over the last two decades, more than
100 deaths and several billions of euros damage was re-
ported. In September 2002, flash floods in France brought
additional losses of 1.2 billion euros (Huet et al., 2003). Con-
versely, Mediterranean summer is characterised by high tem-
peratures, lack of rainfall and long periods of drought. The
heat waves over Southern Europe result generally from a
zone of strong high pressure over Western Europe that per-
sists for many days (atmospheric blocking situation) and
pushes Atlantic perturbations northwards. August 2003 has
been classified as one of the warmest summer in Europe and
had a major impact on excessive mortality rates in France.
The persistent SST warm values and the amplitude of the
blocking event over Europe are likely to be linked with this
heat wave (Trigo et al., 2005).

The evolution of these meteorological extremes in the con-
text of global warming is a key issue. This is not only for pro-
viding a tangible basis to the design of early warning proce-
dures and mitigation measures to avoid the loss of life and re-
duce damage, but also for the assessment of their impacts on
Mediterranean societies, which may be irreversible. Indeed,
the area is very sensitive to climate change at short (decadal)
and long (millennial) time scales. In Spain, Quereda Sala
et al. (2000) reported an increase of the mean annual tem-
perature of 0.5◦C to 1.2◦C between 1870 and 1996. A
similar trend is observed in France (Moisselin et al., 2002).

When considering only the summer surface air temperature,
the warming trend over Mediterranean region for the period
1950–1999 was 0.008◦C yr−1 (Xoplaki et al., 2003), reach-
ing the value of 0.01◦C yr−1 for 1976–2000 (Solomon et al.,
2007), one of the highest rates over the entire globe. The
majority of the 21st century scenarios shows a regional de-
crease in average precipitation with a peak signal in sum-
mer with either atmosphere-ocean Global Climate Models
(GCM) (Giorgi and Bi, 2005), atmosphere Regional Climate
Models (Gibelin and D́eqúe, 2003; D́eqúe et al., 2005; Gao et
al., 2006; Ulbrich et al., 2006) or coupled atmosphere-ocean
Regional Climate Models (RCM) (Somot et al., 2007). In
winter, the agreement is weaker with some models showing
an increase in precipitation. There is, however, no consen-
sus on the evolution of the frequency and intensity of the
extreme events over the Mediterranean regions, even though
an increase in precipitation variability during the dry (warm)
season is expected (Giorgi, 2006) and an increased proba-
bility of occurrence of events conducive to both floods and
droughts is suggested (Gao et al., 2006). Globally, Giorgi
(2006) defines the Mediterranean area as one of the two main
“hot-spots” of the climate change with an increase in the in-
terannual variability in addition to a strong warming and dry-
ing.

To obtain a deeper insight on the evolution of the extreme
occurrence, intensity in a changing climate, there is a need
to downscale climatic information at a local scale in order
to provide relevant information for vulnerability and adap-
tation studies. Statistical downscaling is a computationally
inexpensive method for obtaining local climate from GCMs
by deriving statistical relationships between observed small-
scale (often station level) variables and larger (GCM) scale
variables. Statistical downscaling methods can generally be
classified from one or more of the following sets of ap-
proaches, as was first suggested by Wilby and Wigley (1997):
transfer functions, stochastic weather generators and weather
typing. Transfer functions aim at translating directly large-
scale data into local-scale values through linear or nonlin-
ear regressions. Given large-scale informationx, the down-
scaled local responsey is a functionŷ(x) which usually esti-
matesE[Y |X = x]. Among this regression-based approach,
we can have: linear regression (e.g., Huth, 2002; Busuioc
et al., 2008; Goubanova et al., 2010), nonlinear paramet-
ric models (such as polynomial regression, Sailor and Xi-
angshang, 1999), non-parametric regression based on gen-
eralized additive models (Vrac et al., 2007a; Salameh et
al., 2009) and neural networks (e.g., Cannon and Whitfield,
2002; Haylock et al., 2006). Stochastic weather generators
simulate meteorological variables, such as precipitation or
temperature, based on probability density function (PDF)
models (e.g., Semenov et al., 1998; Wilks, 1999). Weather
generators are designed to simulate data with the same sta-
tistical properties as those from observations. In a downscal-
ing context, weather generators simulate a local variableY

conditionally on large-scale datax, by building a model for
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the conditional distributionY |X = x. To do so, the parame-
ters of the pdf are functions of some appropriate large-scale
information such as American weather regimes or North At-
lantic Oscillation index (e.g., Vrac et al., 2007b; Yang et al.,
2005), or other large-scale climate information (see Wilks
and Wilby, 1999, for a review). Hence, large-scale changes
are transferred to the local-scale density parameters and, as
a consequence, the simulations can also evolve (Vrac and
Naveau, 2007). The weather typing approach is based on
clustering and classification of large-scale atmospheric cir-
culation situations into recurrent weather patterns. Weather
typing is based on the idea that a given circulation pattern is
always associated to similar local-scale meteorological con-
ditions (e.g., Zorita and von Storch, 1999; Huth, 2001). This
approach can also serve as a pre-processing step before build-
ing transfer functions (e.g., Huth et al., 2008) or weather
generators (e.g., Schnur and Lettenmaier, 1998; Vrac and
Naveau, 2007).

In this article, we investigate wind, temperature and pre-
cipitation distributions on the French Mediterranean basin
for recent climate and future scenarios at eight wisely dis-
tributed meteorological station locations (Fig. 1) using a
new statistical downscaling model for the three variables, re-
ferred as the “Cumulative Distribution Function transform”
(CDFT-t) approach, originally developed for wind down-
scaling (Michelangeli et al., 2009). This method aims at
downscaling statistical characteristics using a probabilistic
downscaling model. While classical statistical downscaling
models generally directly provide local-scale values (e.g.,
see Maraun et al., 2010, for a recent review), probabilistic
downscaling models link the cumulative distribution func-
tion (CDF) of a large-scale variable with the CDF of the
same variable at a much smaller scale, and allow to down-
scale CDFs from which local-scale data can be generated. In
that sense, CDF-t can be seen as a stochastic weather genera-
tor approach. In this study, we address the specific following
issues:

– uncertainty assessment of the CDF-t method

– evaluation of CDF-t ability to reproduce distribution of
extreme events (strong winds, heavy precipitation and
hot temperatures)

– projection of statistical distribution of wind, tempera-
ture and rainfall in anthropogenic scenario, with a spe-
cial focus on extreme event evolution.

These are key issues addressed in the frame of the
MEDUP project (Forecast and projection in climate scenario
of Mediterranean intense events: uncertainties and propaga-
tion on environment).

After the introduction in Sect. 1, Sect. 2 details the datasets
and statistical method used in this study. Section 3 presents
the calibration and validation of the method performed in the
past recent climate decade and discusses the sources of un-
certainty. The local projections of “future climates” obtained
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Fig. 1. Map of the studied region. The red dots indicate the loca-
tions of the surface weather stations from which wind speed, tem-
perature and rainfall data are collected.

by downscaling atmospheric fields provided by three GCMs
for emission scenarios B1 (“optimistic” emission scenario)
and A2 (“pessimistic” emission scenario) are then analysed
in Sect. 4. Section 5 concludes this study and points out some
open research questions needing further investigations.

2 Data and methodology

2.1 Station and large-scale data

2.1.1 Meteorological surface data

As “station” data, we use the 10-m wind speed, 2-m temper-
ature and rain data provided every 6 h by the Safran analysis
system (Le Moigne, 2002) at locations where weather sta-
tions are localized. We selected stations spread over South-
ern France allowing the sampling of the various sub-climatic
regions as in Salameh et al. (2009) (Fig. 1) and use the data
provided by Safran in order to avoid “holes” in the data col-
lected by the surface weather stations. The Safran analysis
system had been initially designed to provide atmospheric
forcing data in mountainous areas for avalanche hazard fore-
casting (Durand et al., 1993, 1999). The avalanche version
of Safran has recently been used to develop a long-term me-
teorological reanalysis over the French Alps (Durand et al.,
2009). This system has been extended over the whole coun-
try and modified in order to feed macroscale soil-vegetation-
atmosphere transfer models (Le Moigne, 2002). A detailed
description of Safran, its validation and its application over
France is given by Quintana-Seguı́ et al. (2008). The number
of stations, used each day in SAFRAN, evolved with time
(see Fig. 2 in Vidal et al., 2010). Continuously increasing
from 3000 to 4000 observations per day for precipitation be-
tween the late 1950s to the present, the increase was much
sharper for temperature and wind speed, with a jump from
500 to 4000 stations per day and from 500 to 2000 stations
per day, respectively, between the late 1980s and the late
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1990s (no significant change since then). We kept a homog-
enized temperature and rainfall dataset over a 20-yr period
between 1981 and 2000 (only non-zero observed precipita-
tion). Because of the important automation of the anemome-
ters during the 1980s, which significantly modified the mea-
surement of the wind speed (E. Martin, personal communi-
cation, 2008), we kept wind speed data over a 10-yr period
between 1991 and 2000.

2.1.2 Large-scale data: reanalyses

The European Center for Medium-Range Weather Forecast
(ECMWF) has released reanalysed datasets for the time
frame 1957–2002 (Simmons and Gibson, 2000). The ERA-
40 has a resolution corresponding to a T159 spectral trunca-
tion with 60 vertical levels from 1000 to 0.1 hPa. Data are
reported on a 1.125◦ ×1.125◦ grid every 6 h (00:00, 06:00,
12:00 and 18:00 UTC). In this study, the variables used are
the mean daily wind speed at 10 m and 925 hPa, the mean
daily temperature at 2 m and 925 hPa and the daily cumula-
tive precipitation, for the 1981–2000 period. To use large
scale data onto stations, a simple bi-linear interpolation from
the four nearest grid points of the model are used. This
method provides a local value from large-scale temperature,
wind speed and precipitation of the reanalysis.

2.1.3 Large-scale data: climate models

As part of the Intergovernmental Panel on Climate Change
(IPCC) fourth assessment of climate change science released
in 2007 (Solomon et al., 2007), a set of simulations from var-
ious global climate model experiments has been performed,
evaluated and analysed in details in the frame of the Cou-
pled Model Intercomparison Project No. 3 (CMIP3). Up to
23 GCMs contributed to the CMIP3 dataset. To avoid redun-
dant information when the cumulative distribution functions
are too close, we have used three available models (IPSL,
Meteo-France and ECHAM5). This choice provides gener-
ally three different cumulative distribution functions of vari-
ables for the calibration and the projection periods owing
to different model physics or schemes used. This allows
analysing the behaviour and the sensitivity of the method fol-
lowing different tendencies and different predictors (such as
variables and pressure levels). This subset of 3 GCMs pro-
viding daily outputs are used in this study as predictors for
statistical downscaling for two contrasted emission scenarios
for the 21st century (B1 and A2 scenarios corresponding to
a mean global warming estimate for 2090–2099 relative to
1980–1999 of 1.8 and 3.4◦C, respectively;Solomon et al.,
2007) (Table 1).

The A2 scenario is based on a very heterogeneous world
with continuously increasing population and a technologi-
cally fragmented economic development leading to one of
the highest emission scenarios available. In contrast, in B1
the emphasis is on global solutions to economic, social and

environmental sustainability, and B1 is one of the lowest
emission scenarios available. Historical simulations from
the three GCMs (IPSL, CNRM and ECHAM5) over the 20th
century have also been used as reference for the recent past
climate. Daily data are, therefore, available from CMIP3
database for three time slices for which daily model predic-
tors were available and downscaled: 1981–2000 (historical
simulations), 2046–2065 and 2081–2100 (scenarios).

2.2 The CDF-t method

The downscaling method used in this study is the “Cumula-
tive Distribution Function – transform” (CDF-t) method de-
veloped by Michelangeli et al. (2009). This approach aims
at relating the cumulative distribution function (CDF) of a
climate variable (e.g., wind or temperature) on a large scale
(e.g., from GCM or reanalysis data) to the CDF of this vari-
able on a local scale (e.g., at a station). This method is sup-
plied by the bi-linear interpolation data to the stations pro-
vided by the GCMs, as explained previously. A mathemati-
cal transformationT is, thus, applied to the large-scale CDF
to define a new CDF as close as possible to the CDF mea-
sured at the station. LetFGh andFSh define, respectively, the
CDFs of the variable of interest from the GCM and from a
given station for a historical time period. We assume that the
transformationT allows to go fromFGh to FSh:

T (FGh(x)) = FSh(x). (1)

Replacingx by F−1
Gh (u), whereu belongs to[0,1], we obtain

T (u) = FSh(F
−1
Gh (u)), (2)

which provides a simple definition ofT . Assuming that this
relationship is still valid under changed climate conditions,
i.e., thatT is stationary in time, the transformation can be
applied toFGf, the large-scale CDF of the climate variable
for a future time period, to generateFSf, the CDF at the sta-
tion for the same future time period:

T (FGf(x)) = FSf(x), (3)

which is equivalent to

FSf(x) = FSh(F
−1
Gh (FGf(x))). (4)

In the following, all computations for this CDF downscal-
ing have been made through the “CDF-t” R package (freely
available on www.r-project.org). More theoretical and tech-
nical details, as well as first validations and comparisons can
be found in Michelangeli et al. (2009), while an application
of CDF-t to local projections of precipitation and tempera-
ture over India is provided in Vigaud et al. (2010).

While CDF-t is directly used for temperature and wind
variables, two different processings are applied and tested to
the rainfall dataset in order to downscale the CDF of strictly
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Table 1. Global climate models from CMIP3 database to which CDF-t statistical downscaling method is applied. Their grid size and
sensitivity1T are shown in the last two columns. Their sensitivity is calculated using the global warming produced by the model using the
A1B scenario when approximated by linear regression over the 21st century (CSIRO and Bureau of Meteorology, 2007 CSIRO and Bureau of
Meteorology, Climate Change in Australia, Technical Report, Australian Greenhouse Office (2007) www.climatechangeinaustralia.gov.au,
148 pp., CSIRO and BoM, 2007).

Originating group Country Acronym Grid size (km) 1T (◦C)

Institut Pierre Simon Laplace France IPSL ∼ 300 3.19
Mét́eo-France France CNRM ∼ 200 2.81
Max Planck Institute for Meteorology Germany ECHAM5 ∼ 200 3.69

positive rainfall. Two different thresholds are defined here
to differentiate “rain” and “no rain” events. The first pro-
cessing consists of retaining only non-zero values in both the
observed and GCM rainfalls. In the second processing, only
non-zero values are retained for the observed data, but a new
threshold, larger than zero, is selected for each GCM (G) and
station (S). This new thresholdtGS is defined in order to keep
the same number of days from the GCM as the number of
days with> 0 rainfall at station S. In other words, the thresh-
old tGS is determined that

FGh(tGS) = FSh(0). (5)

This threshold is defined for each season and station, and al-
lows removing GCM days with low cumulated rainfall (gen-
erally these daily cumulated rainfalls are close to zero). In
processing 1, the assumption is that the model does not well
estimate the occurrence of precipitation, but is able to re-
produce the good distribution of precipitation amounts. The
assumption of processing 2 is that the model reproduces nei-
ther the precipitation occurrence nor the distribution, but es-
timates accurately the tendency between the calibration and
the projection periods, with a strong focus on the strongest
rainfalls.

3 Assessment for present climate

3.1 Calibration and uncertainty evaluation

The uncertainty evaluation is performed using two differ-
ent time periods: one for the calibration of CDF-t, one for
projections and evaluations. As indicated in Sect. 2.1.1, the
observed temperature and rainfall data cover a 20 yr period,
whereas wind speed only spans 10 yr. These periods have
been split into two periods of equal length. Calibration is per-
formed on 1981–1990 for temperature and precipitation and
1991–1996 for wind speed; projections and evaluations are
performed on 1991–2000 (temperature and rain) and 1996–
2000 (wind) periods.

The uncertainty quantification of the downscaling method,
which is a major objective of the MEDUP project, is per-
formed by comparing the time series calculated from the

downscaled CDF with the observed ones. This is quanti-
fied over each station and variables using the Kolmogorov-
Smirnov score (KS) using different GCM outputs and pres-
sure levels. Indeed, the KS can be seen as a measure of
the distance between two CDFs, as already used in pre-
vious downscaling validation studies (e.g., Darling, 1957;
Michelangeli et al., 2009). The agreement of these KS scores
the downscaling CDF, following different models and pres-
sure levels, is defined as a proxy of the uncertainty. More-
over, a large part of these results have been validated using
the Cramer Von Misses method and displayed the same sig-
nificance. IfF(x) is the empirical CDF of the observed data
in the evaluation period (i.e., the CDF to be retrieved), and
FSf(x) the downscaled CDF, the KS statistics is thesupre-
mum of the absolute differences betweenF andFSf:

KS= sup
x

|FSf−F(x)|. (6)

In the following, the KS score is computed to compare the
observed CDF with (i) the CDF of the interpolated large-
scale fields from ERA-40 reanalyses and CMIP3 control runs
(for the three GCMs) and (ii) the CDF obtained from the
CDF-t statistical downscaling method.

In order to visualise the evolution of the CDFs between the
two periods (calibration and projection), Fig. 2 shows the KS
values quantifying the difference between the CDFs of the
evaluation period (1991–2000 for temperature and precipita-
tion; 1996–2000 for wind speed) and those of the calibration
period (1981–1990 for temperature and precipitation; 1991–
1996 for wind speed).

The areas of the circles are proportional to the KS values.
For a confidence levelα in [0,1], when the KS values are
larger than a theoretical threshold value KSα, the two CDFs
significantly differ at levelα. This theoretical threshold value
KSα is defined by:

Pr(KS≤ KSα) = 1−α. (7)

In Fig. 2, the black circles represent the KS values com-
puted between the CDFs of the observations during the
calibration period and those during the evaluation period,
whereas the coloured circles represent the equivalent KS
values (i.e., calibration vs. evaluation) for the interpolated
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(a) Temperature (b) Wind

(c) > 0 rainfall (processing 1) (d) > threshold rainfall (processing 2)

Fig. 2. KS scores (proportional to the circle areas) comparing the CDFs over the evaluation period (1991–2000 for temperature and pre-
cipitation; 1996–2000 for wind speed) and over the calibration period (1981–1990 for temperature and precipitation; 1991–1996 for wind
speed) for temperature(a), wind speed(b), rainfall (processing 1 in(c); processing 2 in(d); see details in the text for the definition of rainfall
processing). In panels(a) and(b), the KS scores for the observations are displayed in the middle, for the model using the 925 hPa data on
the left, and for the surface fields on the right. In panels(c) and(d), the KS scores for the observations are displayed on the left and for
the model on the right. The KS scores are computed over the eight stations using IPSL (red), CNRM (green), ECHAM5 (yellow) and ERA
reanalyses (grey).

ERA-40 reanalyses and the three CMIP3 control runs at the
surface weather station locations. When the coloured circles
are larger than the black circles, the difference between the
CDFs of the interpolated data from the two periods is larger
than the difference between the CDFs from the observations
over the two periods. The 80 % and 90 % confidence levels
of the KS are indicated in the legend. For wind and tem-
perature, large-scale predictors are considered for two dif-
ferent vertical levels (at the surface and at 925 hPa). The
surface predictor fields are expected to be closer to the sur-
face observations than the 925 hPa fields, however, they are
also more affected by the coarse resolution of the topog-
raphy, surface heterogeneities and by the specific selection
of the physical parameterisations (like surface or boundary
layer). Thus, this sensitivity test may quantify the ability of
the surface level to well represent the local characteristics.
For temperature (Fig. 2a), we note that except for Cannes
and Carcassonne, CMIP3 models and ERA reanalyses de-
pict very close results and display a larger difference (i.e.,
larger KS) between the two periods than observed, especially
when using the surface temperature. In general, KS values
with the 925 hPa temperature are smaller than with the sur-

face temperature and are in better agreement with the ob-
servations. For wind speed (Fig. 2b), the spread of the KS
values from the different models is larger than for temper-
ature. This could be due to an evolution between the two
periods which is larger for wind speed CDF than for tem-
perature, or a larger sensitivity of wind speed CDF to lo-
cal characteristics. The CNRM GCM displays the largest
KS value for all stations. On average, the use of surface or
925 hPa wind speed does not induce significant difference on
the KS values. This result might have different causes in-
cluding; the quality of the parameterisation, the GCM reso-
lution, which tend to limit the regional effects and the down-
scaling methodology. Intuitively, there is no straightforward
link between the quality of the parameterisation and the fact
that the KS are similar when using the surface data or the
925 hPa. Since the GCMs do not have the same parame-
terisations advocates for a weak effect. The coarse resolu-
tion of the large-scale field (ERA-40 and GCM) seems the
main obstacle for a much better downscaling performance.
At such coarse resolution (>100 km), the surface representa-
tion is generally poor, which tends to limit the interest of con-
sidering the surface level instead of the 925 hPa level. The
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(a) Temperature (b) Wind

(c) > 0 rainfall (processing 1) (d) > threshold rainfall (processing 2)

Fig. 3. KS values computed for the validation period between the CDFs of the observed data and the CDFs of the interpolated GCM data
(centre circles), or the downscaled CDFs using the 925 hPa field (for temperature and wind speed, left circles) or the surface fields (right
circles), for(a) temperature,(b) wind, (c) > 0 rainfall from processing 1, and(d) threshold rainfall from processing 2 (see text for details).
The colour of the circles indicates the source of the large-scale fields: IPSL (red), CNRM (green), ECHAM5 (yellow), and ERA40 (grey).
The areas of the circle are proportional to the value of the KS score.

only reliable conclusion is that whatever the vertical level,
CDF-t corrects in the same way (with two different transfer
functionsT ; see Eq. 3), the large-scale CDF with the obser-
vations over the calibration period. Additionally, there may
be issues with the statistical method used which include the
ability of the method to estimate the downscaled CDF from
an extended large-scale CDF (e.g., with a larger range and
variability), as is the case for the surface. The KS values are
similar to those computed from the observations collected in
the centre and in the eastern part of the investigated region
whereas they exceed the KS values computed from the ob-
servations collected in the western part of the domain. For
rainfall (Fig. 2c and d), the method with only non-zero pre-
cipitation (processing 1) displays KS values similar to those
obtained from the observed rainfall whereas the KS scores
are larger with the method accounting for a rainfall threshold
(processing 2). This does not mean that processing 1 is better
than processing 2 since KSα increases when the number of
data from GCM decreases (i.e., larger KSα in processing 2).

The occurrence of precipitating events, selected with pro-
cessing 1 (non-zero rainfall), is larger with the interpolated
large-scale precipitation (CMIP3 models and ERA reanaly-
ses) than with the observed rainfall (Table 2). The occur-
rence of observed rainfall increases over validation period

relative to the calibration period while the opposite behaviour
is found when using the interpolated and downscaled large-
scale fields. By construction, CDF-t rainfall occurrence also
decreases since driven by the interpolated large-scale precip-
itation.

Using processing 2 (threshold rainfall), the interpolated
rainfall occurrence is by construction equal to the observed
rainfall occurrence (i.e., 0.15) over the calibration period. As
with processing 1, the decrease of large-scale precipitation
occurrence also leads to a decrease of the CDF-t downscaled
rainfall occurrence, but the comparison with observed rain-
fall occurrence is still acceptable (0.13–0.14, i.e., about 10 %
difference).

Figure3 shows the KS values comparing at each station
the CDFs of the observed data and the CDFs of the interpo-
lated large-scale fields (ERA-40 reanalyses and CMIP3 con-
trol runs; “Int” circles in Fig. 3) over the evaluation period
(1991–2000 for temperature and precipitation; 1996–2000
for wind speed). It also displays the KS values comparing
the CDFs of the observed data and the CDFs of the CDF-t
downscaled data (from ERA-40 reanalyses or CMIP3 con-
trol runs; “925 hPa” and “Surf” circles for wind speed and
temperature in Fig. 3a and b; “Down” circles for rainfall in
Fig. 3c and d).

www.nat-hazards-earth-syst-sci.net/12/651/2012/ Nat. Hazards Earth Syst. Sci., 12, 651–670, 2012



658 C. Lavaysse et al.: Statistical downscaling of the French Mediterranean climate

Table 2. Occurrence of precipitating events for each model and over the calibration period 1981–1990 (columns 2 and 4), and the vali-
dation period 1991–2000. Columns 2 and 3, and 4 and 5 correspond to processing 1 (non-zero precipitation) and processing 2 (threshold
precipitation), respectively. The values between brackets correspond to those produced by CDF-t.

Model Processing 1 Processing 2
Calibration period Validation period Calibration period Validation period

Observations 0.15 0.167 0.15 0.167
IPSL interp. (down) 0.81 0.76 (0.76) 0.15 0.15 (0.13)
CNRM interp. (down) 0.98 0.98 (0.92) 0.15 0.15 (0.14)
ECHAM interp. (down) 0.67 0.66 (0.65) 0.15 0.15 (0.13)
ERA40 interp. (down) 0.66 0.62 (0.59) 0.15 0.15 (0.13)

The KS values of the interpolated data are by far the largest
(circles in the middle in Fig. 3a and b; circles on the left in
Fig. 3c and d). The CDFs of the interpolated data at most
stations deviate substantially from the observed CDFs (even
with ERA-40 reanalyses). This expected result confirms the
necessity for appropriate downscaling tools. The KS values
obtained using CDF-t are much smaller, whatever the atmo-
spheric variable or predictor level (925 hPa and surface lev-
els). In many stations, the KS values are very close to the KS
threshold, evidencing the absence of significant difference
between the downscaled CDFs and the observed CDFs.

Table 3 indicates with a letter (I=IPSL, C=CNRM,
E=ECHAM5, R=ERA-40), which large-scale data, used as
inputs of CDF-t, provides downscaled CDFs considered as
similar to the observations over the validation period with a
80 % confidence level (90 % confidence level in red; Note
that a confidence at a 80 % level implies a confidence at the
90 % level). It shows that downscaling rainfall is less accu-
rate than downscaling temperature or wind. Using threshold
rainfall (i.e., processing 2) improves the quality of the down-
scaling, i.e., reproduces the tendency of the rainfall distri-
bution better for the largest rainfalls than the evolution of
the rainfall distribution close to 0 (processing 1). It also
shows that the results can vary significantly between the sta-
tions. For instance, at Carcassonne, CDF-t provides accurate
downscaled wind, temperature and precipitation for nearly
all large-scale fields, whereas at Cannes, the quality of the
downscaled variables is extremely low. These differences
can be attributed to the immediate environment of the surface
weather station. Indeed, a steep topography can produce a lo-
cal response that may partly be disconnected from the large-
scale circulation, inducing larger KS values. Another cause
of difference may be the modification of the environment of
the station (e.g., land cover) or of the sensor itself. However,
for temperature and wind, CDF-t can be used satisfactorily
at most stations with the large-scale fields from at least one
GCM and ERA-40. Figure3 also shows that, for tempera-
ture (Fig. 3a), the 925 hPa level data generally improves the
quality of the downscaling, whereas it is the reverse for wind
at most stations (Fig. 3b). For rainfall (Fig. 3c and d), the KS
values in the absence of threshold are spatially homogeneous

and independent of the large-scale fields (ERA-40 reanaly-
sis or CMIP3 control runs). In the presence of threshold, the
KS values are more variable in space and also more sensitive
to the large-scale fields. This increase of sensitivity could
be associated with the truncation of low precipitation events
which are very similar and quite stationary in the three mod-
els. The large number of low precipitation tends to reduce
the spatial variability of the KS scores and the difference be-
tween models. Using only the 16 % largest rainfall events
produces larger spatial variability and more sensitivity to the
large-scale field model (because of different convection and
microphysics parameterisations for instance). Nevertheless,
using the two processing, the KS values for the downscaled
and observed rainfall CDFs are larger than the threshold at
90 % confidence level, evidencing a significant difference be-
tween the CDFs. Thus, it seems that both processing 1 and
2 can not compensate the poor quality of the GCM rainfall
and the incorrect trend of the model between the two peri-
ods, generally too large with respect to the observations (not
shown).

The ability of the GCMs and CDF-t to simulate and down-
scale wind speed, temperature and precipitation may depend
on the seasons. Indeed, in winter, weather over the French
Mediterranean basin is essentially driven by baroclinic insta-
bilities, so rainfall, temperature and wind are mainly con-
trolled by large-scale atmospheric circulation. However,
interaction with the regional complex terrain generates at-
mospheric response at mesoscale that can not be reproduced
by simple interpolation at surface weather station locations
(not shown). In summer, although the large-scale forcing
still influences the surface weather, local forcing becomes
non negligible, and at times even predominant. As a conse-
quence, the interpolated large-scale fields display differences
between CDFs from interpolations and observations larger in
summer than in winter (not shown). As for the whole year,
CDF-t improves significantly the KS values for all variables
and all seasons. The maps of the KS values for winter and
summer look like that of Fig. 3 (not shown). However, in
detail, Table 3 shows that, in term of significance, small dif-
ferences exist between seasons and the whole year at specific
locations.
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Table 3. For each station, variable, and period of the year, the letters indicate the large-scale data (I = IPSL, C = CNRM, E = ECHAM5,
R = ERA-40) which provide downscaled CDFs considered by the KS-test as similar to the observations for the validation period with a 80 %
confidence level (90 % confidence level in red).

Variable Season
Stations

Cannes Nimes Orange Toulon Carcas Aix en P Montelim Montpel

Temperature
Whole year ICR ICER ICER ICER ICER ICER ICER ICER
Winter E ICER CER ICE R ICE CER CER
Summer IC ICER ICER ICR ICER ICER ICER ICER

Wind speed
Whole year ICER IER ICR IER IER IER ICER
Winter IER R IER ICER IR ICER IER
Summer R CER ER ER ICER CER CER

Rain (processing 1)
Whole year R C
Winter IR IR R
Summer

Rain (processing 2)
Whole year E IE IER E IR I ICER
Winter C IR CR IC R IR I
Summer R C CE CER CIE E CE CE

3.2 Extreme events

In this section, we focus on the ability of the GCM and CDF-
t method to correctly estimate the rate of occurrence of ex-
treme events, which is another key objective of the MEDUP
project. Here, we define extreme events as values exceeding
the 95 % quantile of the observations. We compute the proba-
bility of having interpolated and downscaled data larger than
this quantile over the projection period (1991–2000). An ac-
curate reproduction of the extremes would be reached if this
probability is close to 5 %. Figure 4 displays those prob-
abilities at all surface weather stations for interpolated and
downscaled (using both, the 925 hPa and the surface layers)
data.

For temperature (Fig. 4a), interpolation of CMIP3 model
fields and ERA-40 reanalyses underestimates the number of
extreme events (red markers close to 0). The CDF-t method
displays much better scores, closer to the 5 % probability
(blue and green markers). Slight underestimation of temper-
ature extremes is found when large-scale surface tempera-
ture is used as predictors (green markers). In agreement with
the results of previous sections, it gets better when using the
925 hPa large-scale temperature as predictors (blue markers).
For wind speed (Fig. 4b), interpolation gives very hetero-
geneous results with respect to the location. For instance,
at Cannes, all models overestimate the extremes, whereas at
Carcassonne, there is a large underestimation. More gener-
ally, the eastern region (i.e., Cannes, Toulon, Orange and Aix
en Provence) displays an overestimation of wind extremes,
whereas the western region (i.e., Carcassonne, Montpellier,
Nimes) displays an underestimation of the wind extremes.
Indeed, in situations of strong offshore winds like Mistral

and Tramontane (Drobinski et al., 2001, 2005), the smoothed
orography in the models does not allow the upstream block-
ing and channeling of the north/northwesterly air mass im-
pinging on the Alps which, thus, flows over the mountain
range. Observations and high-resolution simulation show
that such meteorological situations lead to the formation of
a wake behind and close the Alpine massif, which is a stag-
nation zone where the wind speed is very low (Drobinski et
al., 2005; Gúenard et al., 2006). This could explain the over-
estimation of wind extremes south of the Alps in the inter-
polated large-scale surface winds. Contrary to interpolation,
CDF-t is less variable and is able to correctly represent the
extreme events with percentage of occurrence close to 0.05.
Indeed, the strength and direction of the large-scale surface
wind interpolated at the surface weather station location are
related to the strength and direction of the flow upstream of
the Alps (because of the too smoothed orography), which
drive the formation of the wake trailing downstream. A sta-
tistical relationship is, thus, possible between the large-scale
wind CDF and the local-scale one. For rainfall, both pro-
cessings allow a more accurate representation of the extreme
events with CDF-t than with interpolation. The interpola-
tion method tends to underestimate the number of extreme
events and overestimate the low precipitation. This is due
to the spatial resolution of the GCMs. Nevertheless, CDF-t
tends to provide a good estimation of the percentage of ex-
treme events higher than the 95 % quantile. This ability could
be due to the constant underestimation of GCM to generate
large amounts of rainfall. This constant underestimation in
both periods is corrected by CDF-t and allows the method
to provide a percentage between 0.04 and 0.06 for process-
ing 1. Using the second processing, the truncation of the
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(c) > 0 rainfall (processing 1)
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Fig. 4. Probability of having interpolated and downscaled data, at 925 hPa and surface levels (in red, blue and green respectively) from
models and reanalyses larger than the 95 % quantile of the observations for the validation period. The signs indicate the model used, triangle
for IPSL, square for CNRM, circle for ECHAM5 and empty diamond for ERA40. The dashed lines correspond to the 5 % occurrence
probability.

CDF from the GCMs produces a strong bias when the in-
terpolation method is used. With the downscaling method,
this bias does not interfere and the results are close to those
from processing 1 (percentage between 0.03 and 0.07), with
a slightly larger variability depending on the stations and the
models, due to the decrease of the number of events taken
into account in processing 2.

Since the extreme events are of a different nature when
considering winter or summer seasons, similar probabilities
of exceedances were computed for winter and summer (not
shown). The analysis of the interpolated large-scale sur-
face wind extremes is similar for winter than for the whole
year, however, with more frequent and stronger extremes
with respect to summer. Indeed, Mistral and Tramontane are
stronger and slightly more frequent in winter than in sum-
mer (e.g., Drobinski et al., 2005; Guénard et al., 2006). For
temperature, CDF-t improves considerably the modelling of
extremes, underestimated by the climate models. However,
in details, downscaled temperature extremes are slightly un-

derestimated in winter, whereas they are overestimated in
summer. This is particularly true when IPSL model is used
as input for CDF-t. For precipitation, the probability of oc-
currence of extremes is slightly underestimated in winter us-
ing the interpolation method. During this period, the CDF-
t method improves the results that are close to 0.05 (not
shown). In summer, the interpolation method strongly under-
estimates extreme events (always less than 0.03 occurrence
probability). The CDF-t method partially corrects this ratio,
but still remains generally lower than 0.05 (not shown).

3.3 Comparison between CDF-t and quantile-mapping

To compare CDF-t with a more classical downscaling
method (such as the SDSM weather generatorWilby et
al. (2002), or a weather typing-based scheme, Boé et al.
(2006)), it is necessary to consider the type, size and num-
ber of predictors required, in other words, the complexity
of the methods to be compared. Indeed, whereas most of
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the statistical downscaling methods need several predictors
over a gridded area, the CDF-t approach provides the dis-
tribution of a given local-scale variable using only the same
(i.e., one) variable at a large scale (from GCM or reanaly-
ses). For example, fields of temperature, humidity and sea-
level pressure are frequently used as predictors to downscale
precipitation, whereas CDF-t provides locale-scale precipi-
tation only from large-scale precipitation data. Hence, the
comparison between CDF-t and a more frequently used sta-
tistical downscaling method would not be wholly meaning-
ful, since it would be difficult to distinguish the features of
the simulations from the statistical downscaling method itself
or from the use of more informative predictors. However,
Quintana-Segúı et al. (2011) have compared the quantile-
mapping (QM) method (Panofsky and Brier, 1958; Haddad
and Rosenfeld, 1997; D́eqúe, 2007; Maurer and Hidalgo,
2008) and a weather typing method (Boé et al., 2006) and
have shown that these two approaches are able to reproduce
the observed extremes of precipitation in the Southern part of
France, except over the Cevennes region. The QM method
has a similar philosophy as CDF-t since it works also on
CDFs. With the same notations as previously, for each large-
scale valuex from the projection period, QM seeks the local-
scale value, sayy, such thatFSh(y) = FGh(x). Hence, this
method uses the same data as CDF-t to downscale climate
variables. It is, therefore, an appropriate model to compare
CDF-t with. Note that other variants of QM could have been
employed (for example, see Li et al., 2010).

Figure 5 shows boxplots of KS scores computed between
the CDF of the observations at the eight stations over the val-
idation period and the ERA40-downscaled CDFs, from both
CDF-t and QM, for temperature, wind speed and rainfall in
winter (summer results are not shown but indicate that both
methods globally provide CDFs of similar quality).

For temperature, CDF-t performs better than QM while for
wind QM seems to perform slightly better than CDF-t. How-
ever, due to the relatively small number of stations (eight)
to construct the boxplots, it is difficult to provide a robust
conclusion and the two methods give similar results. The
results are also equivalent for the three GCMs (not shown)
but the two methods have difficulties at more than half of
the stations to produce correct local-scale wind CDFs with
CNRM simulations. For precipitation, while QM may give
some correct CDFs (i.e., with KS scores under the solid red
line), CDF-t generally provides CDFs that cannot be con-
sidered as similar as the observed ones. Indeed, GCMs and
ERA40 rainfall data have seen evolutions of their CDF be-
tween the calibration and the validation period. However, the
observations do not show this type of evolution. By construc-
tion, CDFs produced by the QM method cannot depart too far
away from the CDFs computed over the calibration period.
Hence, although the statistical properties of the large-scale
data have changed, the downscaled data stay relatively close
to the calibration data. On the opposite, CDF-t follows the
large-scale CDFs evolutions. If those evolutions are incorrect
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Fig. 5. Boxplots from the eight stations of KS scores computed be-
tween the CDF of the observations from the validation/projection
period and the ERA40-downscaled CDFs, from both CDF-t and
QM, for temperature (Tp; two left-hand side boxplots), wind speed
(Wd; two middle boxplots) and rainfall (Rn; two right-hand side
boxplots) in winter.

and not representative of a real trend, they also impact local-
scale CDFs, then the disagreement between observations and
downscaled CDFs will be high, as well as the KS scores. In
other words, the evolutions or changes of the large-scale data
that will drive the projection have more influence with CDF-t
than with QM. For this reason, in order to avoid remaining
too close to the observed CDFs, the CDF-t approach will be
used in the following section to project future climate.

4 Projections for future climate

In this section, the CDFs of wind, temperature and rain-
fall are downscaled using the CDF-t probabilistic approach
to examine whether changes in those distributions exhibit a
high degree of sensitivity to the specific scenario experiment
or GCM run. The scenarios used in the following are the
B1 and A2 scenarios for two 20-yr periods: 2046–2065 and
2081–2100. We use 20 yr of the control run between 1981
and 2000 to calibrate the CDF-t method for temperature and
rainfall and a reduced 10-yr period (1991–2000) for wind
downscaling. Compared to the method applied for present
climate assessment, these extended calibration periods allow
for a more accurate calibration of CDF-t. In the following,
and for sake of legibility, only the figures displaying results
for the A2 scenario will be shown.

4.1 Temperature

Using the GCM 925 hPa temperature fields (which give the
best results; see Sect. 3.1), Fig. 6 displays the KS values
comparing the interpolated CDFs of surface temperature over
2046–2065 (a) and 2081–2100 (b) and the interpolated CDF
over the 1991–2000 calibration period (left circles). It also
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displays the KS values comparing the downscaled CDFs
over 2046–2065 (a) and 2081–2100 (b) and the downscaled
CDF over the calibration period (right circles). The previous
section (Fig. 3 and Table 3) has shown that for tempera-
ture, downscaled CDFs do not display significant differences
with observed ones (to a lesser extent for Cannes). Over
2046–2065, the KS values produced by CDF-t are smaller
and less spatially variable than those produced using interpo-
lation, whereas over 2081–2100, they are similar. For both
periods, all KS values are larger than the threshold values
associated with the 80 % and 90 % confidence levels, thus,
showing evidence of a significant change in surface temper-
ature CDF in the scenario.

For a more thorough analysis, Table 4 displays the values
of the 5 %, 50 % and 95 % quantiles of temperature for the
calibration period, and for 2045–2065 and 2081–2100 using
the interpolation and CDF-t methods with the various CMIP3
models (IPSL, CNRM and ECHAM5) under the A2 scenario.
This allows a more quantitative evaluation of the regional
warming. One can first note a low sensitivity to the forcing
GCM. The warming is slightly weaker when using the inter-
polation method, with hardly distinguishable warming over
2046–2065, whatever the GCM. The CDFs from interpola-
tion are “shifted” by about +2◦. The warming is larger when
using CDF-t, even over 2045–2065. One can also notice a
larger impact on the 95 % quantile of temperature. Indeed,
for the A2 scenario, the 5 % quantile increases by about 2◦

between present and 2081–2100, whereas the 50 % and 95 %
quantiles increase by about 4◦ and 6◦, respectively. For the
B1 scenario (not shown), the relative spread is slightly larger
between the GCMs and the warming is lower than for A2
scenario (+0–2◦ for the 5 %, +1–4◦ for the 50 % and 95 %
quantiles between present and 2081–2100).

In general, the results in summer and winter are very sim-
ilar to those obtained over the whole year, despite a slightly
larger spread in winter between downscaled CDFs with re-
spect to the different forcing models. From Fig. 6 and Ta-
ble 4, it appears that all models produce similar results, what-
ever the season, and give results in agreement with Giorgi
(2006).

Figure 7 displays the probability of having downscaled
and interpolated surface temperature over 2081–2100 that
exceeds the 95 % quantile of the surface temperature calcu-
lated over the calibration period (1981–2000). Both CDF-t
and interpolation produce more frequent warm events. For
CDF-t, the 95 % quantile over the calibration period corre-
sponds approximately to the 80 % quantile (on average for all
stations) over 2081–2100. Compared to interpolation, CDF-t
increases the warming trend and its spatial variability. One
can also notice that IPSL GCM generally produces less ex-
treme events than CNRM during summer and vice-versa dur-
ing winter. The largest increase of temperature (trend and
extremes) is obtained at Toulon, especially during winter.

4.2 Wind speed

Figure 8 is similar to Fig. 6, but for surface wind speed
(which gives the best results; see Sect. 3.1). Wind speed
distributions are very close in the calibration and projection
periods, while temperature distributions are significantly dif-
ferent between the two periods. However, comparison of KS
values with the KS thresholds shows evidence of a weak,
but still significant difference. KS values increase for 2081–
2100, but not as strikingly as for temperature. Contrary to
temperature, CDF-t downscaling produces larger KS values
than the interpolation method, especially along the coastline
(i.e., Toulon, Cannes). However, coastal stations should be
analysed with care since they do not necessarily pass the KS-
test between the calibration and validation periods, especially
at Cannes (see Sect. 3.1). The interpolated CDFs of surface
wind speed show a decrease of mean wind speed, similar
between scenario B1 and 2 (about−1–2 m s−1) and what-
ever GCM large-scale surface wind speed used as input (Ta-
ble 4). The effect is dominated by the winter trend. The wind
decrease trend is consistent with Najac et al. (2009, 2010),
Michelangeli et al. (2009) and Vautard et al. (2010).

The evolution of extreme wind speed is less evident than
for temperature. With interpolation, the weak decrease of the
median wind speed is associated with a decrease of wind ex-
tremes (except for Cannes and Aix) as suggested in Fig. 9.
This figure shows that, at most stations, downscaling and in-
terpolation produce fewer extreme wind speed events com-
pared to the calibration period. Table4 gives a quantitative
estimate of the wind decrease, which is similar to the median
decrease, i.e., about−1–2 m s−1, even if the downscaling
method tends to increase the occurrence of these events in
relation to the interpolation method. These results are also
consistent with Najac et al. (2009, 2010); Michelangeli et al.
(2009); Vautard et al. (2010). With CDF-t, the situation is
more variable. In some stations, the occurrence probability
of extreme wind events increases, especially during summer,
whereas it is nearly constant during winter (except a possible
increase in Toulon). Averaging over the seven stations does
not allow us to conclude on the evolution of the wind speed
distribution CDFs under the two scenarios.

4.3 Rainfall

Using interpolation with processing 1, the rainfall occurrence
over the calibration and the 2081–2100 periods is sensitive
to the GCM (about 30 % difference between the minimum
and maximum rainfall occurrence produced by ECHAM5
and CNRM GCMs). The rainfall occurrence decreases be-
tween the calibration and the 2081–2100 periods by about
9 % under A2 scenario (Table5). This decrease is slightly
larger during summer than winter (not shown). Using CDF-
t, rainfall occurrence over 2081–2100 is even lower (−10 %
relative to the interpolated rainfall over 2081–2100). Rain-
fall downscaling with processing 2 produce lower rainfall
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(a) Temperature, 2046-2065 (b) Temperature, 2081-2100

Fig. 6. Circle areas are proportional to the KS scores computed over the whole year (i.e., no seasonal discrimination) between the CDFs of
temperature from each GCM during the validation period and those during the two future periods (2046–2065 on the left and 2081–2100 on
the right) under the A2 scenario. Crosses indicate the location of each station. The CDFs are computed using either the interpolation (right
side with respect to the cross) or the downscaling method (left side with respect to the cross). Black and grey circles display the 80 % and
90 % confidence levels (i.e.,α = 0.2 and 0.1) of the KS scores.

Table 4. Values (averaged over the 7 stations) of the 5 %, 50 % and 95 % quantiles for temperature (in degrees Celsius) and 50 % and 95 %
for wind speed (in m s−1) and precipitation (in mm) for the calibration period, and for the two future time slices (2045–2065 and 2081–2100)
using the interpolation (Int) and CDF-t (Down) methods with the various CMIP3 models (IPSL, CNRM and ECHAM5) for scenarios A2.

Calibration IPSL CNRM ECHAM5

1981–2000 2045–2065 2081–2100 2045–2065 2081–2100 2045–2065 2081–2100

Int
Temperature 3/13/26 5/14/25 7/16/27 5/12/24 7/13/28 5/13/25 7/15/28
Temperature Winter 0/8/14 3/9/14 5/11/16 4/8/12 6/9/14 4/9/13 5/10/15
Temperature Summer 12/20/28 13/21/26 15/23/28 11/20/25 13/23/29 13/20/26 14/23/30

Down
Temperature 3/13/26 5/15/30 7/18/32 5/15/29 6/17/33 6/15/29 7/17/33
Temperature Winter 0/8/14 3/10/16 5/12/18 3/9/16 4/10/18 4/10/16 5/11/19
Temperature Summer 12/20/28 14/23/32 17/25/34 15/23/31 17/26/35 14/23/31 14/25/36

Int
Wind speed 2.4/6.4 2.1/4.3 2/4.3 2.1/4.6 2/4.6 2.9/6 2.8/6
Wind speed Winter 2.5/6.9 2.6/4.8 2.5/4.8 2.8/5.1 2.8/5 3.5/6.5 3.4/6.5
Wind speed Summer 2.3/5.8 1.6/3.4 1.6/3.4 1.5/3.5 1.3/3.3 2.4/5.1 2.3/5

Down
Wind 2.4/6.4 2.3/6.4 2.3/6.2 2.3/6.4 2.3/6.3 2.3/6.4 2.2/6.4
Wind speed Winter 2.5/6.9 2.4/7.1 2.3/6.8 2.3/6.9 2.3/6.7 2.5/7.1 2.3/6.9
Wind speed Summer 2.3/5.8 2.2/5.8 2.2/5.7 2.3/6 2.2/6 2.2/5.6 2.1/5.7

Int
Rain (processing 1) 1.4/12.9 0.7/7 0.7/7.4 1.5/6.6 1.2/6.5 0.2/8.6 0.1/8
Rain Winter (processing 1) 1.4/12 1.2/8.4 1.2/9 2/7.2 1.9/7.3 0.8/11.1 0.6/10.8
Rain Summer (processing 1) 1.3/13.1 0.4/4.8 0.4/5.2 1.2/5 0.8/4.3 0.0/4.3 0.0/3

Down
Rain (processing 1) 1.4/12.9 1.4/13.5 1.4/15.7 1.4/13 1.3/13.4 1.4/14.2 1.4/13.2
Rain Winter (processing 1) 1.4/12 1.3/13 1.3/14.4 1.2/12.2 1.1/12.9 1.3/14.3 1.2/13.6
Rain Summer (processing 1) 1.3/13.1 1.3/13.2 0.8/4.3 1.3/12.5 1.2/11.7 1.5/13.5 1.3/9.8

Int
Rain (processing 2) 1.4/12.9 5.5/12.4 5.8/14.9 5.5/11.6 5.4/11.9 6.3/19.6 5.6/18.9
Rain Winter (processing 2) 1.4/12 7/13.9 7.3/15.9 6.2/11.4 6.4/12.2 8.6/21.3 8.5/20.6
Rain Summer (processing 2) 1.3/13.1 3.9/9.6 4.1/9.6 4/9.6 3.5/9.1 1.5/13.5 1.8/9.9

Down
Rain (processing 2) 1.4/12.9 1.4/13.4 1.4/15.1 1.4/13 1.3/13.4 1.4/14.2 1.4/13.3
Rain Winter (processing 2) 1.4/12 1.4/13 1.3/14.3 1.2/12.2 1.1/12.9 1.3/14.3 1.2/13.6
Rain Summer (processing 2) 1.3/13.1 1.3/13.2 1.3/15.8 1.3/12.5 1.2/11.7 1.5/13.5 1.3/9.8
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(c) Temperature, Summer, 2081-2100

Fig. 7. Probability of having a temperature during the 2081–2100 period that exceeds the 95 % quantile of temperature over the calibration
period (1981–2000) for the whole year(a), winter (b) and summer(c).

(a) Wind speed (whole year), 2046-2065 (b) Wind speed, 2081-2100

Fig. 8. Same as Fig. 6 for wind speed.

occurrence as discussed in Sect. 3.1. The occurrence of rain-
fall downscaled with CDF-t decreases between the calibra-
tion and the 2081–2100 periods (about 20 % under A2 sce-
nario for IPSL and CNRM GCMs and 40 % with ECHAM5
GCM; Table 5).

Figure 10a shows that rainfall CDF (using processing 1)
significantly changes between present and the 2046–2065 pe-
riod (Fig. 10a). This is associated with an increase of the
heavy rainfall events (Table 4). Over 2081–2100 (Fig. 10b),
the KS scores keep increasing. A contrast appears between
IPSL, which produces systematically the lowest KS scores,
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(c) Wind speed, Summer, 2081-2100

Fig. 9. Same figure as Fig. 7 for the strongest wind speed.

Table 5. Rainfall occurrence obtained from interpolated GCM rainfall over the 1981–2000 calibration period (columns 2 and 4) and the
2081–2100 projection period with the A2 scenario. Columns 2 and 3, and 4 and 5 correspond to processing 1 (non-zero precipitation) and
processing 2 (threshold precipitation), respectively. The values in brackets correspond to probabilities computed from CDF-t downscaling.

Model Processing 1 Processing 2
Calibration period Projection period Calibration period Projection period

IPSL int (down) 0.79 0.70 (0.64) 0.15 0.15 (0.12)
CNRM int (down) 0.98 0.92 (0.81) 0.15 0.15 (0.12)
ECHAM int (down) 0.67 0.51 (0.46) 0.15 0.15 (0.09)

and CNRM. Note that, as mentioned in Sect. 3.1, the mag-
nitude and the spatial variability of the KS values using the
interpolation method with rainfall threshold depends on the
length of the dataset which can vary from one station to an-
other after rainfall thresholding. In this figure, we use the
average of the significance KS scores.

Figure11 is similar to Fig. 10, but for daily rainfall with
processing 2. The KS values, even though significant, re-
main close to their threshold values. This is partly due to the
truncation induced by the threshold which reduces the data
length and arbitrary increases the KS score for the low pre-

cipitating events. The rainfall evolution for the 2081–2100
period is more uncertain than for temperature. The interpo-
lation displays a larger spread than CDF-t with respect to the
GCMs used as inputs. As for temperature, CDF-t tends to
decrease the difference with the calibration period. Although
interpolated ECHAM5 and CNRM GCM rainfall produce
the largest KS values at most stations, CDF-t gives results
relatively similar for all stations.

Table 5 shows that, on average, the interpolation method
displays a decrease of precipitation when no threshold is ap-
plied (processing 1), whereas no trend is observed with a
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(a) rainfall, 2046-2065 (b) rainfall, 2081-2100

Fig. 10. Same as Fig. 6 but for daily rainfall with processing 1.

(a) rainfall, 2046-2065 (b) rainfall, 2081-2100

Fig. 11. Same as Fig. 6, but for daily rainfall with processing 2.

threshold (processing 2). CDF-t displays less inter-model
variability and a decrease in rainfall occurrence whatever the
method used (between−20 and−40 % rainfall occurrence
between present and 2081–2100).

The evolution of extremes is also less evident for rainfall
than for temperature (Fig. 12). For extreme rainfall without
threshold, the evolution is weak with probabilities of exceed-
ing the 95 % quantile of the observed rainfall only slightly
larger than 5 % with CDF-t over 2081–2100. Conversely, the
interpolation method with processing 1 gives much lower oc-
currence of extreme rainfall. With processing 2, the evolution
is more consistent between interpolation and CDF-t down-
scaling with an increase of extreme rainfall (occurrence ex-
ceeding the 95 % quantile of the observed rainfall quasi sys-
tematically larger than 5 %). However, CDF-t produces less
increase of extreme rainfall occurrence (only slightly larger
than 5 %) than bi-linear interpolation. Indeed, the very large
occurrence obtained with bi-linear interpolation is caused by
rainfall thresholding which removes the low rainfall events.
The extreme rainfall occurrence obtained with CDF-t is very
similar with and without rainfall thresholding.

Finally, with CDF-t and interpolation with processing 2,
the 95 % quantiles displayed in Table 4 show that for all
GCMs and scenarios, the extreme events increase, which is
also visible in Fig. 12, especially with the CNRM GCM. This
is in agreement with Giorgi (2006).

5 Conclusions

A new probabilistic downscaling method, named “Cumula-
tive Distribution Function – transform” (or CDF-t), has been
developed by Michelangeli et al. (2009) for wind downscal-
ing and renewable energy issues. In this article, CDF-t was
also adapted and applied for temperature and rainfall. The
specific case of rainfall is delicate since, so far, only the pos-
itive precipitation can be downscaled and not the full rainfall
CDF which would include also the dry spell periods. Com-
pared to other methods, like Quantiles-mapping (Panofsky
and Brier, 1958; Haddad and Rosenfeld, 1997), CDF-t has
a fundamental advantage that it takes into account the evo-
lution of the large-scale distribution and then can be used
outside the range of the data (wind speed, temperature and
rainfall) of the calibration period. This is a key element for
selecting such a method when applied in the context of local
projections of climate change.

In this study, a thorough analysis of the uncertainty as-
sociated with statistical downscaling and bi-linear interpo-
lation of large-scale wind speed, temperature and rainfall
from reanalyses (ERA-40) and historical GCM simulations,
has been conducted and quantified in terms of Kolmogorov-
Smirnov scores. Compared to interpolation which can be
seen here as a reference method (widely used for CMIP3 data
analysis for IPCC AR4; e.g., Giorgi, 2006), CDF-t produces

Nat. Hazards Earth Syst. Sci., 12, 651–670, 2012 www.nat-hazards-earth-syst-sci.net/12/651/2012/



C. Lavaysse et al.: Statistical downscaling of the French Mediterranean climate 667

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Station

O
cc

. p
ro

ba
bi

lit
y

CANNES NIMES ORAN TOULON CARC AIX MONT MPL

IPSL
CNRM
ECHAM5

Model interpolation
Downscaling

(a) Rain (processing 1), 2081-2100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Station

O
cc

. p
ro

ba
bi

lit
y

CANNES NIMES ORAN TOULON CARC AIX MONT MPL

IPSL
CNRM
ECHAM5

Model interpolation
Downscaling

(b) Rain (processing 2), 2081-2100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Station

O
cc

. p
ro

ba
bi

lit
y

CANNES NIMES ORAN TOULON CARC AIX MONT MPL

IPSL
CNRM
ECHAM5

Model interpolation
Downscaling

(c) Rain (processing 1), Winter, 2081-2100
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(e) Rain (processing 1), Summer, 2081-2100
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Fig. 12. Same figure as Fig. 7 for extreme rainfall events without (left) or with threshold (right) over 2081–2100 for the whole year(a, b),
winter (c, d) and summer(e, f).

much more accurate and reliable local wind speed, tempera-
ture and rainfall. This advocates for the use of downscaling
techniques to provide reliable information on regional cli-
mate. However, the reliability of the downscaling may differ
from one station to another. Especially Cannes displays very
poor performance whatever the downscaling method used for
wind speed, temperature and rainfall. CDF-t performances
are not sensitive to the model performance but it is sensitive
to the variability and trend of the driving large-scale fields
(ERA-40 reanalysis or CMIP3 control runs) which can per-
form better or worse depending on the variable but also on
the season. No GCM can be identified as the “best per-

former”. More surprisingly, the ERA-40 reanalysis does not
necessarily and systematically produce the best downscaled
CDF, even though it still produces most often the best CDFs.

CDF-t was then applied to IPSL, CNRM and ECHAM5
climate simulations of the 21st century under B1 and A2 sce-
narios. As expected, the most striking trend is obtained for
temperature (median and extremes), whereas for wind speed
and rainfall, the evolution of the distributions is weaker and
more uncertain. Mean surface wind speed and wind extremes
seem to decrease in most locations, whereas the mean rain-
fall value decreases while the extremes seem to slightly in-
crease. This is consistent with previous studies but this study,
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by quantifying the uncertainty, reveals the need to develop
improved methodologies in statistical and dynamical down-
scaling, to reduce the uncertainty and produce more robust
trends.
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Bénech, B.: An observational study of the mesoscale mistral dy-
namics, Bound.-Lay. Meteorol., 115, 263–288, 2005.

Haddad, Z. S. and Rosenfeld, D.: Optimality of empirical Z-R rela-
tions, Q. J. R. Meteorol. Soc., 123, 1283–1293, 1997.

Haylock, M. R., Cawley, G. C., Harpham, C., Wilby, R. L., and
Goodess, C. M.: Downscaling heavy precipitation over the
United Kingdom: a comparison of dynamical and statistical
methods and their future scenarios, Int. J. Climatol., 26, 1397–
1415, 2006.

Huet, P., Martin, X., Prime, J. L., Foin, P., Laurin, C., and Cannard,
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