
Synergistic multi-wavelength remote sensing versus a

posteriori combination of retrieved products:

Application for the retrieval of atmospheric profiles

using MetOp-A

F. Aires, O. Aznay, C. Prigent, M. Paul, F. Bernardo

To cite this version:

F. Aires, O. Aznay, C. Prigent, M. Paul, F. Bernardo. Synergistic multi-wavelength remote
sensing versus a posteriori combination of retrieved products: Application for the retrieval of
atmospheric profiles using MetOp-A. Journal of Geophysical Research: Atmospheres, American
Geophysical Union, 2012, 117 (17), pp.D18304. <10.1029/2011JD017188>. <hal-01115797>

HAL Id: hal-01115797

https://hal.archives-ouvertes.fr/hal-01115797

Submitted on 12 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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[1] In this paper, synergy refers to a process where the use of multiple satellite
observations makes the retrieval more precise than the best individual retrieval.
Two general strategies can be used in order to use multi-wavelength observations in an
inversion scheme. First, the multi-wavelength observations are merged in the input of the
retrieval scheme. This means that the various satellite observations are used simultaneously
and that their possible interactions can be exploited by the retrieval scheme. Second, each
multi-wavelength observations are used independently to retrieve a same geophysical
variable and then, these independent retrievals are combined a posteriori using for example
a simple weighted averaging. In this paper, it is shown that the first approach provides
better synergy results: The retrieval is better suited to optimize the use of all the
information available because they are provided to the algorithm simultaneously.
In particular, the retrieval process is able, in this case, to exploit the possible interactions
between the various input information. The two retrieval approaches are tested and
compared using an application for the retrieval of atmospheric profiles and integrated
column quantities (temperature, water vapor, and ozone) using MetOp-A observations
from IASI, AMSU-A and MHS instruments. Although real satellite observations are
considered in this analysis, the results are dependent on the correlation structure in the
training data set (i.e. ECMWF analysis) used to calibrate the retrieval algorithm.
However, it can be seen that the infrared and microwave observations have a good synergy
for the retrieval of atmospheric temperature, water vapor, and for ozone thanks to an
indirect synergy.

Citation: Aires, F., O. Aznay, C. Prigent, M. Paul, and F. Bernardo (2012), Synergistic multi-wavelength remote sensing versus
a posteriori combination of retrieved products: Application for the retrieval of atmospheric profiles using MetOp-A, J. Geophys.
Res., 117, D18304, doi:10.1029/2011JD017188.

1. Introduction

[2] Synergy refers to a process where the use of multiple
satellite observations makes the retrieval more precise than
the best individual retrieval. In Aires [2011], it has been
shown that various synergy mechanisms exist: (1) additive
synergy, the simpler mechanism, where the addition of
multiple information on a same geophysical variable

increases naturally the retrieval accuracy; (2) indirect syn-
ergy, where the relationships between the geophysical vari-
ables are exploited by the retrieval scheme; (3) the non-linear
synergy that acts when interaction terms of the satellite
observations are relevant for the retrieval; and (4) de-noising
synergy that refers to situations where the instrument noise of
the observations are correlated. By exploiting all these syn-
ergy mechanisms, it is possible to benefit from the simulta-
neous use of all observations, obtaining better performances
than the best individual retrieval.
[3] Synergy has been exploited in various applications. For

example inWorden et al. [2007] and Landgraf and Hasekamp
[2007], infrared and UV observations are used simultaneously
to retrieve atmospheric ozone. Infrared and near-infrared are
also combined to retrieve CO2 [Christi and Stephens, 2004],
CH4 [Razavi et al., 2009] or CO [Worden et al., 2010]. InAires
et al. [2011b], it was shown that the NN inversion model is
particularly well adapted to exploit the synergy among satellite
observations: The synergy of InfraRed (IR) and MicroWave
(MW) observations fromMetOp-A was tested for the retrieval
of atmospheric temperature and water vapor profiles. These
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tests were performed using theoretical simulations from
Radiative Transfer (RT).
[4] In this paper, real observations from IASI (Infrared

Atmospheric Sounding Interferometer), AMSU-A (Advanced
Microwave Sounding Unit-A) and MHS (Microwave
Humidity Sounder) instruments will be used instead of the RT
simulations. Furthermore, the retrieval scheme will retrieve
atmospheric profiles not only for temperature and water vapor,
but also for ozone. The total column amount of water vapor
and ozone will be retrieved as well.
[5] Two general strategies can be used in order to benefit

from multi-wavelength observations in an inversion scheme.
First, the multi-wavelength observations are merged as
inputs to the retrieval scheme. This means that the various
satellite observations are used together and simultaneously
by the retrieval scheme. Second, each wavelength observa-
tion is used independently, to retrieve a given geophysical
variable and then, these independent retrievals are combined
a posteriori using for example a simple weighted average.
These two synergy strategies will be tested to identify the
best approach.
[6] First, the data sets used in this study will be described

in section 2, along with the necessary pre-processing of the
data. In section 3, a preliminary analysis of the satellite
observation information content will be conducted. The
retrieval methodologies and synergy measures will be pre-
sented in section 4. The results will be described in section 5
using real observations; the retrieval of both integrated
quantities and profiles will be assessed. Finally, section 6
will conclude this study and present the perspectives for
this work.

2. Data Sets

2.1. The Satellite Observations

[7] MetOp-A is Europe’s first polar-orbiting satellite ded-
icated to operational meteorology. MetOp is a series of three
satellites to be launched sequentially over 14 years, forming
the space segment of EUMETSAT’s Polar System (EPS).
The first satellite of the series was launched on October 19,
2006. The use of MetOp-A instruments in the operational
centers is beneficial for the retrieval of atmospheric temper-
ature, humidity and ozone profiles, wind speed and direction,
and trace gases. MetOp-A flies in a polar morning orbit with
a 9:30 AM/PM local solar time Equator crossing time.
[8] AMSU-A is a cross-track radiometer scanning between

� 48.3� from nadir, with a total of 30 Earth fields-of-view of
3.3� per scan line. The swath width is approximately 2000
km. It provides a nominal spatial resolution of 48 km at nadir.
The instrument completes one scan every 8 s. AMSU-A is
divided into two separate modules: (1) AMSU Module A-1
with twelve sounding channels in the 55 GHz O2 band [Mo,
1996] and one at the 89 GHz window (channels 3 to 15);
(2) AMSU Module A-2 with channels 1 and 2 at 23.8 and
31.4 GHz. AMSU-A is used in conjunction with the High-
resolution Infrared Radiometer Sounder (HIRS) instrument
to estimate the global atmospheric temperature and humidity
profiles from the surface to the upper stratosphere, i.e.
≃50 km [EUMETSAT, 2009]. AMSU-A measurements also
provide precipitation and surface information including snow
cover, sea-ice concentration, and soil moisture.

[9] The MHS sounder is designed to measure the atmo-
spheric water vapor profile. It possesses three channels in the
H2O line at 183.31 GHz plus two window channels at 89
and 150 GHz [Hewison and Saunders, 1996]. MHS scans
the Earth from left to right, in a vertical plane. Each swath is
made up of 90 contiguous individual pixels sampled every
2.67 s. The scan is also synchronized with the AMSU-A1
and A2 instruments.
[10] IASI is a state-of-the-art Fourier transform spec-

trometer based on a Michelson interferometer coupled to an
integrated imaging system. It was developed by the French
space agency CNES [Chalon et al., 2001]. The optical
interferometry possesses 8461 channels, measuring the
infrared radiation emitted from the Earth at a fine spectral
resolution (0.25 cm�1 unapodized) in the range of 3.62 mm
(2760 cm�1) and 15.5 mm (645 cm�1). This enables the
instrument to retrieve temperature and water vapor profiles
in the troposphere and the lower stratosphere. IASI also
measures radiances that are sensitive to the concentrations of
ozone, carbon monoxide, methane and other compounds
[Coheur et al., 2005; Razavi et al., 2009; Pommier et al.,
2010; George et al., 2009; Maddy et al., 2009]. For opti-
mum operation, the IASI measurement cycle is synchronized
with that of the AMSU-A. This instrument was designed to
reach accuracies of 1 K in temperature and 10% in water
vapor with vertical resolutions of 1 km and 2 km respec-
tively for cloud-free scenes. The Instantaneous Field Of
View (IFOV) of IASI is 12 km at Nadir, but four IASI pixels
are averaged and projected into one MW pixels, so the
nominal spatial resolution is here 48 km. Total 8461 chan-
nels are divided into three bands, with (645–1210 cm�1) the
first band, (1210–2000 cm�1) the second band and (2000–
2760 cm�1) the third band. The channels of this third band
have a signal-to-noise too low (measured radiance is low,
and instrument noise is too high) with no real additional
information for temperature, water vapor and ozone com-
pared to the first two bands. As a consequence, only the first
5421 channels of the first two bands will be used in this
study. It should be noted that band 3 can however be
exploited for other applications such as the retrieval of car-
bon monoxide [Pommier et al., 2010; George et al., 2009;
Maddy et al., 2009].
[11] The volume of data is considerable for the remaining

5421 channels of IASI. In order to sample as well as possible
the seasonal variability while keeping the volume of data
reasonable, four weeks of observations have been gathered:
The first weeks of January, April, July, and October 2008. In
order to limit practical difficulties (space memory, comput-
ing time and sea-ice mask), only pixels from �30� in lati-
tude have been kept in the experiments.
[12] It has been shown in Aires et al. [2002a, 2011b] that it

is very important, before applying the retrieval algorithm, to
pre-process the IASI data using a Principal Component
Analysis (PCA). This is useful to compress the data, and also
to reduce the instrument noise. In order to process the sat-
ellite observations in a systematic way, a PCA is used for the
two wavelengths considered (MW and IR). Based on the
percentage of variance explained by each PCA component,
twenty components have been used for the IR, and twelve
for the MW (please note that the number of components is
highly dependent on the application under study). This is an
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estimate of the number of exploitable independent pieces of
information that can be extracted from each wavelength.
[13] In this study, the observations from AMSU-A, MHS

and IASI onboard MetaOp-A will be used.

2.2. The ECMWF Analyses

[14] The atmospheric profiles and surface properties from
the 6-hourly operational global analyses from the Integrated
Forecasting System (IFS) of the European Centre for
Medium Range Forecasting (ECMWF) [Uppala et al., 2005]
are used in this study. These analyses are provided on a
1.125� � 1.125� regular grid. The following information is
kept: The temperature, water vapor (relative humidity in %
hereafter) and ozone profiles, on 43 pressure levels ranging
from 1000 to 1 hPa. These levels have been interpolated
from the initial twenty-one levels in order to be used with the
RTTOV code. The cloud cover information from the
ECMWF analysis is also kept, to filter out the cloudy scenes
in the retrieval process. The radiances from MetOp platform
that will be used for the retrieval are actually assimilated in
the ECMWF analysis using the same radiative transfer code,
RTTOV. This is a good thing because this means that the
physical link that exists between the real observations and
the ECMWF analysis is respected in the way our data set is
built (which is to put in space/time coincidence the real
observations and the ECMWF analysis). This link is at the
basis of the learning of the retrieval schemes that will be
designed in this study.
[15] The atmospheric profiles are provided on 43 pressure

levels. However, there are no real ozone observations for the
higher-level layers. The same holds for water vapor in to
upper layers. As a consequence, these variables have been
suppressed in the retrieval scheme. The selection that has
been chosen corresponds to: (1) All the levels are kept for
the temperature retrievals; (2) the five highest atmospheric
layers are suppressed for the water vapor (pressure lower
than 10 hPa); (3) and the eight highest layers are suppressed
for the retrieval of ozone (lower than 50 hPa). Ozone is
present in these higher layers, but unfortunately, the
ECMWF analysis has not enough information on it, the
retrieval scheme cannot be trained in this data set. An

alternative would be to use an independent estimation of the
ozone (from GOME II instrument for example) but then, the
coherency between the temperature, water vapor and ozone
profiles would be lost. The improvement of the ozone data
set will be considered in forthcoming studies.
[16] Figure 1 represents the correlations between the geo-

physical atmospheric profiles, among themselves (Figure 1,
top) and between them (Figure 1, bottom). It can be seen that
the vertical correlations are stronger for temperature than for
water vapor. The ozone has a strong vertical correlation in
the upper troposphere where the ozone content is higher.
The correlations between the profiles indicate that the tem-
perature profile is strongly correlated to the water vapor for
pressures lower than 250 hPa. There exists also a strong
correlation between the temperature and ozone for both
surface and upper layers. The correlation between water
vapor and ozone is less important but it is still significant
[Vaughan et al., 2005]. Note that through the correlations
between the geophysical variables, a satellite observation not
physically sensitive to a particular geophysical variable, can
still be statistically related, indirectly, to it. Therefore, this
satellite observation can provide valuable information that
can be exploited by the retrieval scheme.

2.3. The Aerosols

[17] The aerosol contamination would degrade our tem-
perature, water vapor and ozone retrievals especially for IR
observations. In order to filter out situations with too high
Aerosol Optical Thicknesses (AOTs), an independent source
of information on aerosols needs to be used. A climatology
of aerosols in 492 in situ locations has been obtained from
AERONET stations from 1996 to 2010. AERONET is a
globally distributed network of automated ground-based
instruments and data archive system, developed to support
the aerosol community. The instruments used are Cimel
spectral radiometers that measure the spectral extinction of
the direct Sun radiance [Holben et al., 1998]. The AOTs are
determined using the Beer-Bouguer Law in several spectral
bands. For this study, level-2 data are used and consist of
AOTs at 440 nm, 675 nm and 870 nm retrieved, at least,
every 15 minute during daytime. Level-2 data are cloud-free

Figure 1. (top) Auto-correlation matrices for atmospheric profiles of (from left to right) Temperature (T ),
Relative humidity (R), and Ozone (O3). (bottom) Correlations among the atmospheric profiles (from left to
right): T (vertical axis) & R, T (vertical axis) & O3 and R (vertical axis) & O3.
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and quality assured retrieved from pre- and post-field cali-
brated measurements [Smirnov et al., 2000]. The estimated
accuracy in the AERONET AOTs is between �0.01 and
�0.02 depending on the wavelength, for an air mass equal to
one [Dubovik et al., 2000].
[18] A spatial interpolation scheme has been applied to

obtain AOT fields at a horizontal resolution of 1.125� � 1.125�
(compatible with the ECMWF analyses). This spatial inter-
polation scheme is rather crude (a bilinear interpolation). In
order to obtain better AOT fields, a dedicated interpolation
scheme would have to be developed specifically for AOT
fields. This could be based, for example, on a PCA of com-
plete AOT fields. But since such a data set is not available,
this approach cannot be used here. The alternative would be
to develop an AOT retrieval scheme based on the satellite
observations, but this is beyond the scope of this study.

2.4. Spatiotemporal Coincidences

[19] The satellite observations need to be matched in space
and time. The two instruments being on-board the same sat-
ellite, good coincidences are obtained. The collocation of the
MW observations is easy, the instruments have been
designed to facilitate this step: Each AMSU-A pixel is
associated to the corresponding 3 � 3 higher resolution
pixels of MHS. The IR observations from IASI are then
projected into theMWpixels using a “closest pixel” rule. The
maximum scanning angles of IASI, AMSU and MHS are
respectively 48.2�, 48.33� and 49.44�. The final resolution of
the data set is the MW resolution (i.e., 48 � 48 km at nadir).
[20] The analysis and aerosol data sets (sections 2.2

and 2.3) are then projected into the satellite observations. A
time threshold of 30 minute is tolerated for this collocation so

satellite orbits are only kept around the analysis time steps at 0, 6,
12 and 18 h UTC. For each satellite pixel, the coincidence is
performed using the closest grid point of the analysis. Thismeans
that there can be multiple use of the same analysis grid cell.
[21] Only oceanic situations are kept. The total cloud

cover from the ECMWF is adopted to reject all the cloudy
situations.

3. Preliminary Analysis

3.1. Sensitivity Analysis

[22] The Jacobian of the RTM are estimated for the three
instruments considered here, namely AMSU-A, MHS and
IASI. The Jacobians are estimated using RTTOV simula-
tions on perturbed input profiles but analytical Jacobians
could have been used too. The perturbations are chosen to be
1 K for temperature and 10 % for humidity and ozone (in
ppmv). The readers are referred to Garand et al. [2001] for
an inter-comparison study of such Jacobians.
[23] Figure 2 represents the temperature, humidity and

ozone Jacobians for AMSU-A, MHS for a typical tropical
situation over the ocean. As expected, the MHS instrument is
more sensitive to changes in humidity than to changes in
temperature. AMSU-A provides temperature information in
the tropopause and for pressures higher than 100 hPa. Its
window channels are sensitive to both temperature and water
vapor. As expected, the MHS instrument is more sensitive to
water vapor. There is no sensitivity to ozone in the MW
observations. Figure 3 represents similar Jacobians but for the
IASI instrument. It can be seen that temperature retrieval can
be based on the 645–770 cm�1 CO2 absorption band (strong
sensitivity to temperature and Jacobians well distributed along

Figure 2. Jacobian of the AMSU-A + MHS observations with respect to (top) temperature, (middle)
water vapor, and (bottom) ozone atmospheric profiles for a typical ocean scene over the Tropics.
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the atmospheric column). The water vapor Jacobian follows
closely the temperature Jacobian, both in terms of pressure
levels and half-height width. Channels located in the 1210–
1650 cm�1 water vapor absorption band are sensitive to tem-
perature and water vapor between 700 and 160 hPa, it is then
necessary to isolate in the retrieval process, the signal of these
two variables. Channels located between 980 and 1160 cm�1

shows the sensitivity to O3 that allows for the retrieval of O3.
The magnitudes of Jacobians are comparable for the MW and
IR wavelengths in terms of temperature and water vapor.
However, IASI provides a higher vertical resolution for water
vapor in the upper troposphere, and for temperature in the
whole troposphere. Furthermore, the high-dimension of IASI
observations have consequences for the retrievals, both nega-
tive (computation time for the retrieval and necessity to per-
form a dimension reduction on the observed spectra) and
positive (such as the redundancy of information in the chan-
nels that can be exploited to reduce instrument noise [Aires
et al., 2002a]).

3.2. Correlation Matrix Analysis

[24] The correlation matrices between the temperature,
water vapor and ozone ECMWF atmospheric profiles with
respect to the collocated satellite observations in the MW,
respectively IR, are represented in Figure 4, respectively
Figure 5. Only blue and red colors should be considered in
the analysis of these correlation matrices, they represent the
strong negative and positive correlations. These correlation
matrices using real observations provide a good and simple
information content analysis. Not only can they be related
to the sensitivity of the observations to the geophysical

parameter of interest, but also to the correlation of the
observations with a parameter that is itself correlated with
another parameter of interest (indirect synergy).
[25] For instance, let us examine the correlation between the

microwave observations and the water vapor. The major water
vapor line is located at 183 GHz, with a much weaker line at
22 GHz. Outside these two lines, the contribution of the water
vapor continuum increases with the frequencies. One would
expect the correlation between the observations and the water
vapor to be higher (in absolute value) in the absorption lines,
and to increase with the continuum absorption. For pressures
below 200 hPa, the amount of water vapor is limited and
correlation structures between the water vapor and the obser-
vations in the H2O lines or in window channels are very likely
related to the correlation of the water vapor between the dif-
ferent levels in the ECMWF analysis. From the analysis of the
Jacobian in water vapor, it was shown that the sensitivity to
water vapor was high in the 183 GHz channel but very low in
the O2 band at 57 GHz. The correlation with the observations
in the O2 band is to be attributed, not to the sensitivity of the
TB to the water vapor directly, but to the correlation between
the water vapor with the temperature. Note that the correlation
with the temperature and with the water vapor shows rather
similar patterns (top and middle figures), in relation with the
correlation between water vapor and temperature. By the same
token, the microwave observations are not expected to be
sensitive to the ozone variation. The correlation between the
microwave observations and the ozone in the O2 band is
actually due to the correlation between temperature and ozone,
in the ECMWF reanalysis (Figure 1). The fact that the corre-
lations are not identical to the physical sensitivities does not

Figure 3. Jacobian of the IASI observations with respect to (top) temperature, (middle) water vapor,
and (bottom) ozone atmospheric profiles for a typical ocean scene over the Tropics for the first two bands
of IASI.
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mean that they are spurious results. They are real correlations
and it is legitimate exploiting them in the retrieval scheme.
[26] Similar conclusions can be derived for the infrared.

The strong water vapor band above 1500 cm�1 induces large
correlation between the observations and the water vapor.
This frequency band is also very correlated to the tempera-
ture, as expected from the analysis of the Jacobians in tem-
perature. In the CO2 absorption band, the correlation
between the IASI observations at about 645 cm�1 and the

temperature is large, negative in the lower atmosphere and
positive in the higher atmosphere, related to the inversion in
temperature in the atmosphere. There is a gap in the corre-
lation near 300 hPa for both temperature and water vapor,
suggesting that the retrieval of these layers will be difficult.
We also observe large correlation in this frequency range
with the water vapor and the ozone, due to the intrinsic
correlation between the three atmospheric variables in the

Figure 4. Correlations between AMSU-A and MHS observations and the ECMWF atmospheric profiles
of (top) temperature, (middle) water vapor, and (bottom) ozone.

Figure 5. Correlations between IASI observations and the ECMWF atmospheric profiles of (top) tem-
perature, (middle) water vapor, and (bottom) ozone.
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atmospheric profiles. The O3 band 1000–1070 cm
�1 induces

similar effect on the water vapor and temperature.

3.3. Jacobian Versus Statistical Information

[27] The retrieval algorithms that will be used in this study
are neural networks trained on a database of real satellite
observations and coincident ECMWF atmospheric profiles.
Like most retrieval schemes, the NN approach not only
exploits the direct link between the observations and
selected atmospheric variables (analyzed in section 3.1), but
also the correlations between the different variables at the
different levels (Figure 1). As for most statistical techniques,
the link between the observations and selected atmospheric
variables is described by some statistical link, not by the
radiative transfer Jacobians.
[28] The simultaneous exploitation of direct physical sen-

sitivities and indirect statistical correlations can be observed
in most retrieval schemes. For example, let consider a 1D-var
retrieval scheme:

xa ¼ xb þ B�1 þ HtR�1H
� ��1

HtR�1 y0 �H xbð Þð Þ;

where xa is the retrieval (analysis), xb is the background state,
B is the covariance matrix of the background state, H is the
Jacobian of the radiative transfer, R is the covariance matrix
of the observation and the radiative transfer errors, y0 is the
satellite observations, andH is the radiative transfer [Kalnay
et al., 1996]. This retrieval uses directly the Jacobians H but
it also exploits some statistical constraints based on coherent
relationships (e.g., dynamic or thermodynamic constraints)
between the temperature, water vapor and ozone profiles.
This is expressed by the background state xb or by the error
covariance matrix of the background state, B.
[29] We also have to be aware that limitation of the quality

of the atmospheric profiles that are used to train a statistical
retrieval (such as the one pointed out for ozone in section 2.2)

strongly limits the quality of the retrieval of the corresponding
variable.

4. Retrieval Methodology

4.1. Architecture of the Neural Network
Inversion Models

[30] NN techniques have proved very successful in devel-
oping computationally efficient remote sensing algorithms.
The Multi-Layered Perceptron (MLP) model [Rumelhart
et al., 1986] is selected here. It is a non-linear mapping
model: Given an input TB (i.e., observed Brightness Tem-
perature), it provides an output f (i.e., the geophysical vari-
ables to retrieve) in a non-linear way. In this paper, a NN
model with only one hidden layer will be considered
(Figure 6). Each layers in the NN is composed of individual
neurons. A neuron performs first a weighted average of its
inputs from the previous layer. The so-called synaptic
weights are associated to each connection between two neu-
rons. These weights represent the NN parameters to be
defined during the training stage. The NN chosen in this
study is a fully connected MLP (i.e., every neuron has a
connection with all the neurons of the previous layer). Once
this weighted average is done, a non-linear sigmoid function
is applied. The final output of a neuron i is given by:

yi ¼ s
XN
j¼1

wjixj

 !
;

where (xj; j = 1,…,N) are theN inputs of the neuron,wji is the
synaptic weight between neuron j and i, and s is a sigmoid
function [Bishop, 1996] (bias terms are also present in this
model, but they are suppressed here for simplicity of the
presentation).
[31] The MLP model is defined by the number of input

neurons (i.e., the size of the inputs, number of channels), the
number of outputs (i.e., the size of the geophysical variables
to retrieve) and the number of neurons in the hidden layers
that control the complexity of the model. A study has to be
conducted to define the optimal number of neurons in the
hidden layer. A balance needs to be found: Too many free
parameters in the model can result in over-learning (over-
parameterization) leading to degraded generalization prop-
erties. On the contrary, too few free parameters will yield
under-parameterization and bias error of the model.
[32] The neural network used in this study can be repre-

sented by a very simple function: f (TB) = W2 ⋅ s(W1 ⋅ TB),
where f represents the geophysical variables, TB represents
the satellite observations and W1 (resp. W2) is the matrix of
weights from the input to the hidden layer (resp. from the
hidden to the output layer). The Jacobian of this function can

be derived for any state TB:
∂f TBð Þ
∂TB

¼ W2 � s′ W1 � TBð Þ �W1,

where s′ is the derivative of the sigmoid function s. The
state-dependency of this Jacobian results from the presence
of the sigmoid function s, otherwise the model would be
linear and the Jacobians would remain constant for all states
TB. This state-dependency is important for the exploitation of
the synergy in satellite observations TB: The NN is able to
adapt the sensitivity of its outputs to the inputs based on the
state. It can use only one source of information when the
others sources are not pertinent or it can combine them in a

Figure 6. (a) Architecture of a one hidden layer neural net-
work and (b) an individual processing neuron.
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non-linear way when necessary. Complex interactions
among the satellite observations can be exploited by the NN.
In order to benefit from this “non-linear synergy”, it is clearly
necessary to present the various observations in the inputs of
the NN. Combining independent retrievals a posteriori would
not allow to exploit the complex interactions among the sat-
ellite data that the NN is able to perform. Readers are invited
to read Aires [2011] for additional details.
[33] Since the NN performances will be compared using

different configurations of inputs (only the IR, only the MW
or both), it is important to address the relative stability of the
training. A NN with more inputs will have more free para-
meters and more information to exploit; this can make dif-
ficult the NN training, and the learning step can become
much longer. An over-parameterization can lead to over-
training if the learning process is not regularized. Good
testing and validation data sets, stopping criterion, and the
multiple initializations of the weights for the learning tend to
reduce this problem. Table 1 represents the number of neu-
rons in the input, hidden and output layers for the various
configuration that are used in this paper.

4.2. The Learning, Testing, and Validation Data Sets

[34] The NN is trained to reproduce the behavior
described by a database of samples composed of inputs (i.e.,
the real observations TB) and their associated outputs (i.e.,
the geophysical variables f ), for e = 1,…, N with N the
number of samples in the training database. Provided that
enough samples (TBe, f e) are available, any continuous
relationship, as complex as it is, can be represented by a
MLP [Hornik et al., 1989]. Furthermore, in Cybenko [1989],
a theorem shows that a two-hidden layer NN is able to rep-
resent any discontinuous function which is an important
feature for inverse problems.
[35] A quality criterion that measures the discrepancies

between the NN outputs and the desired targets from the
learning data set has to be defined. In this study, the outputs of
the NN are the atmospheric profiles (temperature, water vapor
and ozone) and integrated column quantities of water vapor
(i.e., TCWV) and ozone (i.e., TCO3). In this paper, the
weighted least squares criterion is used so that the same
weight 1

5 is given to the three profiles and the two integrated
quantities. Furthermore, each retrieved atmospheric layer is
associated to a weight of 1

5 � 1
Nb, where Nb is the number of

layers in the profile. This quality criterion is minimized
during the learning of the NN. This choice of weights is ad
hoc. The absolute value of these weights is not significant
but their relative values will affect the training process and

the resulting NN statistics. The NN outputs with higher
weights will be retrieved with more precision.
[36] The learning algorithm used to train the NN is the

classical “back-propagation” algorithm. This optimization
technique has long proved its efficiency for such problems.
[37] Over the whole data set of coincident real satellite

observations and analyses, 60% are kept for the learning,
20% for the testing, and 20% for the validation. These three
data sets have been selected by random selection. Since the
number of samples in each one is very large (i.e. few
thousands), their statistical characteristics are similar (law of
large numbers). The training of the NN (i.e., the calibration of
the retrieval scheme) is performed on the learning data set.
[38] The testing data set is used in parallel to the training

process: at each learning step, the learning data set is used to
improve the parameters of the NN model. The testing data set
is not directly used to change the NN parameters, but it is also
used in each step of the learning to monitor the results of the
NN in an independent data set. This allows measuring the
generalization capacity of the NN, i.e., its ability to perform
retrievals on new data. During the learning, the generalization
errors are monitored and the learning is stopped when, after a
decrease, they start to increase. This procedure avoids the
over-training of the retrieval, i.e., the problem of an algorithm
that performs very well on its learning data set, but poorly on
new data.
[39] The testing data set is used several times, first to

measure the generalization capacities of the NN on each step
of the learning process, second for all the tested NN con-
figurations, and finally for all considered retrieval config-
urations (e.g., angle, optical thickness). As a consequence,
the whole NN selection process could “learn” the testing
data set (i.e., be biased toward it) and the evaluation of the
generalization errors could become misleading. To avoid
this problem, another independent data set is used: The
validation data set. It is only used to estimate the retrieval
errors on an independent data set, once the learning is done,
and once the model is chosen.

4.3. Regime Selection

[40] The retrieval algorithm has been developed for vari-
ous configurations: (1) Viewing Zenith Angle (VZA) equal
to 0, 10, 20, 30 or 40�; (2) Solar Zenith Angle equal to
(SZA) 40, 50 or 60�; (3) Aerosol Optical Thickness lower
than 0.05 (see section 2.3); (4) only over oceanic surfaces;
and (5) only for clear situations (see section 2.2). This
regime selection results in 5 � 3 = 15 data sets designed to
train 15 specialized retrieval schemes. It should be pointed
out that the cloud flag from the ECMWF analysis is not
ideal, but an a posteriori radiative transfer test is done in
order to measure the discrepancy of (TBsim � TBobs) in order
to flag incoherent situations. Furthermore, in order to limit
the impact of the aerosols in the visible measurements, only
AOT <0.05 have been kept (see section 2.3).

4.4. Physical Versus Empirical Retrievals

[41] In order to train the NN, two strategies could be used:
First, the inversion can be trained on a learning database
composed of the atmospheric profiles from the ECMWF
analysis, along with the simulated observations in IR and
MW bands derived from RT calculations (instead of real

Table 1. Architecture of the NN Retrieval Models

Configuration
Number of
Inputs

Hidden
Neurons

Number of
Outputs

Temp-IASI 20 20 21
Temp-MW 12 20 21
Temp-IR+MW 32 25 21
WV-IASI 20 20 16
WV-MW 12 20 16
WV-IR+MW 32 25 16
O3-IASI 20 20 13
O3-MW 12 20 13
O3-IR+MW 32 25 13
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observations). This type of inversion is said to be a “physical”
inversion, as it uses a physical RT model. However, this
procedure requires a preliminary calibration step to insure
that the RT simulations and the real observations are com-
patible (i.e., have similar statistics).
[42] Second, the training can be performed on a learning

database composed of the satellite observations and collo-
cated profiles from ECMWF analysis. This type of scheme is
said to be an “empirical” inversion because no RT model is
used to solve the inverse problem. As commented earlier, the
fact that the real radiances from MetOp-A are assimilated in
the analysis is not a problem, on the contrary, it strengthen
the link between the radiances and the analysis. However, the
analyses are not perfect and some incoherencies between the
radiances and the atmospheric situations in the analysis can
be present in the data set for multiple reasons: bad cloud flag,
presence of aerosols, wrong profiles, etc. These discrepancies
translate in a weaker link between radiances and profiles,
which implies a reduced quality of the retrieval. Another
inconvenient of the empirical approach is that the use of new
observations from another satellite would require the re-
training of the full retrieval scheme, where the physical
approach would not require the modification of the inversion
step, only the calibration would need to be redone.
[43] The first approach involves explicitly two operations,

namely the calibration of the satellite data and the actual
retrieval [Aires et al., 2010]. The second approach involves
only one transformation of the real observations: It mixes the
calibration and the retrieval in a unique procedure. Both
methods could lead to satisfactory results, they both have
advantages and disadvantages. However, the second one is
preferred here because obtaining a good calibration proce-
dure for both the IR and MW is a particularly difficult task.
[44] The use of the ECMWF analyses as the “truth” for the

training of the NNs is justified because these analyses are
reliable for temperature and water vapor profiles. All the
available satellite observations as well as all the in situ
measurements from the weather stations have been assimi-
lated in one of the best weather/climate models. The ozone
data quality from the analysis system is probably not so
high, but it is important here to use a coherent data set of
atmospheric profiles. This means that the present results on
ozone retrievals are probably less reliable.

4.5. Synergy Measures

[45] Information theory allows measurement of the infor-
mation carried out by a variable or an ensemble of variables
[Shannon, 1948]. This type of measures (e.g. mutual infor-
mation or entropy) can be used to quantify the synergy. For
example, the synergy of two variables v1 and v2 can be
defined by:

syn v1; v2ð Þ ¼ I v1; v2ð Þ � I v1ð Þ þ I v2ð Þð Þ;

the difference between the information I conveyed by the
pair and the information conveyed by the two events inde-
pendently. Information I can be measured for example using
the entropy [Brenner et al., 2000]. This approach allows
computing how much information is conveyed by the pat-
terns, but it does not indicate what particular message these
patterns convey. This type of measure allows constructing a
quantitative measure for the significance of compound

patterns, this is and essential first step in understanding the
synergy among satellite observations. However, an addi-
tional measure of the information should take into account
the transformation between the inputs and the outputs of the
retrieval scheme.
4.5.1. Synergy Factor
[46] A synergetic scheme refers to an algorithm that uses

simultaneously or hierarchically the observations of two or
more spectral ranges in order to obtain a more accurate
retrieval than the independent retrievals. We define a syn-
ergy factor of a retrieval scheme using R sources of infor-
mation (x1,…, xR) (each one can be multivariate) as the ratio
of the errors of the retrieval using the best single informa-
tion, Mini=1,…,RE(xi), with the errors of the retrieval using all
the sources of information, E(x1,…, xR). In terms of per-
centage of synergy, this corresponds to:

Fsyn ¼ 100 � Mini¼1;…;RE xið Þ
E x1;…; xRð Þ � 1

� �
: ð1Þ

There is synergy when this quantity is positive. This synergy
measure can be used for any type of retrieval algorithm that
uses multiple wavelength observations, including the a
posteriori combination of products that is described in the
following section. In this study, the errors are estimated in
the validation data set (see section 4.2).
4.5.2. A Posteriori Combination Versus
Synergetic Data Fusion
[47] In this study, the goal is to merge synergistically the

IR and MW observations directly as inputs to the retrieval
algorithm. This data fusion or merging approach is unusual.
In many of the retrieval schemes that use multiple source of
observations, independent retrievals from each instrument
observation are combined a posteriori instead of been
merged as inputs of the retrieval. An example of such a
posteriori combination is given, for example, in Liu et al.
[2011] where two soil moisture estimates from two differ-
ent algorithms using passive and active microwave obser-
vations are simply averaged. However, this a posteriori
combination by simple averaging can be optimized.

[48] Let Y ¼
y1
⋮
yn

0
@

1
A a vector including n related

observations of the same geophysical variable x such that:

Y ¼ K � xþ ɛ ð2Þ

where K is the n-dimensional unit vector and uncertainties ɛ
follow a Gaussian distribution N 0; Sɛð Þ. Covariance matrix
Sɛ can be diagonal if the estimates in Y have uncorrelated
errors, but if there is a way to estimate a full covariance
matrix, then it can be used directly in the following.
[49] It is interesting to decrease the uncertainty on the

estimation of x by combining its multiple estimates in Y. For
example, the estimates can be combined linearly: x̂ ¼ A � Y .
The objective is then to optimize vector A of the linear
model in order to decrease uncertainties in x̂. A least-squares
criterion or a maximum a posteriori optimization principle
can be used in order to obtain A [Rodgers, 1990]:

A ¼ KtSɛ
�1K

� ��1
KtSɛ

�1 ð3Þ
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and the uncertainties are estimated with

Q ¼ KtSɛ
�1K

� ��1
: ð4Þ

This is what is done in optimal interpolation or assimilation.
[50] For example, if Sɛ is diagonal, the linear a posteriori

combination becomes a simple weighted average based on
the uncertainties of the two retrievals. Combining two
independent retrievals fIR and fMW using IR and MW obser-
vations, each one with uncertainty estimates sIR and sIR, is
optimal when using:

f̂ ¼ s2
MW

s2
IR þ s2

MW

� fIR þ s2
IR

s2
IR þ s2

MW

� fMW : ð5Þ

The theoretical uncertainty related to this estimator is given
by:

ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
MW

s2
IR þ s2

MW

� �2

� s2
IR þ

s2
IR

s2
IR þ s2

MW

� �2

� s2
MW

s
: ð6Þ

In the following, the “simple averaging” is defined as the a
posteriori combination with all weights equal to one, the
“weighted averaging” is defined as the a posteriori combi-
nation when the weights of each variable is based on their
uncertainty (equation (6)), and the “full-covariance matrix
averaging” is used when the full covariance matrix of
uncertainties is taken into account (equation (4)).
[51] Other more sophisticated a posteriori combinations

could also be considered, in particular, regime-dependent
combinations that would take into consideration the state-
dependency of the individual retrieval uncertainties. Histo-
gram matching techniques have also been popular in some
communities.
[52] In the following, the results of the retrieval scheme

that performs synergetic merging of the satellite observation
in the inputs of the retrieval scheme will be compared to
the results of the independent retrievals using equation (5),
i.e. a posteriori combination. The same amount of data is

used in both of these approaches so it is very interesting to
compare the results, in order to see if the merging of the
satellite data can exploit the potential interactions among
them.

5. Retrieval Results

[53] The retrieval of the atmospheric profiles is first pre-
sented and the synergy factors are presented for each atmo-
spheric layer. The retrieval of the integrated quantities
(TCWV and TCO3) is then analyzed, in particular, investi-
gating the a posteriori combination.
[54] The retrieval statistics are provided for the following

configuration: The aerosol content is low (between 0 and
0.05), the viewing zenith angle = 40� (the higher the angle,
the more difficult the retrieval becomes), but the solar zenith
angle is composited for the various configurations (see
section 4.3). Note that similar results have been obtained for
the other configurations. The tests are performed over ocean
under clear sky conditions. Statistics are calculated using the
validation data set (i.e., data not used in the learning or gen-
eralization data sets), see section 4.2.

5.1. Temperature, Water Vapor and Ozone Profiles

[55] The statistics are provided for retrievals using only
MW, only IR, or IR+MW observations. Figure 7 shows the
RMS errors and variability of the retrieval of the atmospheric
temperature profile. It is interesting to note that the MW
retrieval is better than the IR, especially in the lower tropo-
sphere, except in some layers around 300–100 hPa. The IR
plus MW data fusion of the NN retrieval benefits from a
strong synergy. Its RMS statistics range from 1 to 1.5 K in
most atmospheric layers. The synergy estimations for these
temperature profile retrievals will be analyzed in the fol-
lowing. The results obtained in this section are based on a
large data set of situations so the differences between the
various configurations are statistically significant.
[56] Similar statistical results are given in Figure 8 for the

retrieval of the atmospheric water vapor profile. The IR

Figure 7. RMS errors for the temperature retrievals from
IR (dot-dashed), MW (dashed), IR+MW (continuous) instru-
ments. The natural STD of the temperature is also provided
(in dotted line) for comparison purpose.

Figure 8. RMS errors for the water vapor retrievals from
IR (dot-dashed), MW (dashed), IR+MW (continuous line)
instruments. The natural STD of the temperature is also pro-
vided (in dotted line) for comparison purpose.
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observations from IASI appear to be more informative than
the MW measurements from MHS/AMSU-A. This is par-
ticularly true for the upper troposphere above 300 hPa. The
IR+MW data fusion has retrieval uncertainties statistics
always lower than the best independent retrieval. The
improvement is higher than one percent, which represents a
synergy factor of six to ten percent.
[57] Since the ozone profiles have very different ranges of

variability in the lower or higher troposphere, it is more
convenient to represent the standard error of the retrieval in
terms of percentage of errors. It can be seen in Figure 9 that
errors are higher at high altitudes around 100 hPa (i.e., where
the ozone content is higher) and near the surface (i.e., where
the ozone content is very low, less than 0.2 ⋅ 10�6 Kg/Kg).
Except for few lower atmospheric layers, the IR from IASI
provides the best information for the ozone profile retrieval.
The synergy is very good when IR and MW are merged. The
overall retrieval of the ozone atmospheric profile has a good
quality with error levels lower than 30% and often lower than
15%. It should be noted, again, that our absolute uncertainty
might be underestimated because the ozone profiles from the
ECMWF analyses might be too simple compared to real
ozone profiles. Furthermore, this study focuses on �30� in
latitude, with possible limitations of the ozone variability in
this region (note that the limitation of the range of variability
of the variable to estimate is also a difficulty for the retrieval
scheme). It could be surprising that MW observations help
improving the IR retrieval of ozone since it has been shown
in the Jacobian study of section 3.1 that the MW measure-
ments are not sensitive to ozone. However, it has been seen in
section 3.2 that the MW brightness temperatures are corre-
lated to the ozone profile (Figure 4). This illustrates well that
a 1D-var inversion scheme [Kalnay et al., 1996], or any
retrieval scheme that is based on the use of the Jacobians
[Bowman et al., 2006], does not use the same information
than a statistical retrieval scheme, such as the NN, that
exploits the correlations.
[58] Figure 10 represents the synergy measured when IR

and MW observations are combined to retrieve temperature,
water vapor and ozone atmospheric profiles. This synergy

factor is based on equation (1). Synergy factor ranges from
10 to 15% for temperature, for all the considered atmo-
spheric layers. The synergy for the ozone retrieval has sim-
ilar characteristics. The synergy for the WV is overall very
significant, between 5 and 15%, in agreement with the
retrieval of TCWV in section 5.2. Synergy for water vapor is
also positive for most atmospheric layers, except for the two
top layers where it is known that low information content is
provided by the satellite observations. Numerical instabil-
ities can also be present.

5.2. The Integrated Quantities

5.2.1. Evaluation of the Neural Network Retrieval
[59] In this section, the retrieval of the TCWV and TCO3

variables are performed using the data fusion/merging prin-
ciple described in section 4: The NN model uses simulta-
neously the IR+MW observations to perform the retrieval.
[60] Table 2 shows some retrieval statistics for both TCWV

and TCO3, when for the IR, MW, and IR+MW configura-
tions. This table provides the RMS errors of the retrievals,
the correlation coefficient between retrieved and the desired
variable, and the synergy factor when both IR and MW
measurements are used in the NN retrieval. The MW
observations are the best information for the TCWV (RMS =
3.3 kg.m�2), better than the IR observations from IASI
(RMS = 4.5 kg.m�1). However, it should be noted that the

Figure 9. Mean absolute errors, in percentage, for the
ozone retrievals from MW (dot-dashed), IR (dashed), and
IR+MW (continuous line) observations.

Figure 10. Synergy statistics for the retrieval of the tem-
perature (continuous), water vapor (dashed) and ozone (dot-
ted) atmospheric profiles. The retrieval uses the IR, MW
observations from AMSU-A, MHS and IASI instruments.

Table 2. RMS, Correlation and Synergy Statistics for the
Retrieval of TCWV and TCO3 Using IR, MW, and IR+MW
Satellite Observations With the Neural Network Retrieval Scheme

IR MW IR+MW

RMS error TCWV (kg.m�2) 4.5 3.3 2.9
RMS error TCO3 (DU) 6.6 8.2 4.9
Correlation TCWV 0.89 0.94 0.96
Correlation TCO3 0.92 0.87 0.96
STD error TCO3 (%) 2.6 3.2 1.9
Synergy TCWV (%) 11.7
Synergy TCO3 (%) 26.0
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cloud flag that was used to filter the cloudy situations in this
study is based on the total cloud cover from the ECMWF
analysis (see section 2.2) and this is not a perfect cloud flag
information. Furthermore, the presence of clouds affect more
the IR than the MW observations. Therefore, the cloud
contamination could explain why MW observations seem to
retrieve better the temperature profile. The MW observations
are very important for the retrieval of the TCWV since they
might be less affected by cloud contamination. The data
fusion of the IR and MW in our retrieval scheme results in
a very interesting synergy factor, 11.7%, with RMS =
2.9 kg.m�2. The correlation statistics follow these RMS
statistics. The TCWV retrieval in the IR+MW/SYN config-
uration has a 0.96 correlation with the target, which is a very
good result.
[61] For the retrieval of the TCO3, the best information is

provided by the IR observations from the IASI instrument
(RMS = 6.6 DU) followed by the MW (RMS = 8.2 DU).
This could be surprising considering that MW observations
are not physically sensitive to O3. However, the IR and MW
numbers are very close. Furthermore, MW observations and
O3 content have shown strong correlations in Figure 4. MW
appeared to be linked to O3 (correlation = 0.87), through an
indirect correlation: The MW is related to temperature and
water vapor, and the temperature and water vapor are them-
selves related to O3. Our processing of the IR observations is
not perfect (see sections 2.2 and 2.3): The cloud and aerosol
flags are not optimal and this is particularly a problem for the
IR. The synergy obtained when IR and MW are used is
important, equal to 26%, with a RMS down to 4.9 DU. The
synergy operates even better for the TCO3 than for the
TCWV. The two instruments have a significant contribution
when used together. The standard error for the retrieval of
ozone is also provided in percentage, as this is a common
way to measure the quality of the ozone retrieval.
5.2.2. Satellite Data Fusion Versus a Posteriori
Combination of Products
[62] In this section, a investigation is conducted to deter-

mine whether a posteriori combinations of products provides
similar results compared to the satellite data merging. Three
a posteriori combinations will be considered: The simpler
one where the two independent estimates from the IR and
MW are averaged, the weighted average that takes into
account the uncertainty of each retrieval, and the full
covariance approach that utilizes the correlation of errors
(see section 4.5.2).
[63] It is possible to estimate the theoretical retrieval

uncertainties from these a posteriori combinations by using
the individual uncertainties of the two independent retrievals

(see equation (5)). These theoretical estimates are compared
in Table 3 to the real retrieval from the simple, weighted and
“full” averages a posteriori combinations, and to the NN
retrieval in the IR+MW configuration. The synergy is also
estimated in Table 3 for the real retrieval (not for the theo-
retical estimates).
[64] First, it can be noted that the theoretical estimates

(for the simple, weighted and full averages) are an under-
estimation of the real retrieval uncertainties: Instead of 2.8,
2.7 and 2.6 for the theoretical combinations, the actual
retrievals have respectively a retrieval uncertainty of 3.6, 3.4
and 3.3 kg.m�2 for TCWV. Similarly for the retrieval of
TCO3, the actual retrieval uncertainties at the levels of 6.3,
6.1 and 6.0 DU for the theoretical uncertainties are signifi-
cantly greater than the theoretical estimates (5.5, 5.1 and
4.9). These significant differences prove that the assump-
tions to estimate the theoretical uncertainties are too sim-
plistic. First, the uncertainties are more complex than what
the Gaussian hypothesis states. Second, the independence of
the two retrieval errors is not satisfied: Even if the two
retrievals are from two different instruments and wave-
lengths (IR and MW), these uncertainties can be state-
dependent which can introduce correlations among them. It
is not a surprise that the weighted average is better than the
simple averaging because the uncertainty characterization
for each source of information (even if it is not perfect) is
taken into account: The weighted average will emphasize the
observations with lower uncertainties. The full covariance
matrix is the best a posteriori combination because it com-
bines more a priori information, namely the correlation of
the errors.
[65] Another striking comment is that the a posteriori

combination can degrade the best independent retrieval. This
can be observed for the TCWV retrieval, with negative syn-
ergy factors observed (�6.64% for the simple average and
�1.88% for the weighted average). The simplistic mixture of
the two independent retrievals can degrade the best one if the
hypotheses are not correct, as already mentioned (Gaussian
character and independence of the two retrieval errors). This
could indicate a wrong individual uncertainty assessment,
but the errors are well characterized in this example. This
shows that the a posteriori combination is a too simplistic
approach. For example, the individual retrieval uncertainties
are dependent on the state of the atmosphere, so the weight-
ing of the two independent retrievals should use such state-
dependency.
[66] The comparison with the NN retrieval from the IR +

MW configuration clearly shows that using simultaneously
the two sources of information within the retrieval has much

Table 3. A Posteriori Combination Versus Data Fusion Retrieval Statistics for TCWV and TCO3
a

A Posteriori Combination
Data Fusion

Theoretical
Average

Retrieval
Average

Theoretical
Weighted

Retrieval
Weighted

Theoretical
Full

Retrieval
Full Retrieval NN Total

RMS TCWV (kg.m�2) 2.8 3.6 2.7 3.4 2.6 3.3 2.9
RMS TCO3 (DU) 5.5 6.3 5.1 6.1 4.9 6.0 4.9
Syn. TCWV (%) �6.64 �1.88 0.12 11.7
Syn. TCO3 (%) 4.35 6.60 9.09 26.0

aFor the a posteriori combination, both theoretical and real statistics are provided for the simple averaging, the weighted average and the full covariance
matrix approaches. The data fusion principle uses the NN retrieval. Both approaches use IR and MW observations. Results for actual retrievals are
represented in bold, contrarily to theoretical estimations.
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better performance than just combining a posteriori the
individual retrievals. The synergy is much better exploited
with the a priori data fusion of the satellite data principle.
The error decreases from 3.3 to 2.9 for the TWWV when
using the NN instead of the a posteriori combination, which
represents about 15% decrease of the retrieval errors. For the
TCO3, the error decreases from 6.0 to 4.9 which represents a
20% decrease of the retrieval errors. Both improvements are
very significant and justify the use of the NN approach to
better use synergy of the satellite observations. This should
not be surprising [Aires, 2011]: Using all the sources of
information simultaneously allows addition of information,
if the summation is done optimally, with reliable assump-
tions (i.e., additive synergy), reduce the uncertainties when
the information is redundant (i.e., de-noising synergy), but
also, and this cannot be done with a posteriori combination,
exploit the interaction terms (i.e., non-linear synergy). These
non-linear interactions between the various input satellite
observations make it possible to account for the advantages
and deficiencies of each satellite observation. For example,
when a satellite observation is saturated for a particular
range of the variable to retrieve, the other observations can
help the retrieval. The NN data fusion is able to coherently
combine the two sources of information (IR from IASI and
MW from AMSU-A + MHS) in a way that depends upon the
atmospheric situation.

6. Conclusion and Perspectives

6.1. Conclusions

[67] A retrieval chain has been designed to retrieve the
atmospheric profiles from the MetOp-A satellite, exploiting
the synergy between different measurements available from
this operational platform. This satellite provides coincident
observations in the IR (from IASI) and in the MW (from
AMSU-A and MHS), with nadir geometries. This work
focused on the major atmospheric parameters, namely tem-
perature, water vapor and ozone profiles, for which the
selected MetOp-A instruments are particularly sensitive.
This work focused on clear-sky situations over ocean.
Although real observations are used in the analysis, the
results that are obtained are dependent on the training data
set that is used to calibrate the neural network model. In
particular, the correlations of ozone with temperature and
water vapor can be questioned considering the quality of
ozone in the ECMWF analysis. This is an important factor
since these correlations are used in the indirect synergy for
the retrieval of ozone.
[68] The developed method is very general and flexible

and can be adapted to other applications, i.e., other variables,
instruments, or environmental conditions. The synergy
measures proposed in this study use a NN retrieval scheme,
but any retrieval algorithm could be used instead.
[69] The results obtained here with real satellite observa-

tions confirm the theoretical results derived from simulations
[Aires et al., 2011b]. The major conclusions from this study
are as follows.
[70] 1. The NN approach is very efficient to exploit the

synergy due to its truly multivariate nature and its non-linear
capacities (not all retrieval methodologies can benefit from
the synergy between observations, as shown in Aires et al.
[2011b]).

[71] 2. Strong synergies exist between the microwave and
the infrared for the retrieval of atmospheric temperature and
water vapor.
[72] 3. Simple statistical retrieval tools can realistically

measure the potential synergy of a set of satellite observa-
tions, this is particularly interesting in the development
phase of the satellite missions.
[73] 4. The synergetic data fusion/merging of the satellite

observations in the retrieval scheme is more efficient than
the a posteriori combination of products from independent
retrievals.
[74] Although the retrieval of atmospheric profiles under

clear-sky conditions over ocean is already considered of
reasonable quality when using one type of instrument only,
the synergetic merging of the observations of different
instrument improves the results. This study proves that there
is still potential improvement in the retrieval of key atmo-
spheric variables such as temperature, water vapor, or ozone
profiles if synergy is used, even for supposedly “easy”
conditions. The efficient use of simultaneous observations in
various wavelength ranges makes it necessary to develop
new retrieval strategies, as presented here. The variational
assimilation developed in numerical weather prediction
centers also benefits from the instrument synergy but if the
goal is to obtain pure satellite data sets, to validate global
circulation models for instance, methods have to be imple-
mented to use the synergy among all available satellite
observations. The NN approach proved its efficiency in this
framework.

6.2. Perspectives

[75] The topic of synergy exploitation is very attractive to
the satellite remote sensing community since many existing
retrieval methods were designed for retrieving single atmo-
spheric or surface variable by using dedicated sensor chan-
nel(s). Although there are many causes that may lead the
breakdown of a retrieving method, the utilization of partial
or limited information is by no means likely to build up the
“panorama” of an object. A synergistic method that com-
bines different sources of information about an identical
object might provide the way to the full image of the object.
With the advent of more and more hyper-spectral and high-
resolution satellite sensors, synergistic retrieving methods
may find more and more applications.
[76] The potential use of the synergy between the different

observations opens exciting perspectives: The more difficult
the problem is, the higher the potential benefits of synergy
are. The visible information from the GOME II instrument is
used to retrieve ozone [Burrows et al., 2005; Loyola et al.,
2011]. It has been shown that IASI provides ozone infor-
mation as well [Aires et al., 2002b; Coheur et al., 2005].
Therefore, it would be very interesting to test the ozone
retrieval using the synergy among the IR and visible
observations.
[77] In this study, all observations were performed from

the same platform. Note that the synergy between observa-
tions can also be applied to instruments on different plat-
forms, although its practical application can be less
convenient due to the necessity to have adequate spatial and
temporal matching. The Sentinel suite (ESA missions for the
GMES (Global Monitoring for the Environment and Secu-
rity) program) would certainly benefit from the synergetic
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use of different observations from different satellites. The
characteristics of the spatiotemporal mismatches errors
could be introduced into the neural network retrieval
scheme. The focus was here on passive observations, but
synergy can also be found between passive and active
measurements at similar frequencies. This is the concept
behind a mission such as Soil Moisture Active and Passive
(SMAP) [Piles et al., 2004].
[78] In this first study, only ocean cases have been con-

sidered. The next natural step is to analyze the potential of
using simultaneously IR and MW observations over the
continents. In the MW as well as in the IR, several factors
contribute to make retrieval of atmospheric profiles much
more difficult over land than over ocean. First, surface
temperatures and emissivities are much more variable in
space and time over land than over ocean. Second, in the
microwave, the land surface emissivities are much higher
than the ocean ones, making the surface contribution to the
signal much larger. Finally, land surface emissivities are
very complex to model, from arid surfaces to dense vegeta-
tion or snow, being dependent upon a large number of sur-
face parameters that are difficult to estimate, on a global
basis (e.g., soil moisture, soil roughness, lithology, snow
cover and properties).
[79] Several efforts have been conducted to develop global

data sets of land surface emissivities at both microwave and
infrared frequencies [Prigent et al., 2006; Seemann et al.,
2008; Zhou et al., 2011], directly calculated from satellite
observations. The use of a priori MW emissivity information
has shown, in research mode, its potential to improve the
retrieval of atmospheric parameters (i.e., temperature and
water vapor) over land [Aires et al., 2001; Karbou et al.,
2005; Aires et al., 2011b]. Some work has also been done
in the infrared [Seemann et al., 2008]. A particularly inter-
esting idea would be to combine the MW and the IR
observations for the retrieval of atmospheric profiles over
continents. Using all wavelength ranges will improve sig-
nificantly the characterization of the surface, and the
retrieval would benefit from a higher constraint in the
inversion process, especially in the lower atmosphere. It is
suggested here to extend the use of MW and IR observations
from MetOp-A, for the retrieval of atmospheric profiles over
land, with the help of the tools recently developed to esti-
mate the land surface emissivities in the MW and in the IR.
[80] Remote sensing under cloudy conditions would also

certainly benefit from the synergy between the VIS, IR, and
MW domains. First, multi-wavelength observations will
benefit the retrieval of cloud characteristics [Aires et al.,
2011a]. Second, with clouds better constrained, the atmo-
spheric retrieval will be facilitated. MW measurements are
much less sensitive to clouds than the VIS and the IR, and to
some extent, they can provide information in the clouds and
below. Thin cirrus are essentially transparent at MW fre-
quencies up to 200 GHz. Liquid clouds mostly interact with
the MW radiation through emission/absorption and their
effect can be accounted for in the retrieval of the atmo-
spheric temperature and water vapor profiling. Convective
clouds with a significant ice phase can scatter the MW
radiation and their effect will be more difficult to take into
account, likely limiting the accuracy of the profile retrieval.
As a consequence, convective and precipitating situations

should be avoided in a first attempt to evaluate the synergy
of the VIS, IR and MW observations for atmospheric pro-
filing. Under cloudy non-precipitating conditions, the MW,
IR, and VIS measurements offer complementary information
about the clouds. The IR provides its top height and its
temperature. Preliminary information on the optical thick-
ness of clouds can be derived from the VIS. Using simulta-
neously these different types of measurements will better
constrain the inversion process and the retrieval will benefit
from it. The inversion methodology developed for clear sky
conditions over ocean can be adapted to the cloudy cases.
[81] The synergy evidenced in this study is very signifi-

cant and should be taken into account in the design of the
instruments for the new missions. The instrument char-
acteristics should be determined not separately, indepen-
dently for each sensor but instead all the instruments should
be taken into account, to optimize globally the whole
observing system. The tools we developed could be adopted
to simulate the effect of the different potential channel
characteristics and combinations to reach an optimum set of
channels across wavelength ranges. This will not only
ensure optimal retrieval accuracy, but also cost efficiency for
the system, avoiding any non-necessary redundancies from
an instrument to the other.
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