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émanant des établissements d’enseignement et de
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We present a data-assimilation technique based on a variational formulation
and a Lagrange multipliers approach to enforce the Navier–Stokes equations. A
general operator (referred to as the measure operator) is defined in order to
mathematically describe an experimental measure. The presented method is applied
to the case of mean flow measurements. Such a flow can be described by the
Reynolds-averaged Navier–Stokes (RANS) equations, which can be formulated as the
classical Navier–Stokes equations driven by a forcing term involving the Reynolds
stresses. The stress term is an unknown of the equations and is thus chosen as
the control parameter in our study. The data-assimilation algorithm is derived to
minimize the error between a mean flow measurement and the measure performed on
a numerical solution of the steady, forced Navier–Stokes equations; the optimal forcing
is found when this error is minimal. We demonstrate the developed data-assimilation
framework on a test case: the two-dimensional flow around an infinite cylinder at
a Reynolds number of Re = 150. The mean flow is computed by time-averaging
instantaneous flow fields from a direct numerical simulation (DNS). We then perform
several ‘measures’ on this mean flow and apply the data-assimilation method to
reconstruct the full mean flow field. Spatial interpolation, extrapolation, state vector
reconstruction and noise filtering are considered independently. The efficacy of the
developed identification algorithm is quantified for each of these cases and compared
with more traditional methods when possible. We also analyse the identified forcing
in terms of unsteadiness characterization, present a way to recover the second-order
statistical moments of the fluctuating velocities and finally explore the possibility of
pressure reconstruction from velocity measurements.
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1. Introduction
In a large variety of experimental scientific domains where measurements are

performed, a major challenge has to be faced: no matter the type of data acquisition,
the measured quantities are only a very sparse representation of the real, and therefore
inaccessible, field. This sparsity can manifest itself in several forms depending on
the specific circumstances. For example, in fluid mechanics, measurements are often
under-resolved in time or space, or only contain partial information about the total
state. The measured field can be thought of as a low-order representation of the
real field. Moreover, the measured fields are commonly contaminated by noise and
thus deviate from the true values. Techniques that aim at a full reconstruction of
the state vector from available (limited) data are referred to as inverse methods. The
data-assimilation approach took its roots in the domain of weather forecasting where
predicting the future evolution of both atmospheric and oceanic flows is based on the
space–time extrapolation of unequally distributed data of different types measured at
weather stations all around the world.

Several types of estimation problems can be distinguished. For example, the
full state (for instance, pressure, velocity, temperature, etc.) can be estimated at a
fixed time everywhere in space, or the future state-vector trajectory can also be
predicted. Mathematically, both of these cases fall into the same category of inverse
problems, where full information is retrieved from low-order, limited measurements.
Many different methods have been developed to achieve accurate data reconstruction,
ranging from simple interpolation techniques to more sophisticated approaches which
take advantage of the underlying governing equations of the system. The formulation
of such a problem using a variational formulation has been thoroughly studied
in the meteorological community (Le Dimet & Talagrand 1986; Courtier 1997;
Mohammadi & Pironneau 2004). A review of various data-assimilation techniques
used in meteorology is given in Ghil & Malanotte-Rizzoli (1991). Recently, the
interest in data-assimilation has reached fluid experimentalists, who wish to extract a
maximum amount of information from their measurements. This method can therefore
be applied to improve the quality of a particle image velocimetry (PIV) or magnetic
resonance imaging (MRI) acquisition. This includes spatial refinement, extension of
the measured fields beyond their domain of acquisition, and the reconstruction of
unmeasured flow field quantities from measured ones. In this context, it is worth
mentioning the ‘gappy POD’ method proposed by Everson & Sirovich (1995), based
on incomplete proper orthogonal decomposition, which has been used successfully to
reconstruct missing PIV snapshots (see Gunes, Sirisup & Karniadakis 2006).

This paper focuses on data-assimilation using variational methods and the
enforcement of the governing equations with Lagrange multipliers (or adjoint
variables). This approach is widely used in the flow optimization community
for finding optimal perturbations, forcings or control strategies, to cite but a few
applications (Hill 1995; Gunzburger 2000; Luchini & Bottaro 2001; Schmid 2007;
Sipp et al. 2010). The adjoint variables can be interpreted as sensitivities and therefore
yield valuable information on the impact of any kind of changes in the constraints
that apply to the system. A variable then has to be chosen as a design parameter (or
control parameter) which will be optimized in order to identify an extremum of a
cost functional measuring the deviation from the simulated state vector to the dataset
of measurements. The control parameters can be of various kinds, e.g. an initial
condition (Lundvall, Kozlov & Weinerfelt 2006), a physical parameter, or a material
characteristic (Avril et al. 2008). The outcome of such data-assimilation techniques is
twofold: both the state and the design parameter are identified optimally, as the error
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between the model-based solution and the true measurements reaches a minimum.
Beyond reconstructing the state vector, the application of such a methodology leads
to an improvement of the model through the identification of the optimal control
variable.

Variational techniques for fluid flow estimation from image sequences have been
introduced recently to consistently combine image measurements with constraints
expressing that the fluid behaves as a continuum material (Heitz, Mémin & Schnorr
2010). The objective is to add physical constraints to the measurements (here
snapshots of optical intensity) to improve the quality of the flow reconstruction in
terms of velocity components. Classical PIV algorithms rely on correlation techniques
to extract the velocity fields. More physical constraints have already been considered:
optical flow model (Ruhnau et al. 2005), Stokes equations (Ruhnau & Schnorr 2007)
and even time-dependent vorticity transport equations (Ruhnau, Stahl & Schnorr
2007).

In the present paper, contrary to these authors, we directly consider snapshots with
velocity components (for example, obtained with a PIV technique). Also, we do not
aim at reconstructing a series of flow snapshots obtained at successive times but
rather the time-average of these snapshots, the mean flow, and their second-order
statistics, the Reynolds stresses. For this, we will use as a regularization the full
Reynolds-averaged Navier–Stokes (RANS) equations. It is important to note that this
choice of regularization operator (or kernel) is not unique. However, we choose the
RANS equations as we believe they describe the physics of the problem accurately.
The computational cost should therefore remain reasonable, even in three-dimensional
configurations, since only steady-state solutions of the RANS equations and adjoint
solutions, which do not involve time, need to be evaluated numerically. The approach
employed in this paper can be applied to any unsteady (not necessarily turbulent)
flow. Such a flow can, in a first instance, be described by its first statistical moment,
the mean flow. Even if the original flow can only be fully understood using both
the mean and the unsteady components, we can gain some information about the
flow by replacing the full unsteady terms by the second-order momentum, i.e. the
Reynolds stress tensor. The goal of the present study is to investigate the possibilities
of state-vector reconstruction from sparse mean flow measurements. We presume
that the mean (or time-averaged) flow satisfies the RANS equations. In this set of
equations, the Reynolds stress tensor appears as an additional unknown, and its
definition in terms of the mean quantities is known as the closure problem. However,
in our case, this unknown is chosen as a design variable (sometimes referred to as the
control parameter) in an optimization process and will be considered as an unknown
forcing term in the standard, steady Navier–Stokes equations. We thus identify the full
mean flow from sparse data measurements (taken from a direct numerical simulation
(DNS)), together with the corresponding optimal forcing, that ensures the averaged
flow to be a solution of the RANS equations.

This article presents the mathematical framework of variational data assimilation
and applies it to the specific case of time-averaged quantities of unsteady flows. We
present, in § 2, the governing equations of the problem as well as the theory for
the data-assimilation procedure. Once the optimization algorithm has been derived,
we define the test case in § 3. The geometry is presented as well as the base and
mean flows around a cylinder at a Reynolds number of Re = 150. We then present,
in § 4, the results in terms of interpolation and extrapolation of data measurements.
In the same section, a more realistic case is considered where the magnitude of the
velocity field is measured and the full state vector is retrieved. The ability of the
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developed optimization algorithm to filter out measurement noise is also investigated.
The identified forcing is used in order to characterize the unsteadiness of the flow in
§ 5. Finally we stress the versatility as well as the many possible improvements of the
presented method in § 6 and draw our conclusions.

2. Data assimilation of flow measurements

The presented technique aims at finding a solution of a parameterized model
equation, that optimally matches the data measurements. The section starts by
introducing the considered model and the type of measure performed. The optimization
procedure is then developed in a further section. Finally, uniqueness and other
properties of the optimal solution will be briefly discussed.

2.1. Mean flow considerations
Any unsteady (laminar or turbulent) flow can be described following the Reynolds
decomposition, where the total flow (u, v,w, p)> is taken as a sum of a steady term
(u, v,w, p)> (the time average) and an unsteady term (u′, v′,w′, p′)> (the fluctuations
around the mean); the ·̄ operation denotes the average in time. Any fluctuation
term q′ naturally satisfies the property q′ = 0, and we furthermore have ∂tq = 0. By
time averaging the Navier–Stokes equations for the total flow, we obtain the so-called
steady RANS equations, which read

u · ∇u+∇p− Re−1∇2u= f ∗, (2.1a)
∇ · u= 0. (2.1b)

In the case of the RANS equations, the forcing term can be expressed as

f ∗ =−∇ · R, with Rij = u′iu′j (2.2)

with R being the Reynolds stress tensor, which represents the flow unsteadiness.
By using the incompressibility condition ∂iu′i = 0, we can write f ∗i = u′j∂ju′i. This

expression shows that the forcing has to vanish f ∗ = 0 on solid walls, where no-slip
boundary conditions apply. Also, we note that ∇ · f ∗ 6= 0 in the bulk of the flow.

A challenge in turbulence research (and, more generally, in any investigation of
unsteady flow behaviour) is to model this second-order moment of the velocity field
by linking it to the mean flow. This issue is often referred to as the closure problem.
This tensor, however, does not explicitly depend on the mean flow, and −∇ · R can
therefore be considered as an independent volumetric forcing term f ∗ applied to the
standard, steady Navier–Stokes equations, as written in (2.1). This forcing term will
be considered as a design variable in the following optimization procedure.

2.2. Data-assimilation and error measure
The starting point of our reconstruction algorithm is the measured quantity which will
be later on referred to as the target field and denoted m. Motivated by PIV/MRI flow
reconstruction, we choose not to consider measurements of the pressure field and only
focus on field reconstruction based on velocity-only measurements. The measured field
is obtained by the application of a low-rank projection operator M : V→M which
maps the velocity vectorial field onto a finite-dimensional vector. We denote by V the
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space of vectorial fields and by M the measure space. This mapping, or measure, can
be expressed as

m=M (u) , (2.3)
where u = (u, v, w)> is the mean-velocity vector. This operator M defines the type
of data acquisition performed. This measure corresponds to a discrete, low-order
representation of the real solution u. The operator M also defines the type of
quantity observed, and accounts for the spatial quality and location of the measure.

We consider a flow field (ũ, ṽ, w̃, p̃)> to be a solution of the steady, forced Navier–
Stokes equations, without any assumption on the forcing term f ,

ũ · ∇ũ+∇p̃− Re−1∇2ũ= f , (2.4a)
∇ · ũ= 0. (2.4b)

This system of equations is completed by homogeneous Dirichlet boundary conditions
on solid walls, non-homogeneous Dirichlet boundary conditions for the inflow and
appropriate outflow boundary conditions. These boundary conditions will be stated
more explicitly when we define the geometry of the example chosen to demonstrate
the method. By tuning the forcing term f appropriately, we seek the flow (ũ, p̃)>
that will best match the measurements m. The solution of (2.4) with f = 0 will be
classically referred to as the base-flow solution.

The true mean flow is assumed to satisfy (2.1), with f ∗ as the true forcing (which
is directly derived from the true Reynolds stress tensor). The goal is to find the
optimal forcing f opt such that the corresponding velocity field ũopt is compatible with
the measured quantity m. To find this optimal forcing, we have to define the distance
(error) between the observed quantity m and the corresponding measure m̃ of the
reconstructed field M (ũ). The error is thus defined as

E (ũ)= 1
2 ‖m−M (ũ)‖2

M = 1
2 ‖1m‖2

M = 1
2 〈1m, 1m〉M , (2.5)

where ‖ · ‖M is the norm associated with the scalar product 〈·, ·〉M which acts on the
measure space. Moreover, we implicitly defined in this expression 1m as the error
field between the real and simulated measure evaluated at each measurement location.
The goal is to reduce the error functional E as much as possible by adjusting the
forcing f , until a minimum value is reached, at which the optimal forcing f opt emerges.

In this article, the reference velocity field u and the measurements are obtained by
DNS, thus allowing us to consider the full velocity error field:

1u= u− ũ. (2.6)

The field 1u is a vector field. In a real experimental situation, such an error field
cannot be evaluated since the flow u is by definition not accessible. By minimizing
the error on the measure E , we expect to also decrease the norm of the true error
1u and thus reconstruct the field u.

Note finally that the problem of identifying the optimal forcing f opt is not yet a
well-posed problem; in fact, inspection of (2.4) shows that infinitely many solutions
exist at this stage. More specifically, starting with a forcing term f , a modified forcing
f ′ = f + ∇φ will lead to the same solution ũ with the appropriate modification in
the pressure term (p̃′ = p̃+ φ), ensuring the incompressibility of the velocity field. In
compact form, we can write

ũ ( f , p̃)= ũ ( f +∇φ, p̃+ φ) . (2.7)

In the next section, we will add constraints on f so as to define properly the
minimization problem.
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2.3. Comments on the choice of the reconstruction operator
In the previous section, we chose the forced Navier–Stokes equations (as presented
in (2.4)) as the underlying governing equations for the data-assimilation procedure.
However, it is legitimate to ask whether another, simpler kernel (modelling equation)
could be used in order to reconstruct the field. An obvious simplification would be to
consider the following Stokes operator:

∇p̃− Re−1∇2ũ= g, (2.8a)
∇ · ũ= 0. (2.8b)

If such a model was to be chosen, the identified forcing gopt would contain all
nonlinear properties of the reconstructed flow. Indeed, if the same minimum of the
error functional E is reached using both methods (Navier–Stokes and Stokes), we
can write

gopt = f opt − uopt · ∇uopt. (2.9)

It thus seems possible to obtain the same solution with the simpler Stokes kernel.
Yet, we verified that the optimization procedure is not well-posed in such a case and
that the descent algorithm has difficulties decreasing the objective functional despite
numerous iterations (we found that E decreased by one order of magnitude using 6000
iterations with the Stokes kernel while a decrease by 7 orders of magnitude using
2000 iterations was achieved with the Navier–Stokes kernel, see figure 3 below). We
conclude that the optimization space corresponding to f appears to be more convex
than the optimization space of g. Hence, based on our experiment, for the descent
algorithm to be efficient, it is advantageous to treat the convective phenomena by the
Navier–Stokes kernel while having the optimization procedure search for the Reynolds
stress term f .

We conclude that choosing a kernel for the optimization procedure that accurately
captures the underlying physics leads to a well-posed optimization problem.

2.4. Variational formulation
An optimal forcing f is sought such that the error E reaches a minimum. The chosen
functional E , however, does not explicitly depend on f ; rather, the dependence on f
arises implicitly as ũ is a solution of (2.4). Therefore, in order to account for this
constraint in the optimization, we have to define an augmented functional which not
only measures the error E but also ensures that the flow equations are satisfied. This
new functional is called the Lagrangian functional L and can be formulated as

L ( f , ũ, p̃, ũ†
, p̃†)= E (ũ)− 〈ũ†

, ũ · ∇ũ+∇p̃− Re−1∇2ũ− f
〉− 〈p̃†,∇ · ũ〉 , (2.10)

where 〈·, ·〉 represents the spatial scalar product

〈a, b〉 =
∫
Ω

a · b dΩ, (2.11)

with a and b denoting arbitrary (possibly vectorial) functions of space. To this scalar
product is associated the L2-norm defined as

‖c‖2 =
√〈c, c〉, (2.12)
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with c denoting again an arbitrary function of space. Now that we have embedded the
constraint in the Lagrangian functional, the forcing appears explicitly in the functional
to optimize. However, unconstraining the problem comes at the expense of introducing
new (a priori unknown) variables, the adjoint state variables (ũ†, ṽ†, w̃†, p̃†)> which
are the Lagrange multipliers enforcing the incompressible Navier–Stokes equations.

We are looking for a minimum of the cost functional L , which means that all
of the partial functional derivatives of L have to vanish. We note that enforcing a
vanishing first variation with respect to adjoint variables is equivalent to the constraint
(2.4). Enforcing the variation with respect to direct variables to be zero yields the
adjoint Navier–Stokes equations

−ũ · ∇ũ† + ũ† · ∇ũ> −∇p̃† − Re−1∇2ũ† = δE
δũ
, (2.13)

∇ · ũ† = 0 (2.14)

together with an appropriate set of boundary conditions, stemming from the vanishing
of the boundary terms in the functional derivative. Again, the boundary conditions
will be detailed later, when the definition of the test-case geometry is presented. The
superscript > denotes the transpose operation, in the above expression applied to the
gradient of the adjoint velocity field ũ.

We observe that the adjoint equations are forced by the functional derivative of the
error functional E with respect to ũ. The forcing will therefore depend on the type
of the selected physical measure M , as well as the associated scalar product used
to define the error. We can derive the formal expression for the forcing by using the
definition of the adjoint of an operator with respect to a scalar product. For example,
for any v ∈ V (V being the space of the velocity vectors), n ∈M (M being the space
of the measure) and any operator N : V→M we can write

〈N (v) , n〉M =
〈
v,N † (n)

〉
, (2.15)

where the scalar product on the right-hand side is a scalar product on the space of
velocity fields V , and N † : M→ V denotes the adjoint operator of N with respect
to these scalar products. With this property, we can derive the following expression
for the forcing term in the adjoint equation

δE

δũ
=−δM

δũ

†

1m. (2.16)

At this stage, the operator ((δM )/(δũ))† has yet to be defined; the dependence of the
forcing term on the error 1m is nonetheless evident: the adjoint momentum equation
is linearly forced by the error measure 1m.

The derivation of the gradient with respect to the forcing f is straightforward. By
noting that the partial derivative of L with respect to f is indeed the total derivative
of E , the gradient of the error functional with respect to the forcing can be expressed
as

∇fE = ũ†
, (2.17)

where u† is solution of (2.13) with appropriate boundary conditions and u is solution
of (2.4) with the specified boundary conditions and the considered f .

With the gradient of the error with respect to the forcing known, we need to
employ a descent algorithm to minimize the error and identify both the optimal
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forcing f opt and the associated recovered field ũopt. We will use a conjugate-gradient
descent method along with a line-search algorithm. We also need to choose an initial
guess f g in order to start the optimization procedure. We decide to start from a
forcing f g that is divergence-free (∇ · f g = 0) and zero at the no-slip walls ( f g = 0).
For example, f g = 0 verifies these conditions.

In the following, we will use f opt to denote the solution that is obtained at the end of
the minimization process. It is worth noting that, using a gradient-based approach, this
forcing can be expressed as a linear combination of gradients (evaluated at different
locations in the optimization space). Therefore, the identified forcing will naturally
satisfy ∇ · f opt = 0 and f opt = 0 on solid boundaries (because ũ† and the initial guess
f g satisfy these conditions). Therefore, the use of the present iterative gradient-based
method combined with the above-mentioned choice of the initial condition implicitly
imposes additional constraints on the choice of the forcing f that minimizes the cost-
functional E . Uniqueness of the resulting solution f opt and its relation to the true
forcing f ∗ will be discussed in § 2.6. Finally, the flow field (ũopt, p̃opt) will refer in
the following to the solution of (2.4) with the forcing f opt.

2.5. Type of measure
As detailed in the previous section, the error functional E is entirely defined by the
operator M which is at the heart of the data-assimilation technique. Here, we will
consider operators that can be decomposed into two operators P and Q, respectively,
describing the projection from the true solution (having an infinite number of degrees
of freedom, space V) to a low-rank representation of the field, i.e. the sampled data
points (with, in practice, a finite number of degrees of freedom, space M), and the
projection from the vector of velocities to whatever quantity is indeed observed.
According to this definition, we can write

M (u)=P (Q (u)) . (2.18)

The simplest operator Q one can imagine is the identity, indicating that the measure
is performed on all of the components of the velocity field, such as for PIV
measurements. However, many other measures are possible, for example observation
of a single component of the velocity field. In this case, we would have Q(u) = u
which would be a scalar field containing the streamwise velocity only. In any case,
for vectorial or scalar measured quantities alike, we will use

Q (u)= q. (2.19)

At this stage, the vector q still belongs to an infinite-dimensional space. The
operator P , acting on q, describes the ‘geometrical’ features of the measure.
This operator is responsible for the discretization of the continuous field q onto
a finite-dimensional vector containing all of the data points; the projection operator
P defines the spatial sampling quality and the spatial extent of the measure. The
measure can, for instance, be the evaluation of q at a finite number N of locations
in the domain [

P (q)
]

i = q(xi)=
∫
Ω

q(x)δ(x− xi) dΩ, (2.20)

where δ(xi) is the delta function centred on the coordinate points xi = (xi, yi, zi)
>.
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However, a more general type of measure would be a weighted, local average of
the real field over small elements of the domain Ωi such as[

P (q)
]

i =
∫
Ω

q(x)bi(x) dΩ, (2.21)

where bi is the weight function associated with element Ωi. The above-mentioned
case with point-wise measure would correspond to bi = δ(xi). An average over each
measurement cell Ωi can be described by the weight function bi(x) = H(Ωi), where
H(Ωi) is equal to 1/VΩi (VΩi being the volume of the element Ωi, VΩi =

∫
Ωi

dΩi) for
x∈Ωi and zero everywhere else. At this point, we decide to stay as general as possible
by not specifying the basis functions bi. The measurement mesh, and therefore the
projection operator P is entirely defined by the basis functions (bi)i∈J1,NK.

In the case of a discrete measure operator P , the space M is a finite-dimensional
space. In this case, the scalar product on the space M will be defined as the classical
vectorial dot product (the sum of the component-wise products). According to the
previous definition, and using the usual vectorial scalar product for 〈·, ·〉M, we can
express the error defined in (2.5) as

E (ũ( f ))= 1
2

N∑
i=0

1m2
i , with 1mi =mi −

∫
Ω

qbi dΩ, (2.22)

and then compute its derivative as〈
δE

δũ
, δũ
〉
=−

N∑
i=0

1mi

∫
Ω

δQ

δũ
δũbi dΩ. (2.23)

After rearranging the integral and the sum, we find

δE

δũ
=−

N∑
i=0

δQ

δũ
bi1mi. (2.24)

This expression is in the space of velocities V and corresponds to the forcing term
in the adjoint equations; it is proportional to the error made at each measure location
(over the domain Ωi in the case of averaged measures). If the point-wise measurement
had been used instead, we would have a sum of Dirac distributions centred on each
measurement point. We see that the averaged evaluation (2.21) is more regular than
the discrete one because the field δE /δũ is piecewise continuous. Moreover, it is
mathematically closer to a real physical measure.

Moreover, from (2.16) and (2.24), we identify

δM

δũ

†

1m=
N∑

i=0

δQ

δũ
bi1mi. (2.25)

2.6. Relation between fopt and f∗

The link between the optimal solution f opt with the true forcing f ∗ is an important
issue to be discussed. We start by recalling that on the one hand we have ∇ · f opt = 0
with f opt = 0 on solid-wall boundaries (see § 2.4), while on the other hand we have
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∇ · f ∗ 6= 0 with f ∗ = 0 on the walls (see § 2.1). It is therefore tempting to compare
f opt with the divergence-free part of f ∗ and discuss their relation.

The real forcing f ∗ (as expressed in (2.2)) can be decomposed into

f ∗ = f ∗s +∇φ, (2.26)

where f ∗s is a divergence-free part of f ∗ and ∇φ a potential component. By taking the
divergence of this equation and setting ∇ · f ∗s = 0, we find

∇ · f ∗ =∇2φ. (2.27)

In order to uniquely define the above decomposition, boundary conditions have to be
chosen for φ on the solid walls. In order for f ∗s to be closest to the identified forcing
f opt, we would like to set ∇φ = 0 at the no-slip walls. Yet, for a Poisson equation,
we cannot prescribe simultaneously the tangential and normal components of ∇φ to
be zero on the no-slip walls and it is only possible to impose the normal component
to zero:

∂nφ =∇φ · n= 0, (2.28)

with n as the outward normal to the domain. Solving (2.27) with this homogeneous
Neumann condition then allows us to find φ and therefore to fully identify the
projected forcing f ∗s from (2.26). The normal (with respect to the no-slip boundary)
component of f ∗s therefore vanishes on the no-slip walls, but its tangential component
does not. Hence, the divergence-free part of f ∗, i.e. f ∗s , is not expected to be exactly
equal to f opt, since on the no-slip walls their tangential component is not equal. Yet,
we will see below (see § 4.1 in the case of full-state information identification) that
these fields are nearly identical in the whole space except in the vicinity of the solid
walls. Also, we will check that the iterative process converges toward a very small
value of E (ũopt).

The reconstructed pressure will also be different from the real pressure p. In fact,
since f opt ' f ∗ −∇φ, it is seen that

p̃opt ' p− φ, (2.29)

where p̃opt is the pressure recovered by our algorithm and p is the true pressure as
defined in (2.1). The reconstructed pressure p̃opt is therefore an augmented pressure
which includes the potential part of the forcing φ. We will discuss the possibilities of
pressure reconstruction in § 5.3.

It may appear striking to the reader to look for an optimal solution f opt in a
space which, by definition, does not contain the true forcing f ∗. However, in the
case of a kernel based on incompressible equations, the sole knowledge of velocity
measurements automatically induces that the gradient of the error E with respect to
the forcing f is divergence-free. Therefore, an optimization procedure based on a
gradient with an incompressibility constraint can only find an optimal solution in the
space of the divergence-free functions.

In order to obtain some gradient information in a wider space (containing
non-divergence-free functions), we can, along with velocity data, consider pressure
measurements as input variables to the data-assimilation algorithm. In that case, the
adjoint field is no longer incompressible, since the cost functional now depends also
on p̃; we then have

∇ · ũ† =−δE
δp̃
. (2.30)
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The gradient ∇fE (see (2.17)) and consequently the identified forcing are no
longer divergence-free, and therefore matching both the solenoidal and irrotational
components of the forcing becomes possible.

In this study, we restrict ourselves to a target field exclusively composed of velocity
variables, as it is of both experimental and theoretical interest.

2.7. Comments on uniqueness and regularization issues
Reconstructing a steady flow field from only limited velocity measurements poses
mathematical and algorithmic difficulties which originate from the chosen measurement
norm ‖ · ‖M = √〈·, ·〉M. This (semi-)norm describes the error and thus the cost
functional of our variational principle and is based on evaluating the velocity field
at only a few available measurement points. Therefore, it is conceivable that flow
fields could be recovered that accurately reproduce the measurement values (with
a vanishing error E ) but yield unphysical behaviour in the rest of the domain. In
fact, an infinite number of recovered flow fields with E = 0 are feasible. One has
to keep in mind, however, that the augmented Lagrangian L enforces the governing
model equations over the entire computational domain, as reflected in the use of
the scalar product 〈·, ·〉 to incorporate the physics-based constraints given by the
RANS model. Even though the descent algorithm aims to minimize the error E
(given in the M-norm), during each iterative step the candidate solutions for the
recovered flow field ũ are subjected to adjustments, stemming from the adjoint
solution ũ†, to conform to the driven RANS equations (and boundary conditions)
within the entire computational domain. The complete descent algorithm applied to
this mixed-norm optimization problem is hence imposing a regularization component
to the space of all possible flow-field solutions, which penalizes flow fields that
may match the measurement values, but are not solutions of the driven RANS
model. Despite this positive influence, uniqueness of the converged solution can
neither be guaranteed nor assumed. This is to be expected from an iterative descent
algorithm searching for a minimum of a nonlinear cost functional. A rigorous analysis
concerning convergence to a global minimum, uniqueness of the converged solution
or the regularizing influence of the governing and adjoint equations is beyond the
scope of this study. Despite these open questions, we will show in the next sections
that physically relevant flow fields can be recovered successfully from only few (and
limited) measurements; in this respect, the presented technique should prove helpful
and valuable in extracting flow information that goes beyond available measurements.

3. Flow around a cylinder

We apply the data-assimilation method described above to a simple test case: the
two-dimensional flow around an infinite circular cylinder. Even though the theory was
presented for a general three-dimensional flow, it applies straightforwardly to a two-
dimensional case. The geometry, as well as the corresponding boundary conditions are
presented in figure 1. We restate the boundary conditions of the direct system (2.4)
for clarity:

ũ= 1, ṽ = 0 at the inlet,
ũ= 0, ṽ = 0 on the cylinder’s surface,
∂yũ= 0, ṽ = 0 on symmetry boundaries,
Re−1∂xũ− p̃= 0, ∂xṽ = 0 at the outlet.

 (3.1)
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Symmetry:

Inflow: Outflow:Cylinder:

l

FIGURE 1. Sketch of the geometry of two-dimensional flow around an infinite cylinder.
The full computational domain, the characteristic lengths and the applied boundary
conditions are shown. The cylinder’s diameter, the height and length of the domain d,
h and l are given in non-dimensional units.

The boundary conditions of the adjoint system (2.13) are obtained via the integration-
by-parts step as explained in § 2.4. These conditions read

ũ† = 0, ṽ† = 0 at the inlet,
ũ† = 0, ṽ† = 0 on the cylinder’s surface,
∂yũ† = 0, ṽ† = 0 on symmetry boundaries,
Re−1∂xũ† + p̃† =−ũũ†, Re−1∂xṽ

† =−ũṽ† at the outlet.

 (3.2)

This flow has been shown (see Jackson 1987) to undergo a first transition (more
precisely, a supercritical Hopf bifurcation) at a critical Reynolds number of Rec ' 46,
above which the base flow (solution of the system (2.4) with f = 0) is no longer
stable. Beyond this threshold, the flow becomes time periodic, and vortices are shed
from the back of the cylinder. After this transition, we can define any mean quantity
by averaging its instantaneous value over a finite number of periods in. By doing so,
we can compute the mean-velocity field u as well as the different components of the
Reynolds stress tensor u′iu′j, defined in (2.2).

As we mentioned earlier, the optimization method employed in the remainder of
this article requires the definition of an initial guess f g for the forcing. We choose
f g = 0, which means that the first computed flow ũ is the base flow ub.

For our simulations, we choose a Reynolds number of Re = 150 and compute
the base flow ub (using a classical Newton method), the mean flow u (using time
averaging) and the various components of the Reynolds stress tensor. These fields
are computed with high accuracy using a finite-element method, using FreeFem++
software (see www.freefem.org), on a mesh of N' 1.7× 105 degrees of freedom. The
base flow is represented in figure 2(a,b); the mean flow is displayed in figure 2(c,d)
and finally the initial error is plotted in figure 2(e, f ).

4. Navier–Stokes-driven field reconstruction
To validate the presented data-assimilation method, several measure operators M

are considered, each of them chosen to demonstrate the efficacy of the method
in various reconstruction scenarios. In the two following sections the considered
measure is the full velocity vector and the error on both components of the velocity
is estimated. Spatial interpolation and extrapolation are investigated. In a further
section, we consider a more challenging and realistic case where only the velocity
magnitude is measured, on a relatively coarse mesh. We demonstrate the ability of

http://www.freefem.org
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FIGURE 2. Flow around an infinite cylinder at Re= 150. (a) and (b) Base flow ub; (c)
and (d) time-averaged flow u; (e) and ( f ) Difference (evaluated on both components) 1u,
measuring the error committed when approximating the mean flow by the base flow. The
left column represents the x-component of the corresponding vector field, while the right
column displays the y-component. The dashed-lines refer for each vector-field to the extent
of the recirculation bubble. The dashed lines of (a–d) have been reproduced in (e) and
( f ) for comparison.

the method to not only reconstruct the measured quantity but also to identify the full
velocity vector. The robustness of the identification algorithm when the measure is
corrupted by noise is also assessed.

4.1. Full-state information identification
As a starting point, we will choose the operator M to be the identity operator on V ,
such that the assimilated field is the full, continuous velocity field (in practice, it is a
discrete field, evaluated on the finite-element grid). In this case, we choose 〈·, ·〉M ≡
〈·, ·〉 and ‖ · ‖M ≡ ‖ · ‖2. We present the convergence curves for the case M =I for
both the cost functional E and the norm of the gradient ∇fE in figure 3. It is seen
that both quantities decrease by several orders of magnitude, indicating that the error
E becomes extremely weak in the case of full-state information identification.
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FIGURE 3. Convergence curves for full-identification case (M = I ). The solid line
represents E ,and the dashed line represents ‖∇f E ‖2.

We plot in figure 4(a,b) both components of the true forcing f ∗ (computed via a
DNS) and in figure 4(e, f ) those related to the identified forcing f opt. There exists a
strong correlation for the streamwise component, but no similarity can be found for
the cross-stream component. This was expected because the identification algorithm
yields a forcing f opt which is divergence-free while f ∗ is not. The divergence-free
component of the latter forcing, f ∗s , is computed following the procedure explained in
§ 2.6 and we plot the results in figure 4(c,d). We can see that the identified forcing
f opt is indeed matching the projected forcing f ∗s . However, some discrepancies appear
on the cylinder’s surface, which are due to the different tangential values of these two
fields on the cylinder surface.

Differences between f opt and the projection of f ∗ over the space of divergence-free
fields are best analysed by comparing the curl of these two fields, since the curl of a
potential field is zero. We can observe in figure 4(g,h) that the z-component of these
fields is nearly the same everywhere except in the vicinity of the cylinder boundary.
We therefore have f opt = f ∗s almost everywhere, which validates our optimization
procedure.

4.2. Partial-state information identification
In the case of a partial-state information identification, we still minimize E as defined
in (2.5), expecting that this minimization results in a decrease of the real error 1u (see
(2.6)). We therefore need to decide how to measure the real error 1u. We choose to
use two norms: the L2-norm (normalized by

√
VΩ to remove any dependence on the

chosen area of integration) and the L∞-norm. The first will give information about the
average error while the second will yield the error at the worst reconstructed location.
We therefore define the following residuals (measuring the real errors):

r2 = 1√
VΩ
‖1u‖2 =

√
1

VΩ

∫
Ω

|1u|2 dΩ,

r∞ = ‖1u‖∞ = limp→+∞

(∫
Ω

|1u|p dΩ
)1/p

.

 (4.1)
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FIGURE 4. Averaged forcing term f ∗ displaying the x and y components, respectively, in
(a) and (b). Projected forcing f ∗s (see § 2.6 for its definition) for both components, in (c)
and (d). Optimally identified forcing f opt for both components, in (e) and ( f ). Note that
the colour scales are identical for all streamwise components, but vary for the cross-stream
components. However, (d) and ( f ) have the same colour scale to allow comparison. Parts
(g) and (h) represent the z-component of ∇× f ∗ and ∇× f opt, respectively. The difference
is mainly located close to the cylinder’s surface. The dashed lines refer for each vector
field to the extent of the recirculation bubble.
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FIGURE 5. Results for the interpolation case: (a) r2 error; (b) r∞ error as defined in
(4.1). The norm of the error is plotted against the line density of nodes n. Circle symbols
represent the spline interpolation case (naïve approach) and square symbols represent the
data-assimilation results. The error of approximating the mean flow by the base flow is
represented with a dashed line. For n' 10, the reconstruction of the field is efficient and
a further increase of resolution yields only little improvement.

4.2.1. Interpolation
Interpolation consists of reconstructing the field in between the available, measured

data points. In what follows, the measure (as defined in (2.21)) is an average over
each element of a rectangular mesh (called measurement mesh) and is reconstructed
on the computational mesh which has a very high resolution. Here, Q is the identity
operator, i.e. the two components of the velocity vector are measured:

Q (ũ)= ũ. (4.2)

In order to characterize the efficacy of the field reconstruction method, the
discretization projection operator P defined in (2.21) is considered, with the bi being
the basis functions of a mesh composed of squares paving the whole computational
domain. The different measurement meshes have different line density (density
per unit length) of points n ∈ [2, 20]. For instance, the case n = 2 corresponds to
60 × 20 measurements meshes. An integrated measure is performed on each of the
elements composing the measurement mesh, according to the expression (2.21). The
identification algorithm is applied to all of the above measurement meshes and, for
each optimum found, the errors r2 and r∞ as defined in (4.1) are plotted against the
line-density of points n in figure 5.

First, it is encouraging that even for the worst case considered (n = 2), the
reconstructed mean flow corresponds to a relatively low error. The measure M (u)
performed in a particularly under-resolved case (n= 2) as well as the corresponding
reconstructed field ũopt and error 1u are plotted in figure 6. From this figure, we
can confirm that the data-assimilation algorithm successfully identifies the mean field.
Indeed, for this extremely coarse case, the L2 error is r2= 0.012, which is very small
considering the amount of information initially given. However, the maximum error
is r∞ = 0.297. We have found an average error of 1.2 %, and of 29.7 % at the worst
reconstructed location. Both of these errors are relative to the unit inflow velocity. We
see in figure 6(e, f ) that the error is mainly located in the near-wake of the cylinder.
The worst-reconstructed area corresponds to the end of the recirculation bubble whose
reattachment point location does not exactly match the real one (extracted from the
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FIGURE 6. Measures of the two velocity components: (a) M (u); (b) M (v). The
measurement corresponds to a rectangular mesh of line density of points n= 2, and the
measurement window is the full flow field. Reconstructed fields: (c) ũ; (d) ṽ. Error fields:
(e) 1u; ( f ) 1v. The dashed lines in (c) and (d) refer to the extent of the recirculation
bubble of the reconstructed field. These dashed lines have been reproduced in (e) and ( f ),
along with those of the true mean flow.

mean flow u); its length is underestimated by the identification algorithm. For more
accurate measures (increasing n), the error decreases: the more information is available
initially, the more accurately the field is reconstructed. For the finest meshes, we can
reduce the errors to 6.36× 10−3% in L2-norm and 0.17 % in L∞-norm.

Spline interpolation is a non-physical, but common way to obtain highly refined
fields from measurements on a coarse grid. To assess the improved quality of data-
assimilation interpolation, figure 5 also presents the interpolation error for a classical
spline interpolation reconstruction. We note that this simple interpolation technique
is producing better results than a base-flow approximation, but is far from being as
accurate as the presented algorithm. The data-assimilation method always outperforms
spline interpolation and can lead to more accurate results by two orders of magnitude.
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FIGURE 7. Results for the extrapolation case: (a) r2 error; (b) r∞ error as defined in
(4.1). The error ‖1u‖ is plotted against the streamwise coordinate x0 defining the extent
of the identification window. Right-oriented triangles are associated with the measurement
window W1 = [5, x0], while the left-oriented triangles correspond to the identification
window W2 = [x0, 25]. The error of approximating the mean flow by the base flow is
represented by a dashed line. The grey rectangle represents the location of the cylinder.

4.2.2. Extrapolation
In this section, the operator defining the measured quantity is still the identity (Q=

I ), i.e. the full velocity vector is assimilated on a given measurement mesh. However,
the projection operator P is now designed to investigate the extrapolation capabilities
of the method. The used mesh is the finer one from the previous section (the line
density of points is n = 20), but locations, where measurements are performed, are
limited in space. More precisely, the assimilation (or identification) window has the
height of the computational domain but varies in length. For a given abscissa x0, we
consider two different identification windows: the first starting at x= 5 and ending at
x= x0, and the second starting at x= x0 and ending at x= 25. The two identification
windows are thus W1 = [5, x0] and W2 = [x0, 25].

The results are presented in figure 7. The first series of simulations for the
identification window W1 = [5, x0] shows that the error is decreasing with the length
of the identification window. The algorithm starts to produce accurate results as soon
as the zone around the cylinder is included in the assimilation window (from x0= 11).
In particular, if the data assimilated does not contain any measures where the mean
flow and base flow are different (unsteady zones), the identification will not be able
to match the mean flow, since hardly any information is provided. However, as soon
as some unsteady zones are assimilated, the algorithm is able to reconstruct not only
the identified zone, but the full flow field. This demonstrates that extrapolation is
a true capability of the presented data-assimilation method. The second series of
simulations corresponds to the identification window W2 = [x0, 25]. In this case, even
for small identification windows (starting from x0= 23), the mean and base flows are
different in the considered zone. Therefore, the extrapolation is relatively effective,
even with little information, as we can see by considering the L2-norm plot of the
error (figure 7a). However, the L∞ residual r∞ remains rather large (see figure 7b).

The results of the extrapolation for the identification window W2 = [13, 25]
(corresponding to x0 = 13) are presented in figure 8. We can see that only limited
information is available downstream of the cylinder; in particular, the location of the
reattachment point of the recirculation bubble is outside the identification window.
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FIGURE 8. Measures of the two velocity components: (a) M (u); (b) M (v). The
measurement corresponds to a rectangular mesh of line density of points n = 20 and
the measurement window is W2 = [13, 25] (x0 = 13). Reconstructed fields: (c) ũ; (d) ṽ.
Error fields: (e) 1u; ( f ) 1v. The dashed lines in (c) and (d) refer to the extent of the
recirculation bubble of the reconstructed field. These dashed lines have been reproduced
in (e) and ( f ), along with those of the true mean flow.

Despite this lack of information, the reconstructed field ũ is very similar to the mean
flow u. However, some non-negligible errors in the reconstruction appear immediately
upstream of the identification window (nearly no error can be found within the
identification window). Interestingly, the incoming flow field has been modified from
a uniform flow to a y-dependent flow field (the uniform inflow boundary condition
is still satisfied further upstream), as we can see in figure 8(c), illustrating that
several types of solutions can be found depending on the quality of the measure. In
fact, it is likely that the cost functional is multimodal (several local minima may
exist), associated with different flow fields, one of which is the physical solution of
the problem. There is however no guarantee, as demonstrated here, of finding this
physical solution. Nevertheless, even if the mean flow is not exactly matched, the
reconstructed field yields far more information about the nature of the flow than is
contained in the initial information we measured.



Data-assimilation method for RANS-driven mean flow reconstruction 423

The results of the extrapolation procedure indicate that the field is best reconstructed
as long as the recirculation bubble is part of the measurement window. This finding
is reminiscent of the results by Marquet, Sipp & Jacquin (2008) and Pralits, Brandt &
Giannetti (2010) who showed that the recirculation bubble is the most sensitive region
regarding the overall dynamics of the flow field.

4.2.3. State vector reconstruction
In order to approach real cases for which this method is likely to be employed,

we proceed from the full two-component velocity matching to a scalar-field matching
based on the velocity magnitude. The operator defining the measured quantity is
therefore

Q(u)= 1
2 |u|2 = 1

2

(
u2 + v2

)
. (4.3)

The projection operator P is chosen such that the measure domain is the entire
domain and the line density of points of the measures is n= 6. The measured field
m̃ is plotted in figure 9(a). The reconstructed field from data assimilation of the
measurements is presented in figure 9(b,c).

We observe that even though only velocity magnitude on a rather coarse mesh has
been used as an input to our data-assimilation algorithm, it is possible to retrieve
a good approximation of the full component-wise mean-velocity field. Both the
streamwise and normal velocity components have been recovered accurately, with
a small error concentrated around the recirculation zone in the near-wake of the
cylinder.

4.3. Noise reduction
Experimental measurements are often contaminated by noise, and for an application
of data assimilation to experimental data the ability of the technique to deal with
measurement noise must be studied. We consider the same measure operator M as
presented in the previous section: velocity magnitude measured on a mesh of line
density n = 6. We thus have m∗ =M (u) where the asterisk indicates a noiseless
quantity. We add to this measure a noise component

m=m∗ + ηξ, (4.4)

with ξ a random N-dimensional vector and η a real number controlling the amplitude
of the added noise. The vector ξ is constructed with a uniform distribution chosen
such that |ξi| <

√
‖m∗‖M

2/N. The level of noise is governed by the real number η;
for example, η=0.1 corresponds to a noise-to-signal ratio of 10 %, while for η= 1 we
have a 100 % noise-to-signal ratio. These ratios depend on the norm used to define the
noise, in our case, the L2-norm. We present in figure 10 the results of data assimilation
as a function of the noise level η. The error is, as expected, an increasing function of
the noise level. The algorithm however captures the flow features very well, even for
large noise amplitudes. The measure, the reconstructed field and the error are plotted
in figure 11 for η = 1. The identified field ũ is also relatively noisy, but the flow
has been remarkably reconstructed from a low-resolution, scalar and noisy measure.
Moreover, the recirculation bubble is accurately reconstructed, together with the main
features of the flow.

The evolution, during the iterative process, of both the cost functional E and the
real L2 residual r2 for the two cases, η = 0 (no noise) and η = 1 (noise level of
100 %), are plotted in figure 12. We can see that for both cases, the cost functional E
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FIGURE 9. (a) Velocity magnitude measures on a mesh corresponding to n=6. (b) and (c)
Reconstructed field uopt. (d) and (e) Two components of the error 1u. The dashed lines
in (b) and (c) represent the extent of the recirculation bubble for the reconstructed field.
These lines have been reproduced in (d) and (e), along with those of the true recirculation
bubble.

decreases monotonically (due to the gradient descent), but reaches an asymptote
at a higher value for the noisy case, confirming that it is not possible to match the
measurement noise with a solution of the Navier–Stokes equations. The Navier–Stokes
operator thus acts as a filter and cannot provide a fit matching the noise-corrupted
measurement. Analysing the evolution of r2, we see that in the noiseless case the real
error monotonically decreases, while it starts to decrease and then increases again,
after approximately 200 iterations, for the noisy measurements case. This means
that after the turning point, the algorithm tries to match the measurement noise,
which drives the solution away from the physical solution u. In a real situation, this
convergence curve is not accessible, and we therefore cannot terminate the iterative
identification when the error is lowest. It is however useful to evaluate when to stop
the reconstruction based on a comparison between the norm of the gradient of the
cost functional and an estimation of the measurement noise level.
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FIGURE 10. Results for the noise reduction case: (a) r2 error; (b) r∞ error as defined
in (4.1). The error (measured relative to the base flow error) ‖1u‖ is plotted (square
symbols) against the noise strength η in the measured signal. The error made by
approximating the mean flow by the base flow is represented with a dashed line.

5. Additional flow reconstruction
5.1. Drag evaluation

Another way to assess the quality of the reconstructed fields is to compare the cylinder
drag of the mean field with the drag of the reconstructed field. The drag coefficient
CD induced by a field (u, p)> on the cylinder is defined as

CD = 2
∫

C

Re−1
(∇u+∇u>

)
n · ex dl︸ ︷︷ ︸

CV

+ 2
∫

C

−pn · ex dl︸ ︷︷ ︸
CP

, (5.1)

where C represents the cylinder’s surface and dl the integration element along this
contour. The factors 2 stem from the normalization by the dynamic pressure 1

2ρU2,
which simplifies to 1

2 in the non-dimensional variables. As seen in (5.1), we can
divide the drag force into two components: the viscous drag CV and the pressure
drag (or form drag) CP. We expect the CV-component to be accurately predicted (as
it only depends on the velocity vector which is properly reconstructed), and the CP-
component to exhibit a more appreciable mismatch (as the true pressure field p̄ is only
recovered up to a scalar field φ linked to the potential part of the Reynolds stress term,
as explained in (2.29)).

We display in table 1 the different drag coefficients obtained for the true mean flow
(ū, p̄)> and for several reconstruction scenarios. We note that, as expected, the viscous
drag is accurately predicted whereas the relative error on the pressure drag is always
greater than 10 %. Note that for larger Reynolds numbers, the viscous drag is expected
to decrease and, therefore, the relative total error to increase.

5.2. Unsteadiness characterization
In the previous sections, we have exploited the reconstruction abilities of the data-
assimilation technique by analysing the reconstructed state vector for several cases of
interest. In this section, we explore the possibilities of unsteadiness characterization
offered by the identified forcing f opt in the case of full-state information identification,
where the global optimal has been reached.
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FIGURE 11. (a) Velocity magnitude measures on a mesh corresponding to n = 6. The
noise level has been set to η= 1, i.e. we have a 100 % noise-to-signal ratio according to
our definition. (b) and (c) Reconstructed field uopt. (d) and (e) Two components of the
error 1u. The dashed lines in (b) and (c) refer to the extent of the recirculation bubble
of the reconstructed field. These dashed lines have been reproduced in (d) and (e), along
with those of the true mean flow.

As covered in § 2.6, the algorithm only identifies the solenoidal part of the true
forcing f ∗ = −∇ · R. However, it is the full Reynolds stress tensor R, rather than
the components of its divergence, that would be most valuable. In a two-dimensional
setting, this tensor can be expressed as

R =
(
α β

β −α
)
+ kI, (5.2)

with α = 1
2(u
′2 − v′2), β = u′v′ and k = 1

2(u
′2 + v′2) denoting the fluctuating kinetic

energy. These quantities vanish on the cylinder’s surface due to the no-slip boundary
condition.

It should then be possible to optimally reconstruct a tensor of this particular
structure from the identified forcing f opt. As we explained in § 2.6, the forcing f ∗ can
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FIGURE 12. (a) Convergence curves for the noiseless case (η= 0) and (b) for the noisiest
case (η= 1). We note that for the case without noise, both the cost functional E and the
real residual r2 are monotonically decreasing. For the noisy case, however, even though E
decreases as a result of the optimization, around the 200th iteration, the real residual r2
starts to increase again, signifying that from this point forward the optimization actually
leads to a deterioration of the identified optimal mean flow ũ.

Viscous drag (CV ) Pressure drag (CP) Total drag (CD)

Mean flow 0.30 (—) 1.13 (—) 1.43 (—)
Base flow 0.25 (18.3 %) 0.86 (23.3 %) 1.11 (22.3 %)
Full-state identification 0.30 (1.3 %) 1.00 (11.0 %) 1.30 (9.0 %)
Interpolation (n= 2) 0.29 (3.7 %) 0.95 (15.7 %) 1.24 (13.1 %)
Extrapolation (x0 = 13) 0.30 (2.2 %) 0.98 (12.6 %) 1.28 (10.4 %)
Velocity magnitude (η= 0) 0.30 (2.9 %) 1.00 (11.2 %) 1.30 (9.4 %)
Velocity magnitude (η= 1) 0.29 (5.4 %) 1.00 (10.7 %) 1.29 (9.6 %)

TABLE 1. Drag coefficients for the mean flow obtained through DNS simulation, for
the base flow, for the full-state identification and for several reconstruction scenarios
corresponding to the cases displayed in figures 6, 8, 9 and 11. The relative error with
respect to the mean flow is displayed in parentheses for each case.

be decomposed into a solenoidal part and a potential component as f ∗ = f ∗s + ∇φ.
Furthermore, we also have f ∗s ' f opt (strict equality is not true because of the boundary
condition issue discussed in § 2.6). In summary, we have

f ∗ = −
(
∂xα + ∂yβ

∂xβ − ∂yα

)
−∇k (5.3a)

' f opt +∇φ. (5.3b)

Then taking the curl of this expression, the gradient terms drop and we are left
with one equation relating α, β and the identified forcing f opt. Such an identification,
however, is under-constrained as we have only one equation for two unknowns. If we
further assume that −∇k '∇φ (see the next section for justification in the cylinder
case), we obtain

−
(
∂xα + ∂yβ

∂xβ − ∂yα

)
= f opt. (5.4)



428 D. P. G. Foures, N. Dovetta, D. Sipp and P. J. Schmid

(a) (b)

(c) (d )

12 1410 12 1410

12
x

1410 12
x

x x

1410

0.02–0.03–0.08–0.13

0.02–0.03–0.08–0.13

–0.05 0.050

–0.05 0.050

1

0y

–1

1

0

–1

1

0y

–1

1

0

–1

FIGURE 13. Results for (a) α and (b) β of the real reduced Reynolds stress tensor, and
reconstructed tensor components (c) αopt and (d) βopt. The dashed lines indicate the extent
of the recirculation bubble of the true mean flow.

This yields two equations for two unknowns, along with the boundary conditions α=0
and β = 0 on the boundaries. Yet, recalling that the optimal forcing is divergence-free
(∇ · f opt = 0), we obtain a constraint on α and β, which is non-physical so that
the identified α and β obtained by solving (5.4) will, in general, not match their
experimental values. Instead, we propose a weaker constraint to relate the left- and
right-hand sides of (5.4). We decide in the following to minimize the cost functional

I (α, β)=
∫
Ω

((−∂xα − ∂yβ − fx)
2 + (−∂xβ + ∂yα − fy)

2) dΩ, (5.5)

where f opt = ( fx, fy). This minimization problem is solved by setting the gradient of
this cost functional to zero. This leads to the two independent equations

∇2α =−∂x fx + ∂y fy, (5.6)
∇2β =−∂y fx − ∂x fy, (5.7)

which have to be solved subject to the boundary conditions stated above. The results
are presented in figure 13.

We see in this figure that the reconstruction of the coefficients which characterize
the unsteadiness of the flow fails for α but yields relatively good results for β.

5.3. Pressure reconstruction
The component of the reconstructed field that we have not yet analysed, is the pressure
p̃opt. We know that the optimally identified pressure p̃opt is the difference between the
real mean pressure p and the potential φ (see (2.29)). It is interesting to compare the
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pT = p + k; (d) reconstructed pressure p̃opt. The dashed-lines indicate the extent of the
recirculation bubbles, (a) in the case of the base flow, (b–d) in the case of the true mean
flow.

reconstructed pressure field p̃opt to the base-flow pressure pb (for sake of comparison),
to the real mean pressure p and to the total pressure pT = p+ k (sum of the real mean
pressure and the fluctuating kinetic energy k). This is achieved in figure 14.

Analysing the base-flow pressure pb and the real mean pressure p, we note that
the pressure drop is centred on the respective recirculation bubbles. However, the real
mean pressure also displays a constant pressure drop in the wake of the cylinder.
If we consider the total pressure pT , we can see that this wake effect disappears
and the pressure drop appears to be mainly located within the recirculation bubble.
When compared with the reconstructed pressure p̃opt, we can see that the two pressure
fields pT and p̃opt are very similar, even though the reconstructed pressure is slightly
overestimated near the end of the recirculation bubble, around the stagnation point.
The difference between these two pressure fields is weak, so that −k ' φ, therefore
justifying the assumption −∇k'∇φ of the previous section. It is remarkable that the
pressure reconstructed from velocity measurements only p̃opt, is rather close to the total
pressure pT , and also not that far from the real pressure p. In order to improve the
identification of the real mean-pressure field, it is mandatory to incorporate pressure
measurements within the data-assimilation algorithm. This is briefly discussed below.

6. Concluding remarks and extensions
Despite recent progress in experimental measuring techniques, many data from

experiments are still limited in terms of resolution, in terms of access to specific
regions of interest and in terms of quantities that can be measured reliably. We have
developed and introduced a data-assimilation technique for the recovery of mean
flow fields that are solutions of the RANS equations and match the available data
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points. The algorithm, based on an iterative, direct-adjoint optimization approach, has
been validated on two-dimensional flow past a circular cylinder at a supercritical
Reynolds number (Re = 150). The method has been used in an interpolatory mode
(recovering mean-velocity fields from much coarser measurements), in an extrapolatory
mode (extending the mean-velocity field into domains where no measurements have
been taken), and in a state-vector reconstruction mode (determining mean-velocity
components from measurements of only the magnitude). In all cases, we have
observed a satisfactory recovery of the mean-velocity field that proves substantially
more accurate than more naïve approaches based on higher-order interpolation that
disregard physical constraints on the mean fields. Moreover, the influence of noise in
the input data fields has been assessed, and the method has been found to be robust,
even in the face of a noise-to-signal ratio of 100 %.

Together with the assimilated mean-velocity field, we also obtain the forcing vector
field that renders the error between the available measurements and the recovered
mean-velocity field minimal. From this forcing, information about the unsteadiness
and the pressure field can be extracted. However, this information is limited to
the solenoidal part of the Reynolds stress tensor and the non-kinetic part of the
pressure. Despite this limitations, it has to be kept in mind that only steady (averaged)
information has entered the data-assimilation algorithm. Yet, we were able to gain
insight, albeit partial and incomplete, on the second-order moments of the unsteady
flow. This is quite remarkable, given the limited input information.

Various extensions and variations of the presented algorithms are conceivable.
For large-Reynolds-number applications, the current numerical technique can be
adapted to aid in the solving of (2.4) (which can be challenging for large Reynolds
numbers when using Newton’s iteration method). Due to the averaging, we know
that the mean flow will be similar to a base flow at a lower Reynolds number. We
therefore propose to artificially decrease the Reynolds number in (2.4). Ideally one
would choose the Reynolds number yielding a base flow as close as possible to
the measured mean flow. We therefore have Re = Re∗ − 1Re with Re∗ as the real
flow Reynolds number and 1Re (0 < 1Re < Re∗) as the adjustment performed. We
can start with a zero initial guess ( f g = 0) and identify the optimal forcing f opt.
The identified total forcing (for the Navier–Stokes equation with the given Reynolds
number Re∗) takes the form f ∗opt = f opt + (1Re/ReRe∗)∇2ũopt, where we have added
the contribution due to the artificial decrease of Reynolds number. We note that this
method does not violate the divergence-free forcing condition. This technique can be
thought of as a preconditioning method allowing us to bypass the problem of solving
the Navier–Stokes equations for high Reynolds numbers. It can also be interpreted
as a preconditioning step for the optimization. The initial guess f g could also be
obtained by a RANS model (based, for example, on an eddy-viscosity closures or
more elaborate Reynolds stress models). Indeed, by so proceeding we avoid the costly
(and probably ill-posed) computation of a high-Reynolds-number base flow. Moreover,
it is also possible to compare the Reynolds stresses issued from the turbulence model
with those of the optimal solution compatible with the experimental observations. This
approach would be interesting and useful in assessing the performance of turbulence
closures in more complex flow configurations.

The cost functional, i.e. the error between measured and the model-predicted data
can be augmented by a weight function which directs more emphasis towards regions
that are of more relevance. For example, shear layers or regions close to walls can
be singled out as more important and as having a larger contribution to the cost
functional. Also, pressure measurements could be considered, leading to a more well-
posed optimization problem as explained in § 2.6. Some of these extensions will be
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pursued in a future study. In its current form, the data-assimilation method is a very
valuable tool for the experimentalist to recover more information about the flow than
is directly measurable. In this sense, it takes the measured data beyond their intrinsic
information content and extends the scope of current measurement capabilities.
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