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Abstract
Nanoparticles offer a promising medical tool for targeted drug delivery, for example to treat

inflamed endothelial cells during the development of atherosclerosis. To inform the design

of such therapeutic strategies, we develop a computational model of nanoparticle internali-

zation into endothelial cells, where internalization is driven by receptor-ligand binding and

limited by the deformation of the cell membrane and cytoplasm. We specifically consider

the case of nanoparticles targeted against ICAM-1 receptors, of relevance for treating ath-

erosclerosis. The model computes the kinetics of the internalization process, the dynamics

of binding, and the distribution of stresses exerted between the nanoparticle and the cell

membrane. The model predicts the existence of an optimal nanoparticle size for fastest in-

ternalization, consistent with experimental observations, as well as the role of bond charac-

teristics, local cell mechanical properties, and external forces in the nanoparticle

internalization process.

Introduction
The pathological complications of atherosclerosis, namely heart attacks and strokes, remain
the leading cause of worldwide mortality [1]. Because atherosclerosis is fundamentally a disease
that involves inflammation of the endothelium, the monolayer of cells that lines the inside of
blood vessels, a particularly promising idea is the use of nanoparticles as cargo vehicles for tar-
geted delivery of anti-inflammatory agents to arterial endothelial cells. Recent studies have es-
tablished that nanoparticle internalization into endothelial cells depends on a number of
factors including nanoparticle size and surface functionalization [2–4]. Elucidating the basis
for these observations is of primary interest.

A critical component in the development of an effective nanoparticle-based endovascular
drug delivery system is the interaction between particles and the endothelial cell surface. To
specifically target inflamed endothelial cells at an atherosclerotic lesion, nanoparticles can be
coated with antibodies against endothelial cell adhesion molecules, such as selectins, VCAM-1,
PECAM-1, or ICAM-1 [5]. Out of these different receptors, intercellular adhesion molecule-1
(ICAM-1) is a particularly relevant target, since its level of expression in vascular endothelial
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cells is enhanced significantly by pathological stimuli such as oxidants, cytokines, and abnor-
mal fluid mechanical shear stresses [3]. Specifically, a 20 to 100 fold increase in ICAM-1 ex-
pression in activated over quiescent cells has been reported [6]. ICAM-1-mediated
nanoparticle internalization into endothelial cells has been the subject of a number of recent
experimental studies [3, 6–10]. Nanoparticles coated with anti-ICAM-1 antibodies activate a
specific endocytosis pathway termed CAM-mediated endocytosis [7]. Unlike endocytosis me-
diated by other membrane receptors, CAM-mediated endocytosis requires multivalent bind-
ing: a single anti-ICAM-1 antibody is not internalized by an endothelial cell, whereas a particle
carrying several antibodies can be internalized. CAM-mediated endocytosis is actin-dependent,
but it involves different protein machineries than clathrin-mediated endocytosis, caveoli,
macropynocytosis, or phagocytosis [3, 7].

In this article we develop a mathematical model to describe receptor-mediated nanoparticle
internalization, specifically considering the case of ICAM-1-mediated endocytosis. Several the-
oretical models of nanoparticle internalization have previously been proposed. A first group of
theoretical models describes receptor-mediated internalization of spherical and non-spherical
particles limited by diffusion of receptors within the cell membrane [11–13]. These models as-
sume the particle ligand density to be much larger than the cell membrane receptor density,
thus making receptor diffusion towards the particle wrapping zone a limiting physical mecha-
nism. This assumption does not appear applicable to ICAM-1-mediated nanoparticle endocy-
tosis into inflamed endothelial cells, where receptor and ligand densities are both of the order
of 1000 molecules/μm2 [14], and diffusion of receptors thus becomes negligible. Another group
of theoretical models uses energetic approaches to describe membrane wrapping of a nanopar-
ticle (see the recent review by Bahrami et al. [15]). These models have investigated the role of
nanoparticle shape and orientation [16, 17], nanoparticle deformability [18], and interactions
between multiple nanoparticles [19, 20], but they often leave out the cell’s cytoplasmic rigidity
and the bond formation dynamics, as well as the kinetics of the wrapping process. Recent ad-
vances in modeling the wrapping of a nanoparticle by a membrane have incorporated stochas-
tic thermal fluctuations to study the kinetics of wrapping [21] or conformational changes of
membrane proteins, which are described by particle dynamics simulations [22].

Here we develop a new theoretical model to study the kinetics of nanoparticle internaliza-
tion under the following premises: (i) we consider the case where receptor and ligand density
are comparable, so we neglect receptor diffusion; (ii) we include both membrane bending and
viscoelastic deformation of the cytoskeleton; (iii) we account for the dynamics of bond forma-
tion under force. Unlike most of the previous theoretical models, which are based on energy
formulations, we develop our model in terms of force balances. Our formulation is inspired by
that proposed by Dembo et al. to study the kinetics of detachment of a membrane from a sur-
face [23]. Our model enables us to understand how receptor-mediated internalization is affect-
ed by particle size, bond characteristics, cell mechanical properties, and external forces exerted
on the nanoparticle.

Model
Our conceptualization of receptor-mediated nanoparticle internalization is represented in Fig
1. We consider a three-dimensional axisymmetric geometry. Internalization is driven by the
formation of bonds between ligands on the particle surface (the total density of free plus bound
ligands is denoted by ξl) and receptors on the cell membrane (the total density of free plus
bound receptors is denoted by ξr). The density of bonds is denoted by ξb, which is a function of
the curvilinear coordinate s and of the elapsed time t. The particle radius is denoted by a. The
model aims to predict the evolution of the membrane shape, determined by the variables R(s, t)

Dynamics of Nanoparticle Internalization into Endothelial Cells

PLOS ONE | DOI:10.1371/journal.pone.0122097 April 22, 2015 2 / 23



and Z(s, t); of the position of the particle, determined by the vertical elevation Z0(t); and of the
bond density, ξb(s, t).

Cell membrane shape
Mechanically, the cell membrane deformation is described as the bending of an inextensible
axisymmetric plate subjected to large deformations. Force equilibria in the directions tangential
and normal to the membrane yield

@T
@s

� V
@y
@s

þ st ¼ 0 ð1Þ

T
@y
@s

þ @V
@s

þ Tsin y
r

þ Vcos y
r

þ sn ¼ 0; ð2Þ

where T and V are respectively the shear and normal forces per unit of azimuthal length of the
membrane, θ is the angle between the membrane and the horizontal, measured in the radial
plane (see Fig 1), r is the radial distance to the axis of symmetry, s is the curvilinear coordinate,
and σt and σn are respectively the tangential and normal stresses acting on the membrane. In
deducing these equations, we have assumed that, due to reorganization of the lipid molecules
composing the membrane, the membrane tension remains isotropic, thus its value is the same
in the radial and azimuthal directions.

Moment equilibrium yields

V ¼ cos y
r

Ms �Myð Þ þ @Ms

@s
; ð3Þ

whereMs andMθ are the moments in the radial and azimuthal directions. Assuming linear
elastic membrane deformation, assuming that a planar cross-section of the membrane remains
planar after bending, and neglecting the mean circumferential deformation of the cell mem-
brane (i.e., neglecting stresses due to membrane stretching), we deduce the following relations

Fig 1. Side view of our conceptualization of the receptor-mediated internalization process. The dash-
dotted line is the axis of rotational symmetry. Ligand density (ξl) and receptor density (ξr) are assumed
comparable. Bond density (ξb) is a function of the curvilinear coordinate, s, and of time, t. The elevation of the
particle center above the initial cell membrane position is denoted by Z0(t). The membrane position is defined
by its coordinates R(s, t) and Z(s, t).

doi:10.1371/journal.pone.0122097.g001
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between the moments and the membrane shape:

Ms ¼ �B
@y
@s

þ n
sin y
r

� �
ð4Þ

My ¼ �B
sin y
r

þ n
@y
@s

� �
; ð5Þ

where B = Em h3/(12(1 − ν2)) is the membrane bending modulus, h is the membrane thickness,
Em is the Young’s modulus of the membrane, and ν its Poisson’s ratio. Using Eqs 3–5, the force
equilibria given by Eqs 1 and 2 can be rewritten in terms of two unknowns, θ and T. For rea-
sons of numerical stability, we project the force equilibrium equations onto the radial and verti-
cal axes. The projected equations are:

cos y
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@y
@s
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þ B
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sin y
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� sin ycos 3y
r3

�
þ sv ¼ 0; ð7Þ

where σr and σv are respectively the radial and vertical stresses acting on the membrane.

Stresses exerted on the membrane
Stresses exerted on the membrane arise from interactions with the nanoparticle and with the
cell’s cytoplasm, as represented in Fig 2. We consider three types of stresses acting on the cell
membrane. The first type are the stresses due to viscoelastic deformation of the cytoplasm. The
cytoplasm is treated as a Kelvin-Voigt material, i.e., a system comprising an elastic spring, of
constant K = E/a, in parallel with a damper, of constantM = μ/a. Here, E and μ are respectively
the Young’s modulus and the viscosity of the cytoplasm, and a is the particle radius. The cyto-
plasm is assumed to exert a purely vertical stress on the membrane. The model does not ac-
count for the active forces generated by cytoskeletal dynamics, such as those due to actin
polymerization, which develop over a time scale of several minutes [3]. Thus, strictly speaking,
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the model describes only the early stages of internalization, up to the first few minutes. The sec-
ond type of stresses are due to the deformation of the bonds between the membrane and the
particle. The bonds are treated as linear elastic springs of constant κ and undeformed length λ.
Bond orientation is assumed to point towards the nanoparticle center. We denote by α the
angle between the bond direction and the vertical (see Fig 2). The total stress exerted locally by
the bonds is proportional to the local bond density, ξb. The bonds can exert larger traction
forces than compression forces, since the latter are limited by the bond length remaining posi-
tive, l� 0. Therefore, to avoid membrane-particle interpenetration, we need a third type of
stresses that can provide sufficiently large contact forces between the particle and the mem-
brane. We thus introduce a short-range repulsion force using the formulation proposed by
[24]. Adding these three components, the total radial and vertical stresses on the membrane
are:

sr ¼ �xbkðl � lÞsin a

þ g
l

1

l
þ 1

t

� �
exp � l

t

� �
sin a ð8Þ

sv ¼ �KZ �M
@Z
@t

� �
cos yþ xbkðl � lÞcos a

� g
l

1

l
þ 1

t

� �
exp � l

t

� �
cos a; ð9Þ

Fig 2. Schematic of the stresses exerted on the membrane. The membrane’s top face sustains a stress
σb arising from bond deformation. The bonds behave as linear elastic springs of constant κ and undeformed
length λ. In addition, if the membrane and the particle get very close, a short-range repulsion force (not
represented in the figure) prevents particle-membrane interpenetration. The membrane’s bottom face
sustains a stress arising from the viscoelastic deformation of the cell’s cytoplasm, which is modeled as a
Kelvin-Voigt material of elastic constant K = E/a and viscous constantM = μ/a.

doi:10.1371/journal.pone.0122097.g002
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where Z is the membrane elevation with respect to the undeformed position, t is the time, l is
the distance between the membrane and the particle, measured in the direction pointing to-
wards the particle center, and γ< 1 nN and τ� 5 − 30 nm are constants in the short-range re-
pulsion force formulation [24].

Membrane-particle bonds
The evolution of the bond density at a given membrane position, s, and time, t, is computed
using Bell’s model:

@xb

@t
¼ Kf xl � xbð Þ xr � xbð Þ � Kdxb; ð10Þ

where ξb(s, t) is the instantaneous, local bond density, ξl and ξr are respectively the total ligand
and receptor densities, and Kf and Kd are respectively the bond formation and dissociation co-
efficients. Using the formalism proposed by [25], we assume Kf to be constant and Kd to de-
pend on the force applied to the bonds through:

Kd ¼ K ð0Þ
d exp

kjl � ljxb
kBT

� �
; ð11Þ

where K ð0Þ
d is the baseline value at zero force, kB � 1.38 � 10−23 J/K is the Boltzmann constant,

T ≈310 K is the temperature, κ is the bond spring constant, and xb is a constant length that
characterizes the height of the energy barrier needed to break a bond [25, 26]. Eq 11 assumes
the dissociation constant to depend on forces applied to the bonds irrespective of their sign
(tension or compression). The rationale underlying this assumption is that there is an optimal
distance λ for ligand-receptor interaction, whereas when receptors and ligands are compressed
into closer distances to each other, they may be forced into conformations that are suboptimal
for the interaction between their respective binding sites. Thus, we expect the dissociation con-
stant to increase with an applied compressive force, as is the case under a tensile force.

Particle position
The vertical particle position with respect to the membrane, Z0, is determined by balancing the
forces acting on the particle: the bond forces, the membrane-particle repulsive forces, and an
external vertical force that may be exerted directly on the particle, Fv. Vertical force equilibrium
yields:

Fv�
Z 1

0

�
xbkðl � lÞcos a

� g
l

1

l
þ 1

t

� �
exp � l

t

� �
sin a

�
2prdr ¼ 0: ð12Þ

The equation is implicit in Z0, since l and α depend on Z0 through straightforward
geometric relations.

Model parameters and nondimensionalization
The model parameters and their typical values are summarized in Table 1. The bond character-
istics correspond to values found in the literature for ICAM-1 receptor-antibody pairs. The
tabulated binding constants, Kf and K0

d , are typical values for membrane-bound ICAM-1 recep-
tors and surface-adsorbed anti-ICAM-1 antibody ligands. These values are estimated from the
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experimental results by [27], which, it should be noted, were performed using a soluble form of
ICAM-1 and surface-adsorbed anti-ICAM-1 antibodies. To deduce the tabulated value range
for Kf and K0

d , we apply the relationship between soluble and surface binding kinetics proposed
by [25]. To apply Bell’s formulas, we assume a diffusion coefficient for soluble ICAM-1 of Ds =
50 μm2/s [25], a diffusion coefficient for membrane-bound ICAM-1 in the range Dm = 0.01
− 0.4 μm2/s [28, 29], and a maximum distance for receptor-ligand interaction of 1 nm [25].
The value of the repulsion constant γ is chosen so that repulsion becomes negligible (compared
to bond elasticity) at a distance equal to the bond’s equilibrium length, λ. This leads us to set γ
= 1 fN. We note that our model results are insensitive to changes in γ of up to one order
of magnitude.

The equations are nondimensionalized using the particle radius, a� 100 nm, as the unit of
length and the ligand density, ξl� 1000 molecules/μm2, as the unit of bond density. Since inter-
nalization is driven by bond formation, the unit of stress is taken as ξl kBT/xb � 104 Pa, which
is the bond stress corresponding to a characteristic bond elongation of kBT/(κxb). There are
two time scales, given by the rate of bond formation and by the rate of viscoelastic cytoplasmic
deformation. Since the cytoplasm’s viscoelastic time scale, μ/E� 1 s, is usually longer than the
bond formation time scale, 1/(Kf ξl)� 0.1 s, the former is chosen as the unit of time for nondi-
mensionalization. By nondimensionalizing the equations with the aforementioned units of
length, bond density, stress, and time, we deduce the nondimensional parameters characteriz-
ing the problem, which are listed in Table 2. The tabulated values show that the three forces re-
sisting deformation, due to cell viscoelasticity (CE), membrane bending (CB), and membrane

tension (T̂ 0), are of comparable magnitude, and therefore they should all be accounted for in
the model. The nondimensional parameter tb is the ratio of the bond formation time to the vis-
coelastic time, which is typically smaller than 1, since bond formation is fast compared to
viscoelastic deformation.

Numerical solution
We need to solve the system formed by Eqs 6 and 7, which determine the instantaneous mem-
brane shape; Eq 12, which determines the instantaneous particle position; and Eq 10, which

Table 1. Typical values of the model parameters.

parameter symbol best estimate range reference

particle radius a 0.1 μm 0.05 − 2 [3]

ligand density ξl 103 μm−2 300 − 7000 [14]

receptor density ξr 103 μm−2 100 − 5000 [8, 14]

bond elasticity κ 10−2 N/m 10−5 − 1 [14, 24, 38, 39]

bond length λ 20 nm 15 − 35 [14, 38, 40]

repulsion constant γ 1 fN 0 − 106 [24]

repulsion length τ 5 nm 5 − 20 [24]

binding rate Kf 10−2 μm2/s 0.002 − 0.06 [27]

bond equilibrium constant Kð0Þ
d =Kf

0.05 μm−2 0.02 − 0.10 [27]

Bell’s length constant xb 0.5 nm 0.1 − 1.0 [25, 41]

membrane tension T0 30 pN/μm 10 − 50 [42–44]

cytoplasm elasticity E 1 kPa 1 − 7 [45, 46]

cytoplasm viscosity μ 1 kPa � s 0.5 − 6 [47–49]

membrane bending B 10−19 J 10−20 − 10−19 [11, 23]

doi:10.1371/journal.pone.0122097.t001
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determines the evolution of the bond density. The equations are solved iteratively in time. Ini-
tially (t = 0), the membrane is assumed flat (R(s, 0) = 0, Z(s, 0) = 0), the particle is located
above the membrane at Z0(t = 0) = a + λ, and the particle is assumed to be weakly attached to
the membrane through an initial bond density ξb(s, 0) = 0.01ξl(1 − 5s/a) for s< 0.2a, and ξb(s,
0) = 0 otherwise. Provided that the initial bond distribution is weak, and due to swift bond for-
mation at early times, the precise structure of the initial bond distribution has virtually no effect
on the model results presented here. At each time step, t + Δt, we start by updating the bond
density. With the membrane shape and particle position from the previous time, t, we analyti-
cally solve Eq 10 to compute the updated bond density, ξb(s, t + Δt). The time increment Δt is
variable, and it is chosen by the solver so that the change in bond density is smaller than given
relative (2%) and absolute (0.02ξl) thresholds. The values of these thresholds have been chosen
so that further reductions of the thresholds do not alter the final results by more than 5%. The
time steps obtained in this manner are very small at early times (of the order of 10−6 time
units), when bond formation progresses rapidly, and significantly larger at late times (of the
order of 0.05 time units), when the internalization process approaches the final equilibrium
state. Once the updated bond density at t + Δt has been obtained, the new membrane shape
and particle position are calculated by solving Eqs 6, 7, and 12. To obtain the membrane shape,
axial symmetry conditions are imposed at the membrane center (s! 0): R = 0, θ = 0, and @2 θ/
@s2 = 0. At the outer edge of the membrane, s = smax, the following boundary conditions are im-
posed: Z = 0,Ms = 0, T cosθ − V sinθ = T0. We note that the radial position of the outer edge, R
(smax), is left free; it will decrease during the wrapping process to satisfy the membrane inexten-
sibility assumption. The outer edge is taken as smax = 20 a. We have verified that further in-
creasing the value of smax does not affect the simulation results. Moreover, we also verify that
the membrane has recovered its planar horizontal shape at s = smax, i.e., that dZ/ds� 0. Eqs 6
and 7 are linearized using a Newton-Raphson iteration scheme, then discretized in space and
time using a finite difference scheme. The time step is taken equal to Δt defined above. The spa-
tial grid is not uniform. Rather, the grid size is given by Δs = 0.04 a/g(s), with g(s) = 1 + 10 exp
{−s2/(2a2)}. This relation yields a grid size that is about 10 times finer under the particle center
(Δs(s! 0)� 4 � 10−3 a) than far from the particle (Δs(smax)� 4 � 10−2 a). We have verified that
further grid refinement does not change the final results by more than 5%. The results are ad-
vanced in time following this scheme until the membrane shape converges to a final

Table 2. Nondimensional coefficients and typical values.

parameter definition typical value

x̂r
ξr/ξl 1

K̂ r Kð0Þ
d =ðKð0Þ

f xlÞ 5 � 10−5

l̂ λ/a 0.2

t̂ τ/a 0.05

CE Exb/(ξl κkBT) 10

CB Bxb/(ξl a
3 κkBT) 1

Cξ aκxb/(kBT) 100

Crep γxb/(ξl a
2 κkBT) 10−3

T̂0
T0 xb/(ξl aκkBT) 3

CK κaxb/(kBT) 100

tb E/(μKf ξl) 0.1

doi:10.1371/journal.pone.0122097.t002
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equilibrium wrapping state, which is typically reached in less than 40 time units. The solution
algorithm is implemented in Matlab R2012a.

Results
Fig 3 illustrates the typical internalization kinetics predicted by the model. Fig 3a shows how
the internalization process, quantified through the ratio of the particle’s penetration depth d to
the particle diameter 2a (see figure inset), evolves in time. The process first advances very rap-
idly, and then it slows down to asymptotically reach a maximum particle penetration, at which
an equilibrium is reached and internalization stops. At this final state, the energy gained in
bond formation by further wrapping of the particle does not compensate the energetic cost to
further bend the membrane and deform the cytoplasm. The final d/(2a) value depends thus on
the local cell deformability, as we will discuss below. Fig 3b–3e show snapshots of the internali-
zation process. We can distinguish three phases. The early phase, up to snapshot 3c, is a short
phase characterized by rapid bond formation and development of firm adhesion between the
particle and the cell membrane. In this early phase, the bond density is not yet sufficiently high
to fully bend the membrane around the particle, and thus we observe bonds that are both
under strong compression (dark blue) and under strong tension (red; see snapshot 3b). The
second phase, between snapshots 3c and 3d, is characterized by a relatively constant density of
bonds along the particle-membrane contact region. These bonds, represented in cyan and
green, are all close to their neutral state (i.e., their length l is close to the equilibrium value λ).
Over this contact region, the membrane is wrapped around the particle and follows its spheri-
cal shape. Internalization progresses driven by bond formation within a small leading region,
where the bonds are under strong tension (bonds represented in red). The final phase, repre-
sented by the snapshot 3e, corresponds to internalization approaching the final equilibrium
state, where further wrapping is no longer favorable.

Fig 4 illustrates the effect of the nanoparticle size on the internalization process. Fig 4a
shows how the time required for internalization depends on the nanoparticle radius. We define
the time for internalization as the time required for reaching d/(2a) = 1. For typical parameter
values (the best estimates in Table 1), our model predicts an optimal radius at which internali-
zation is fastest of a� 50 nm, which is consistent with experimental observations [4]. The time
required for internalization remains comparable for a range of radii between 30 and 90 nm.
Outside this range, the time required to reach d/(2a) = 1 becomes asymptotically longer, and at
a = 20 nm or a = 100 nm the stage d/(2a) = 1 is no longer reached, indicating that internaliza-
tion efficiency decreases significantly for very small and very large particles. Fig 4b shows the
maximum value of d/(2a) that is reached as a function of the particle size. When the particle ra-
dius decreases below a = 20 nm, d/(2a) rapidly approaches zero, indicating that no particle
wrapping occurs. This suggests that receptor-mediated internalization becomes impossible for
small radii. In contrast, the maximum amount of wrapping attained for particles larger than
a = 100 nm decreases slowly with increasing particle size, indicating a larger degree of mem-
brane wrapping around the particle and thus suggesting that receptor-mediated internalization
may still be possible up to a micrometric particle size (i.e., a� 500 nm), as observed in experi-
ments [3].

Fig 5 shows the dependence of the particle internalization time (defined as the time to reach
d/(2a) = 1) on the time required for bond formation, tb. In the figure both axes are expressed in
seconds, but they can equivalently be regarded as normalized by the viscoelastic time scale, μ/
E, which we have adopted as our time unit, and whose typical value is indeed of the order of 1
s. The figure shows that the time required for particle internalization increases proportionally
to both the bond formation time and to the viscoelastic time. Interestingly, whereas both the
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Fig 3. Kinetics of nanoparticle internalization. a. Evolution of the particle internalization, measured by the
depth-to-diameter ratio, d/(2a) (see inset), as a function of the elapsed non-dimensional time (one
nondimensional time unit corresponds typically to one second). The computation is performed with a = 50 nm,
Kð0Þ

d =Kf ¼ 0:01 mm�2 and otherwise with the best estimate of the parameter values listed in Table 1. The
horizontal dashed line corresponds to the value d/(2a) = 1, which is the threshold where we define a particle
as internalized. Four snapshots of the internalization process, indicated on plot a by circle markers denoted
by ‘b’ to ‘e’ and corresponding to times t = 5 � 10−3, t = 10−2, t = 2.0, and t = 10.0 s, respectively, are presented
in the plots b to e. Each snapshot shows the instantaneous membrane shape (full line), the initial membrane
shape (dashed line), the particle (gray shaded circle), and the bonds formed between the particle and the
membrane (short color lines). The density of color lines is proportional to the bond density. Dark blue, cyan,
green, and red lines correspond respectively to bonds that are strongly compressed (l < 0.9λ), slightly
compressed (0.9λ� l < λ), slightly stretched (λ < l� 1.1λ), or strongly stretched (l > 1.1λ).

doi:10.1371/journal.pone.0122097.g003
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viscoelastic time and the bond formation time are at most of the order of a second, the particle
internalization time is much longer, of the order of a few tens of seconds and up to minutes, as
observed in experiments [3]. The reason for the emergence of this longer internalization time
scale is that, whereas bond formation induces deformations at the scale of the bond length, in-
ternalization requires deformations at the length scale of the particle. Thus, the ratio of time
scales of particle internalization to bond formation is proportional to the ratio of length scales
of the particle to the bond.

Fig 6 shows curves of maximum particle internalization depth (maximum d/(2a)) versus
particle radius (a) for different values of several bond parameters. Fig 6a shows the effect of
changes in the bond spring constant, κ. Interestingly, there appears to be an optimal value of κ,
of about 5 � 10−3 N/m, for which particle internalization is most efficient. The existence of this
optimum arises from two opposing effects of bond rigidity, κ, on particle wrapping. On the
one hand, reducing bond rigidity reduces the force provided by each bond to deform the cell

Fig 4. Effect of particle size. a. Time required for particle internalization (defined as the time required to
reach d/(2a) = 1) as a function of the particle radius, a, for all parameter values (other than a) equal to their
best estimate (Table 1). The circles indicate the cases for which computations have been performed, and the
dashed line joins the circles to guide the eye. Below a = 30 nm and above a = 110 nm, internalization (d/(2a) =
1) is not reached. b.Maximum internalization depth, d/(2a), which the internalization process converges to at
sufficiently long time. The gray horizontal line corresponds to d/(2a) = 1, which we define as the threshold
above which the particle is considered to be internalized.

doi:10.1371/journal.pone.0122097.g004
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and wrap the nanoparticle. On the other hand, increasing bond rigidity makes the bond disso-
ciation constant increase very rapidly with bond length (due to Eq 11), thus impairing bond
formation. Fig 6b and 6c respectively show the effect of changes in the bond reaction constant,

Kð0Þ
d =Kf , and in the ligand density, ξl, which is in all cases assumed equal to the receptor density,

ξr. As expected, particle internalization becomes more efficient with decreasing K ð0Þ
d =Kf and

with increasing ξl, since in both cases the available energy gain from bond formation increases.
Fig 7 shows curves of maximum particle internalization depth (maximum d/(2a)) versus

particle radius (a) for different values of the cell membrane properties (its bending rigidity B
and its tension T0) and of the cytoplasm properties (its Young’s modulus E). As expected, inter-
nalization is favored by a smaller resistance to cell deformation, thus by smaller B, T0, or E.
However, changes in these different parameters affect internalization differently. Within the
range of physiological values, the effect of changes in T0 on internalization are much smaller
than those of changes in B or in E. Changes in B strongly affect the internalization of smaller
particles, since membrane bending stresses, which scale as B/a3, are the dominant resistance to
small particle internalization. Large particle internalization, on the other hand, is virtually inde-
pendent of the value of B and strongly controlled by the value of E. Fig 7 thus shows that cyto-
plasmic rigidity becomes the dominant resisting mechanism at large a, as one would expect

from comparing the dependence on a of the nondimensional coefficients CE, CB, and T̂ 0 in
Table 2.

Fig 8a shows the dependence of the time required for the internalization of a particle of radi-

us a = 50 nm on the magnitude of a normal, nondimensional force, F̂ v � Fvxb=ða2xlkBT Þ, ex-
erted onto the particle (see figure inset). Consistent with experimental observations using
magnetic nanoparticles subjected to a magnetic field [30], we predict the internalization time
to decrease with the applied force. The figure shows that the nondimensional force required to
significantly decrease the time for particle internalization is of the order of one nondimensional
unit, which for typical parameter values corresponds in dimensional terms to a stress applied
onto the particle of about 2 kPa (or equivalently a total force of about 20 pN exerted onto the

Fig 5. Particle internalization time as a function of the bond formation time, tb. Both times are
normalized by the viscoelastic time μ/E, and can be interpreted as given in seconds if μ/E = 1 s. The circles
correspond to the computations, performed with parameter values (other than a = 50 nm and than Kf, which is
variable since it determines tb) equal to their best estimate (Table 1). The straight dashed line is a fit through
the data points.

doi:10.1371/journal.pone.0122097.g005
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Fig 6. Effect of bond properties on the maximum internalization depth as a function of the particle
radius, a. Different marker shapes and colors correspond to different values of the bond spring constant κ (in
plot a), of the bond reaction constant Kð0Þ

d =Kf (in plot b), or of the ligand density ξl (in plot c). In all plots, the
black curve corresponds to the best estimate of the varied parameter (κ = 10−2 N/m, Kð0Þ

d =Kf ¼ 5 � 10�2 mm�2,
and ξl = 103 μm−2, respectively). In each plot, all parameter values not indicated are taken equal to their best
estimates (Table 1), except for ξr = ξl in plot c. The gray horizontal line indicates the internalization threshold,
d/(2a) = 1.

doi:10.1371/journal.pone.0122097.g006
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Fig 7. Effect of cell mechanical properties on the maximum internalization depth as a function of the
particle radius, a. Different marker shapes and colors correspond to different values of the membrane
bending modulus B (in plot a), of the initial membrane tension T0 (in plot b), or of the cell’s Young’s modulus E
(in plot c). In each plot, the black curve corresponds to the best estimate of the varied parameter (B = 10−19 J,
T0 = 30 pN/μm, and E = 103 Pa, respectively). On each plot, all parameter values not indicated are taken
equal to their best estimates (Table 1). The gray horizontal line indicates the internalization threshold, d/(2a) =
1.

doi:10.1371/journal.pone.0122097.g007
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Fig 8. Effect of a vertical force on internalization. a. Time required for particle internalization (defined as
the time required to reach d/(2a) = 1) as a function of a normalized vertical compressive force,
�F̂ v � �Fvxb=ða2xlkBT Þ, for a = 50 nm and all other parameter values equal to their best estimates (Table 1).
The inset shows a snapshot of the membrane deformation and particle position for the case F̂ v ¼ �1. The
snapshot corresponds to the time when d/a = 1. b. Time required for particle internalization (defined as the
time required to reach d/(2a) = 1) as a function of the particle radius a in the absence of force (black circles)
and in the presence of a normalized force F̂ v ¼ �0:5 (blue squares).

doi:10.1371/journal.pone.0122097.g008
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50 nm particle). Fig 8b illustrates the effect on the internalization time of applying a nondimen-

sional force F̂ v ¼ �0:5 onto particles of different radii a. Dimensionally, F̂ v ¼ �0:5 corre-
sponds to a stress of about 1 kPa applied onto the particle top surface. The figure shows that a
compressive stress more significantly improves the internalization of larger particles. As dis-
cussed above, the internalization of small particles is mainly limited by the membrane bending
rigidity, whereas the internalization of large particles is mainly limited by the rigidity of the
cell’s cytoplasm. Because the main effect of a compressive force is to deform the cell’s cyto-
plasm, external compressive stresses particularly facilitate the internalization of large particles.
The figure thus suggests that external forces acting on nanoparticles—induced for example by
electric charges, magnetic fields, or the flow pressure—can favor the internalization of
larger particles.

We have also investigated the effect of a shear flow on particle internalization. To this end,
we have developed a two-dimensional version of the model, where the particle shape becomes
an infinitely long cylinder. The two-dimensional model allows us to consider the fore-aft asym-
metric case where a horizontal force and torque act on the nanoparticle. We found that the
flow-induced drag only affects the early stage of particle adhesion to the membrane, when the
particle is most exposed to the flow. A sufficiently strong flow drag will rapidly detach the par-
ticle and no internalization will take place. However, if the initial adhesion is sufficiently strong
to withstand the flow drag, the flow does not affect the particle internalization dynamics, which
are then virtually identical to the no-flow case. The effect of the flow on the results is thus bi-
modal and abrupt, and it depends critically on the initial bond distribution. This result is con-
sistent with numerous studies that have described the important role of flow in particle
adhesion [14, 31–33]. However, recent studies have shown that flow also has a direct effect on
nanoparticle internalization [9, 34]. Our two-dimensional computations of internalization
under shear flow suggest that the dominant process by which flow modulates nanoparticle in-
ternalization is not a purely mechanical one, as included in our model, but rather an active bio-
logical phenomenon involving cellular mechanotransduction, by which the flow affects
cytoskeletal organization and dynamics [9] and biochemical pathways involved in particle en-
docytosis [34].

Discussion
In this section we propose simple scaling arguments to interpret our numerical results and
thus to gain insight into the physics underlying the internalization process. Our goal in this sec-
tion is to understand the time scales governing the kinetics of internalization, as well as the de-
pendence of the nanoparticle internalization depth on the membrane rigidity and cytoplasmic
Young’s modulus.

As shown in Fig 3, the internalization dynamics can be described as consisting of three dis-
tinct stages: development of a firm adhesion, wrapping, and stabilization at an equilibrium
wrapped state. What sets the duration of these different stages? Let us first consider the time
needed for completing the firm adhesion stage. The firm adhesion stage is characterized by the
development of a sufficiently large bond density to deform the membrane and initiate the
wrapping process. Since the initial bond density ξb is small compared to the total ligand and re-
ceptor densities, ξl and ξr, we can characterize the short-time dynamics of bond formation by
the following simplified version of Eq 10:

@xb
@t

� Kfxlxr: ð13Þ

We deduce from Eq 13 that the time needed to complete the firm adhesion stage and start
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deforming the membrane scales as

tfirm � xb;firm

Kfxlxr
; ð14Þ

where ξb, firm is the bond density that needs to be attained in order to start deforming the mem-
brane. Deformation of the membrane becomes possible when the energy stored by the bond
springs reaches the energy needed to bend the membrane, i.e.:

1

2
kðlmax � lÞ2xb;firm � 1

2
B

1

a

� �2

; ð15Þ

from which we deduce that ξb, firm* B/(κ(lmax − λ)2 a2). Here, lmax is the maximum distance
between the particle and the membrane at which bonds can form. Net bond formation occurs
if the bond dissociation rate remains smaller than the bond formation rate, i.e., if

K̂ r ¼ Kd=ðKfxlÞ � 1. The value of lmax is thus given by K̂ r ¼ 1. Considering the dependence of
Kd on l given by Eq 11, we deduce

lmax � lð Þ � kBT
kxb

ln
Kfxl

K ð0Þ
d

 !
: ð16Þ

For a bond spring constant κ = 0.01 N/m, Eq 16 yields a maximum bond deformation of the
order of (lmax − λ)� 10 nm, which is consistent with our numerical results. Combining Eqs 14
and 15, with (lmax − λ) given by Eq 16, we conclude that the duration of the firm adhesion stage
scales as

tfirm � B

Kfxlxra2kðlmax � lÞ2 : ð17Þ

For typical parameter values, Eqs 15 and 17 yield a typical bond density to start particle wrap-
ping of ξb, firm � 0.05ξl, which is attained at a time tfirm � 10−3 s, consistent with the results of
the numerical model (Fig 3).

To interpret the typical duration of the wrapping phase, we propose a simplified view of the
wrapping process, schematized in Fig 9. We consider a simplified geometry where the mem-
brane is wrapped around the particle over the contact zone, adopting a spherical shape of radi-
us a + λ, whereas outside the contact zone the membrane remains flat. Bonds follow a radial
orientation. We note that this simplified view is limited to representing wrapping up to the

Fig 9. Schematics illustrating a simplified view of the geometry of early particle wrapping.

doi:10.1371/journal.pone.0122097.g009

Dynamics of Nanoparticle Internalization into Endothelial Cells

PLOS ONE | DOI:10.1371/journal.pone.0122097 April 22, 2015 17 / 23



particle’s equator, since beyond α = π/2 formation of new bonds becomes geometrically impos-
sible (see Fig 9). At a given instant, the internalization depth d is related to the wrapping angle
α by d = a(1 − cosα). New bonds are being formed over an annulus of width p, where bond
length remains smaller than lmax defined above. Geometric considerations yield p = (lmax − λ)/
tanα. Since bond formation requires a time of the order of tb* Kf ξl, we can write the following
equation of the simplified internalization dynamics:

da
dt

� p=ðaþ lÞ
tb

¼ ðlmax � lÞ
ðaþ lÞtbtan a

: ð18Þ

This differential equation yields d/(2a)* (cosα)/2* exp{[−(l − λ)(a + λ)/tb]t}/2, which is an
exponentially asymptotic evolution equation towards an equilibrium value, here of d/2a = 0.5,
and conceptually similar to the asymptotic evolution described by our computational model
and shown in Fig 3. This simple reasoning suggests that the time for wrapping scales as

twrapping �
ðaþ lÞ
ðl � lÞ tb; ð19Þ

which, for a = 50 nm, yields twrapping * 7tb. The full computational model predicts indeed a
proportionality between the two time scales, as shown in Fig 5 above, but with a coefficient of
proportionality of about 25 rather than 7, corresponding to the more accurate wrapping geom-
etry considered by the computational model.

Next we discuss the dependence of the maximum internalization depth on the membrane
and cytoplasm rigidity (B and E), presented in Fig 7 above. As shown in Fig 7a, membrane
bending rigidity sets a minimum size for nanoparticle internalization, and the minimum parti-
cle size that can be internalized decreases with decreasing B. Here we propose a scaling argu-
ment to interpret the observed dependence. For small particles (a< 30 nm), the main resisting
force to internalization is due to membrane bending, whereas the driving force is provided by
the bonds forming at the edge of the wrapping region. Momentum balance per unit of azi-
muthal length yields the scaling Bdθ/ds* Fb(ξl p)w, where Fb is the force per bond, p is the
width of the annulus of stretched bonds at the edge of the wrapping zone (see Fig 9), and w is
the horizontal extent of the deformed region of the membrane (see Fig 10a). The rate of change
of membrane inclination scales as dθ/ds* α/w* (d/a)/w. For small particles, the two domi-
nant terms defining the deformed shape of the membrane (see Fig 10b) are the membrane
bending rigidity and the cytoplasm elasticity. Balance between these two yields a typical extent
of membrane deformation of w* (B/K)1/4 = (Ba/E)1/4. Combining these scalings leads to

d
2a

�
ffiffiffiffiffiffi
a
BE

r
: ð20Þ

Fig 11a represents the data of Fig 7a rescaled according to the dependence on B suggested
by Eq 20. In Fig 7a the curves for different B collapsed at large a, since for large particles mem-
brane bending rigidity becomes small compared to membrane tension and cytoplasmic elastici-
ty, and thus its effect on internalization becomes negligible. In Fig 11a, the rescaled curves
collapse at small a, suggesting that the scaling argument given by Eq 20 correctly captures the
effect of B on the internalization of small particles.

As shown in Fig 7, the internalization of large particles (a> 100 nm) is largely controlled by
the cytoplasmic Young’s modulus, E. We can also interpret this dependence using a scaling ar-
gument. The elastic force per unit of azimuthal length required to vertically indent the cyto-
plasm scales as (Kd) � w, where the first factor represents the elastic force per unit area and the
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second factor is the horizontal extent of the deformed region. For large particles (a> 100 nm),
w* d (see Fig 10c). Balance between the elastic force and the bond force yields the scaling Kd2

* Fb ξl p. Since K = E/a, we deduce a simple scaling law for the dependence of d on a and E,
valid for large particle radius:

d
2a

� 1ffiffiffiffiffiffi
Ea

p : ð21Þ

Fig 11b represents in log-log scale the data of Fig 7c rescaled according to Eq 21. This rescaling
makes the different curves nearly collapse for large a, suggesting that Eq 21 correctly captures
the effect of E on the internalization of large particles. Only the scaled curve corresponding to
E = 500 Pa is far from collapsing with the others; this is attributed to the fact that, for this
smaller value of E, the cell’s elastic rigidity is no longer the dominant resisting mechanism to
nanoparticle internalization. Fig 11b also shows that, for large particles, the maximum internal-
ization depth d/(2a) seems to decrease with 1=

ffiffiffi
a

p
, consistent with Eq 21.

Conclusion
Our model results show the existence of an optimal radius for receptor-mediated nanoparticle
internalization of the order of 50 nm. Below this optimal radius, receptor-mediated internaliza-
tion becomes rapidly impaired by membrane bending rigidity. Above the optimal radius, cyto-
plasmic rigidity makes internalization less efficient, but the effect of increasing the radius
above the optimum is more gradual, as the maximum depth to which the particle can be inter-
nalized decreases only with the inverse of the square root of the particle size. We have also
shown that bond characteristics play an important role in internalization. Notably, we have
identified an optimum value of the bond elastic constant, of the order of 5 nN/μm, for which
internalization is most efficient.

Fig 10. Illustration of the particle wrapping process. a. Schematic illustrating the geometric parameters
used in the scaling arguments. b. Snapshot of the internalization geometry for a particle of radius a = 30 nm at
the time when d/(2a) = 0.5. c. Snapshot of the internalization geometry for a particle of radius a = 300 nm at
the time when d/(2a) = 0.5.

doi:10.1371/journal.pone.0122097.g010
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Whereas experimental studies have evidenced an effect of flow on nanoparticle internaliza-
tion [9, 34], our model suggests that the mechanical effect of a shear force applied on a nano-
particle is only important in determining nanoparticle adhesion to the cell membrane. Once
firm adhesion is attained, our model predicts that internalization dynamics become indepen-
dent of the direct mechanical action of the shear. This result suggests that shear affects nano-
particle internalization by modulating the active dynamics of the cellular cytoskeleton, rather
than by a direct mechanical effect on the nanoparticle. In contrast, our model predicts that nor-
mal compressive stresses applied to nanoparticles can significantly improve their internaliza-
tion, especially of those particles larger than about 100 nm.

A limitation of the model presented here is that it disregards active forces generated by the
cellular cytoskeleton during nanoparticle internalization. Indeed, experiments show that
ICAM-1-mediated internalization is dependent on the formation of actin stress fibers, a phe-
nomenon that occurs over a time scale of about 10 minutes [3]. In contrast, the internalization
mechanism described here is completed over a much shorter time scale (of a minute or less).
Our model thus only describes the initial step of receptor-mediated nanoparticle

Fig 11. Analysis of the dependence of the maximum internalization depth on physical parameters B,
E, and a. a. Dependence of the maximum internalization depth, d/(2a), on the membrane bending modulus B.
This plot presents the results of Fig 7a, here with the horizontal axis transformed into a/(B/Bref), with Bref �
10−19 J. b. Dependence of the maximum internalization depth, d/(2a), on the cell’s Young modulus E. This
plot presents the results of Fig 7c, here with the vertical axis scaled as (d/(2a))(E/Eref)

1/2, with Eref � 1000 Pa,
and the figure presented in double logarithmic scale. The dashed line indicates the slope of the power law d/
(2a)* a−1/2.

doi:10.1371/journal.pone.0122097.g011
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internalization, whereas later stages of internalization are controlled by cytoskeletal dynamics.
Thus, our model can be directly validated against experiments of receptor-mediated nanoparti-
cle uptake into artificial systems that lack a dynamic cytoskeleton, such as vesicles [35, 36] or
polymersomes [37]. As our model accounts for the main internalization mechanisms with the
exception of cytoskeletal dynamics, comparison between our model’s predictions and experi-
ments of nanoparticle cell uptake can be used to isolate the contribution of cytoskeletal dynam-
ics to the internalization process. Based on such additional experimental knowledge,
cytoskeletal dynamics can be included in the model by making the cytoplasmic rheology or the
bond properties depend on the internalization stage, or by adding an additional, time-depen-
dent force acting on the membrane, to account for the active forces generated by
the cytoskeleton.
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