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To cite this version:

Thierry Leviandier, Adrien Alber, Florence Le Ber, Hervé Piégay. Comparison of statistical al-
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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Lyon 3

https://core.ac.uk/display/52891372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00640698


Comparison of statistical algorithms for detecting

homogeneous river reaches along a longitudinal

continuum VERSION ACCEPTEE 20 8 2011

Thierry Leviandiera,∗, A. Alberb, F. Le Berc, H. Piégayb

aENGEES 1 quai Koch BP 1039 F 67070 Strasbourg Cedex, France
bUniversity of Lyon, UMR 5600 CNRS, Site ENS Lyon, 15 Parvis R. Descartes, 69362

Lyon cedex 07, France
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Abstract

Seven methods designed to delineate homogeneous river segments, belonging
to four families, namely — tests of homogeneity, contrast enhancing, spa-
tially constrained classification, and hidden Markov models — are compared,
firstly on their principles, then on a case study, and on theoretical templates.
These templates contain patterns found in the case study but not considered
in the standard assumptions of statistical methods, such as gradients and
curvilinear structures. The influence of data resolution, noise and weak sat-
isfaction of the assumptions underlying the methods are investigated. The
control of the number of reaches obtained in order to achieve meaningful
comparisons is discussed. No method is found that outperforms all the oth-
ers on all trials. However, the methods with sequential algorithms (keeping
at order n+1 all breakpoints found at order n) fail more often than those
running complete optimisation at any order. The Hubert-Kehagias method
and Hidden Markov Models are the most successful at identifying subpat-
terns encapsulated within the templates. Ergodic Hidden Markov Models
are, moreover, liable to exhibit transition areas.
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1. Introduction1

Since the pioneering work of Schumm (1977), a river channel has been con-2

sidered a longitudinal continuum, its width or depth increasing downstream3

in response to discharge, whereas its slope and grain size decrease (Leopold4

and Maddock, 1953). In terms of hydraulic geometry, different authors, such5

as Hey (1982) and Ferguson (1986) have proposed regionally based empirical6

models, giving support to the ‘space-time substitution’ model used to high-7

light the channel’s responses to different anthropogenic pressures, such as8

urbanisation or channel straightening. These pressures disrupt the longitu-9

dinal trends of the width increase in downstream channel (Gregory and Chin,10

2002). Following these studies, several authors stated discontinuities within11

the river continuum, notably in relation to the lithological settings (Ichim12

and Radoane, 1990; Ferguson and Ashworth, 1991; Piégay et al., 2000a),13

tectonics (Schumm and Spitz, 1996; Astrade and Bravard, 1999), hillslope14

processes (Grant et al., 1990), riparian vegetation (Clifton, 1989), hydraulic15

and sedimentary effects of confluences (Rice, 1999), or human infrastructures16

and sea level (Gurnell, 1997). Other authors underlined the effects of these17

physical discontinuities on the biocenotic conditions (Minshall and Petersen,18

1985; Piégay et al., 2000b; Rice et al., 2001). Perry and Schaeffer (1987) then19

proposed the ‘discontinuum river concept’ in response to the so-called ‘river20

continuum concept’ of Vannote et al. (1980).21

As a consequence, new research perspectives have been opened to reconsider22

the factors controlling the longitudinal discontinuities and to identify them23

along the continuum (Benda et al., 2004; Torgersen et al., 2008). Because24

rivers are hierarchically organised (Frissell et al., 1986), longitudinal discon-25

tinuities can be investigated for a range of spatial scales, from the habitat to26

the network scale. Following Frissell et al. (1986), we refer here to the seg-27

ments and reaches scales, which are stretches of river with a well-identified28

geomorphic structure, in between the network scale and the habitat scale.29

Segments are considered portions of valleys with relatively clear boundaries30

controlled by geological settings or bounded by tributary junctions, whereas31

reaches are more closely associated with homogenous geomorphic patterns,32

also characterised by clear boundaries (e.g., meandering, braided, straight33

channels). The longitudinal structure studied here is very close to the tem-34

poral univariate series, the time line being replaced by a longitudinal line. Al-35

though the longitudinal periodicity of geomorphic structures has been quite36

well studied — as stated by Grant et al. (1990), Hardisty (1993), Madej37
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(1999), and Aubry and Piégay (2001) — the detection of thresholds and ho-38

mogeneous reaches has not been sufficiently developed from a scientific point39

of view, being mainly subjectively based, and uses visual or graphic estimates40

(Astrade and Bravard, 1999; Gurnell et al., 2000; Michalková et al., 2011).41

The moving average method has been used to smooth the local variability42

to highlight major thresholds on a signal with higher frequency, but it may43

induce cyclic effects cumulating the successive random effects (Slutzky, 1937;44

Bernier, 1965). A cumulated frequency curve is also a graphic mean to show45

the unstationarity of a given univariate series visually. Empirically, fitting46

a linear trend and its confidence intervals to detect stationarity is possible47

(Brunet-Moret, 1971). Even if such a cumulated curve is not always easy to48

read, one or several trends and associated thresholds can then be highlighted.49

Most of the available tools used to characterise longitudinal fluvial patterns50

are therefore univariate, whereas the questions posed in this domain are often51

multivariate, which is also a key issue to consider. Indeed, the detection of52

homogeneous segments along rivers is now becoming a challenging perspec-53

tive because of the GIS layers, digital elevation model (DEM), and remote54

sensing data available to study such problems at a regional scale and the55

needs of river managers to describe river systems at the basin scale (several56

thousand to several hundred thousand square kilometers) for planning and57

targeting their actions, as demonstrated by recent publications on this topic58

(Beechie et al., 2006; Brenden et al., 2008). The regionalisation of synthetic59

geomorphic indicators should highlight how the longitudinal features control60

the ecological potentials and contribute to the pressure-impact models.61

The aim of this contribution is therefore to inventory, describe, and com-62

pare a set of statistical methods that can be used to discretise a longitudinal63

continuum of a continuous variable (e.g., slope, width, depth) automati-64

cally. The hydrographic network is considered here a set of longitudinal65

segments/reaches separated by confluences with a focus on linear features66

that are disconnected hierarchically. Some of the statistical methods have67

already been used in such contexts, whereas others are applied to tempo-68

ral series such as rainfall and discharge. The aim is therefore to assess the69

potentiality and the sensitivity of statistical methods according to differ-70

ent types of spatial distribution and resolution to detect their application71

domain. Section 2 presents four types of methods that are considered for72

comparison (seven methods with variants taken into account). The princi-73

ples of algorithms are compared in section 3, and an empirical benchmark is74

performed in section 4. In the empirical part, the methodology, restricted to75
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the univariate case, is presented consisting of designing synthetic templates76

and applying the algorithms in optimal and nonoptimal conditions on these77

templates and on a case study. What is learned from the tests for applica-78

tions is discussed in section 5 together with the limits and potential of the79

univariate methodology.80

2. Methods for delineation81

Four types of methods are investigated, some of them with many variants,82

others relatively specific.83

• Homogeneity test (HT) methods consist of testing a null hypothe-84

sis of the homogeneity of means. They have been mainly applied to85

climatic and hydrological series usually to detect one threshold (some-86

times based on the Bayesian approach) (Gardner Jr, 1969; Lee and87

Heghinian, 1977; Buishand, 1982, 1984; Aka et al., 1996; Lubes-Niel88

et al., 1998; Robson et al., 1998), sometimes several thresholds (Scheffe,89

1959; Hubert, 1989, 2000). Others were developed for water quality sur-90

veys (Hirsch et al., 1991). Single-threshold tests such as the Pettitt test91

have also been applied to detect several thresholds (Alber and Piégay,92

2010). Only two of these methods, the Pettitt and Hubert methods,93

are described in detail here. One of the most commonly used is the94

Pettitt test (Pettitt, 1979; Zhang et al., 2008).95

• Contrast-enhancing (CE) methods share with the HT methods an up-96

down approach to splitting, but explicitely assume heterogeneity. This97

type is represented only by the contrast-enhancing clustering process,98

proposed by Leviandier et al. (2000) and applied to the design of a99

rainfall stochastic process. This method detects a rupture, not by the100

optimisation of certain criteria, but by means of a ‘separation equation’101

that yields a point satisfying certain relationships between the average102

intensity of the variable and the length of the subinterval on the left-103

and right-hand sides of the point. At least two types of separation104

equations were found necessary; when the equations had no root on the105

entire interval (no intersection of two curves), taking a point minimising106

the distance between the two curves was proposed to avoid stopping107

the procedure too early.108
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• Spatially constrained clustering methods (SCC) (Brenden et al.,109

2008) are ordinary clustering methods, used in the particular case of110

spatial objects, so that a new object in a class is preferentially ag-111

gregated to classes to which nearby objects have already been aggre-112

gated. The ultimate simplification of the procedure consists of deciding113

whether a point belongs to a class on its left or on its right.114

• Hidden Markov Models (HMM s) (Rabiner and Juang, 1986) are115

rather different. They consider a stochastic process along the line and116

a random variable at each point, which produces the observed value.117

A reader familiar with the framework adapted to the other methods118

would expect that the distribution of the random variable depends on119

the ‘class’ to which the current point belongs. This is slightly more120

complicated as each point is not conditioned by its belonging to a class121

but by the pathway on which it has walked from the beginning of the122

line by a succession of random transitions between a small number123

of states. As at the end of a statistical fitting, many points have a124

probability 1 of being in one state and adjacent points are in the same125

state, it produces clusters similar to that of the other methods, with126

the difference that some points remain conditioned by several states127

with different probabilities between 0 and 1. This feature offers the128

possibility of exhibiting transition areas.129

Two methods are considered within the HT family, one of them with two130

variants and two variants of the HMM method, which gives a total of seven131

methods.132

2.1. Details on HT133

As these methods are based on statistical tests, the model contains a134

parameter, namely the probability of a type I risk (risk of rejecting the ho-135

mogeneity assumption even though it is true), which governs the detection136

of a stepwise shift and the number of stepwise shifts if applied several times.137

It must be noted that the detection of several shifts should be done with138

generalised tests on means (Scheffe, 1959) that is not a simple iterated ap-139

plication of the test for one shift. That simplification generally contains a140

logical contradiction: a discontinuity is sought at iteration i in a segment141

assumed to be homogeneous at iteration i -1.142

5



2.1.1. Description of the Pettitt test

The sequence of random variables X1, X2, to Xn may have a change point.143

The question is to evaluate the probability that the following conditions are144

satisfied: the sequence of random variables X1, X2, to Xn has a change point145

at T if Xt for t = 1, 2, to T has a common distribution function F1(x), Xt for146

t = T +1, to n has a common distribution function F2(x) and F1(x) 6= F2(x).147

The null hypothesis (H0) is defined by the stationarity of the series, i.e. no148

change (or T = n). The H0 is tested against the alternative hypothesis Ha149

defined by a change. Let t be the rank and Kn the nonparametric statistic:150

151

Kn =
Min

t

t∑

i=1

n∑

j=t+1

sign (Xi −Xj) (1)

with sign(θ) = 1 if θ > 0, 0 if θ = 0,−1 if θ < 0.152

Let k be the value taken by Kn on the distribution. The significance proba-153

bility p associated with k is determined approximately by154

p ∼ 2exp

( −6k2

n3 + n2

)
(2)

If p is inferior to the risk α defined by the operator, then H0 is rejected and a155

change point is localised at the rank d for which KN occurs. The Pettitt test156

has been implemented to detect several change points in a given statistical157

distribution by running the algorithm iteratively. Considering a given initial158

distribution, it is stationary if no change point is detected for a given α risk.159

If a change point is detected, two new subseries are generated on each side160

of the change point, the latter being integrated into the downstream reach.161

The Pettitt test runs on subseries as long as change points are detected.162

2.1.2. The Hubert method and its reformulation in dynamic programming163

The principle of the Hubert method (Hubert, 1989, 2000) is to optimise164

the approximation of a one-dimensional function by a piecewise constant165

function under the constraint that two adjacent segments are significantly166

different. The method does not violate the assumptions of tests, though167

considering means pairwise may be seen as an approximation of the Scheffe168

test.169

The Hubert method was initially proposed with an algorithm of low efficiency,170

unable to work on large datasets. Kehagias et al. (2005) noted that the171

problem could be written within the dynamic programming framework and172

therefore be solved with a fast-running algorithm. Though the optimum at173
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order k + 1 cannot be derived from the optimum at order k, the idea is that174

the solution at order k + 1, finishing at point t, can be written as a function175

of the set of solutions at order k, optimal on the length [1,s] with s < t. Let176

p depend on k such that [p,s] is the last segment in the optimal segmentation177

S(k, s).178

Let c(s, t) be the cost of using the mean (or another function) instead of the179

observed values between points s and t and C(k, s) the minimal cost at order180

k between 1 and s. Let v be the last point.181

The Hubert method is reformulated in Eqs. (3) to (5):182

q =
Min
s∈S

C(k, s) + c(s, t) (3)

with S defined by significant changes in s and t in interval p, v

p(k + 1, t) = q (4)

C(k + 1, t) = C(k, q) + c(q, t) (5)

With appropriate initialisation, backtracking the optimal segmentation, and183

the rules to stop the procedure, the optimisation problem under the con-184

straints of significant changes is quickly solved by this system.185

In this paper, the Fisher-Snedecor F function used for the test was calculated186

with the approximation of Li and Martin (2002) using the Fortran code of187

the Lahey Fortran library for the χ2 function, owned by E.J. Szondi, whose188

source was Bargmann and Gosh (1963).189

The proper application of the test depends on the length of the segments.190

We also tested the simplification using a threshold on the ratio of the sum of191

variances divided by the whole variance (of the segment under study); as it192

is independent of the length, the calculation is much faster. This simplifica-193

tion is not fully respectful of statistical theory and may produce a different194

delineation. It differs from the improvement of the algorithm proposed by195

Gedikli et al. (2010), which involves a reduction of the number of partitions196

explored.197

2.2. Details on contrast enhancing198

The idea was to design a simple stochastic model such that the location199

and the height of the step of a stepwise shift are defined together — requiring200

a unique random number in a Montecarlo simulation not used in this paper201

— . Let l1 and l2 be the average of the variable on each side of a point of202

abcissa i in a segment of length n, t = i/n and ri = l2/l1.203
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The separation algorithm used in this study seeks a breakpoint by the fol-204

lowing subalgorithms, in this order:205

• max(ri) under the condition that ri > 2, with a constraint keeping206

from selecting successively two neighbouring points with this subalgo-207

rithm;208

• separation equations ri = t2, ri = 2(1− t) (the first one delivers the209

right location of a stepwise shift between two horizontal straight lines)210

and the same equations the other way round (from upstream); and211

• min(|ri − t2|),min(|ri − 2(1− t)|) and the same the other way round212

The segmentation of previously found segments is prioritised according to213

values of the function nα lβ σγ, σ being the variance within the segment.214

In the first applications to rainfall-runoff modeling, it was important to give215

some weight to the volume, thus to parameters α, β; but in the geomorpho-216

logical application, these parameters are α = β = 0; γ = 1 to put emphasis217

on the variance σ.218

2.3. Details on SCC219

The VAST method (valley segment affinity search technique) shares with220

its parent method CAST (cluster affinity search technique) its ‘intent to221

partition a set of n objects into K groups such that objects within groups are222

more similar than objects in different groups’ (Brenden et al. (2008) quoting223

Ben-Dor et al. (1999)). The algorithm uses an affinity threshold value: the224

larger the threshold value is, the larger (and fewer) the groups are. The225

VAST program (Brenden et al., 2008) includes several possibilities for the226

measurement of affinity and other options, but only the first one prompted227

by the program was used.228

2.4. Hidden Markov models229

The Hidden Markov models are capable of segmenting a data sequence in230

stationary and transient parts and to builing up a classification of the data231

together with the a posteriori probability of this classification. In an HMM,232

there is a double stochastic process (Baker, 1974):233

• the former (a probability density function) is hidden from the observer234

and is defined on a sequence of states (a Markov chain);235
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• the latter is visible — it produces an observation at each slot t de-236

pending on the probability density function that is defined on the state237

in which the Markov chain stays at t.238

Kehagias (2004) has proposed using first-order hidden Markov models239

(HMM1) for hydrological and environmental time series. In this paper, a240

second-order hidden Markov model (HMM2) was used, where the underlying241

state sequence is a second-order Markov chain. Therefore, the probability of242

a transition between two states at point t depends on the states in which the243

process was at point t− 1 and t− 2. Thus, an HMM2 is specified by244

• a set of N states called S = {s1, . . . sN};245

• a three-dimensional matrix (aijk) over S3:246

aijk = Prob(qt = sk/qt−1 = sj, qt−2 = si) (6)

= Prob(qt = sk/qt−1 = sj, qt−2 = si, qt−3 = ...)

with the constraints
∑N

k=1 aijk = 1, ∀(i, j) ∈ [1, N ]2 and where qt is the247

current state at point t; and248

• a set of N discrete distributions: bi(.) is the distribution of observa-249

tions associated with the state si; this distribution may be parametric,250

nonparametric or even given by an HMM (Mari and Le Ber, 2006).251

An HMM1 is usually estimated by the Baum-Welch algorithm, which is related252

to the EM algorithm (Dempster et al., 1977). Mari et al. (1997) have shown253

that an HMM2 can be estimated in the same way. The estimation is an it-254

erative process starting with an initial model and a corpus of sequences of255

observations that the HMM2 must fit. Usually, the initial model has equiprob-256

able transition probabilities and a uniform distribution in each state. At257

each step, the Baum-Welch algorithm determines a new model in which the258

likelihood of the sequences of observation increases. Hence this estimation259

process converges to a local maximum, according to the maximum likelihood260

(ML) estimation criteria (Dempster et al., 1977; Mari and Schott, 2001; Mari261

et al., 1997). The Kullback-Leibler distance between the distributions asso-262

ciated with the states (Tou and Gonzales, 1974) was used to assess the final263

model. Two states that are too close are merged and the resulting model is264

retrained.265
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In order to describe directional processes as time series (here longitudinal266

series), mainly linear (or left-to-right) HMM models are used. In these models,267

once the state has been visited, it cannot be reached again. In other words,268

the transition probability between state i and state j, aij, is set to 0 if i > j.269

On the contrary, in ergodic models all the transitions, retrotransitions (from270

i + 1 to i), as well as distant transitions (between i and i + 2, i + 3, etc.,271

are authorised (Fig. 1). Such models are used, for instance, to analyse agri- Fig. 1272

cultural or genomic data. Indeed, they reveal repetitive patterns, such as273

crop rotations or protein promoters (Le Ber et al., 2006; Eng et al., 2009).274

This can also be interesting for detecting similar (characterised by the same275

distribution) but distant river segments or reaches; therefore both linear and276

ergodic models are considered in the following, written respectively lHMM and277

eHMM.278

3. Comparing the principles of the methods279

3.1. Algorithms280

All methods considered perform clustering, contrary to another type of281

classification methods that tries to recognise predefinite patterns. They dif-282

fer mainly in their focus on aggregating or disaggregating. The HMM method283

is somewhat different, as it works with a fixed number of states equivalent284

to clusters throughout the procedure, though it is always possible to resume285

the procedure with another number or to merge clusters. The methods are286

described according to five functions usually performed by subalgorithms287

(Table 1). Since these methods are not necessarily dedicated only to per-288

form delineation, some features related to their potential to deliver other289

information will be discussed below. These subalgorithms are:290

• Separation: How does the method decide there is a discontinuity, or291

in the HMM method, a more or less steep change?292

• (Retro)propagation: Once a new step has been found, is there a293

correction of reaches found before?294

• Merging: Is there a procedure for merging two adjacent reaches after295

they have been modified if they have become too similar?296

• Stopping: What is the criterion to stop the procedure at an acceptable297

(or significant from a statistical standpoint) level?298
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Table 1: Comparison of methods according to embedded algorithms

Heterogeneity
tests (HT)
(Pettitt,
Hubert)

Contrast
enhancing
(CE)

Spatial
constraint
clustering
(SCC)

Hidden
Markov
Model
(HMM)

Separation
Extremum of
statistical
criterion

Separation
equation

Similarity
criterion

Likelihood
maximum
on the
entire data
set

(Retro)-
propagation

No
Possible
gene-
ralisation

Yes

Merging No
Possible
gene-
ralisation

Similarity
criterion

Similarity
criterion

Stopping
or control
of output
resolution

Statistical
risk or
predefinite
max. size

Predefinite
max. size
or failure of
separation

Criterion
based on
intra- and
inter-
variances or
threshold
on
similarity

Maximum
number of
iterations

Prioriti-
sation

Same as for
separation
(error
minimisation in
Hubert
method)

Extremum
on
subintervals
of a
statistical
criterion

Many
variants

Irrelevant
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• Prioritisation: When the procedure has been performed up to some299

order, what criterion should be used to choose the next reach to be300

tested for splitting (irrelevant for the HMM method)?301

Table 1 presents a synthesis of the methods characterised by the subalgo-302

rithms embedded. Complementary comments are given hereafter.303

• The column on HT methods is divided into two, because of the al-304

ternative of stopping either on the number of reaches or on a statistical305

test.306

• The column for the HMM method has a two-line cell and a cell la-307

belled irrelevant, which confirms that the method is atypical.308

• (Retro)propagation and merging were attributed to CE methods309

but not to HT methods. It would be contradictory to the principle,310

though it would be possible to do so for any method. For the CE311

method, it seems more acceptable; but in this case, with the loss of312

the separation equations, the possibility of a stochastic model of sub-313

intervals built only on the separation points is also lost (because the314

variable under study is no longer determined by the points of separa-315

tion).316

3.2. Other features317

3.2.1. Parameterisation318

The methods under study have generally one or several parameters, mainly319

in the stopping criterion, which controls the result and particularly the num-320

ber of reaches found. This will be discussed in the empirical comparison,321

section 4.4.322

3.2.2. Multidimensional extension323

The longitudinal approach is often associated with geomorphic typolo-324

gies. As shown by previous authors (Mosley, 1987; Schmitt et al., 2007),325

geomorphic typology is based on a set of variables to try to summarise the326

complexity, often based on exploratory multivariate statistics. Gurnell (1997)327

studied the hydraulic thresholds along a fluvial continuum using a discrim-328

inating factorial analysis to test whether a statistical difference is observed329

among four reaches initially distinguished according to a set of criteria such330

as specific limits (the tidal influence, infrastructures) but also geomorphic331
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characteristic (mean depth, mean width, wetted section). It may therefore332

be interesting to directly segment a river using several variables rather than333

to combine independent delineations or to modify a univariate one in a second334

step. Though a benchmark of the methods on multidimension variables is not335

within the scope of this paper, their potential for generalisation must not be336

overlooked. The HT methods, based on statistical tests on one-dimensional337

distributions, are the most difficult to generalise. In the CE method, the338

equations of separation are clearly attached to dimension 1, and the choice339

of the next segment candidate to be divided is not difficult to generalise.340

The easiest generalisation is probably to use separation equations on a one-341

dimensional multifactorial component. In their principles, the SCC and HMM342

methods are able to deal with multidimensional variables.343

3.2.3. Extension to a river network344

This question is also related to the need for segmentation for river typol-345

ogy. All the methods can be applied separately on different tributaries of a346

river network. The point is to retain a reasonable number of reach classes (or347

to describe them by a reasonable number of states). Only SCC and ergodic348

HMM methods are able to do this. For the other methods, the classification349

must be done in the second step. The SCC and ergodic HMM are moreover able350

to take into account links and nodes.351

4. Empirical comparison on real and theoretical cases352

4.1. A real case study353

We suggest exploring here the longitudinal pattern of the active channel354

width (i.e., combined unvegetated bars and low-flow channel width), which355

is a key parameter for delineating geomorphic reaches defined by a homoge-356

neous planform and considered a good proxy of ecological assemblages (Fris-357

sell et al., 1986; Thorp et al., 2006; Poole, 2010). A braided reach is very358

different in terms of habitat template from a meandering or a straight reach359

(Amoros and Petts, 1993; Thorp et al., 2006), and channel width is the pri-360

mary factor discriminating planform on rivers with active bedload transport361

and bar development. The active channel width is therefore a good para-362

meter for testing such statistical techniques because its longitudinal pattern363

can be strongly segmented with homogeneous reaches associated with nat-364

ural and human controlled discontinuities (e.g., change in sediment regime at365
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confluences, valley morphology, diking, damming, etc.). These spatial struc-366

tures are usually superimposed on continuums that are also characterised by367

a general increase in channel width downstream as a result of the discharge368

increase. The continuum of the Drôme River (SE France), a complex plan-369

form gravel-bed that is already well known in terms of geomorphology (see370

Aubry and Piégay, 2001; Alber and Piégay, 2010) was chosen to explore the371

behaviour of the algorithms. This case is used to run all the methods, but372

also to help design theoretical templates. First of all, this continuum was373

disaggregated within elementary 25-m-long spatial units (generally plotted374

with a 100-m-long step), providing information at a finer scale than the one375

corresponding to the geomorphic reaches, as explained by the previous au-376

thors. The data used in this paper are every tenth of these segments, to have377

reasonable computing time with the slowest methods.378

4.2. Testing the methods379

Theoretical patterns are useful to exhibit differences between methods380

and to assess their capacity to deal with various features of spatial stuctures.381

However, the choice of such patterns is not easy and must take into account382

the structures encountered in the real world and the underlying models. Pat-383

terns too close to theoretical models will probably be easily recognised by384

the corresponding methods and were not representative of real problems. On385

the other hand, it makes no sense to check a method against a case obviously386

in contradiction with its assumption. The necessarily intermediate method387

is an abstraction of real cases, using mainly theoretical patterns with cer-388

tain testing aims. Lubes-Niel et al. (1998) conducted a comparable study on389

hydrometeorological data, assessing the power and robustness of statistical390

tests on data that violated the test assumptions. Our aim differs in that it391

introduces these patterns instead of alternative statistical assumptions.392

Fig. 2 provides examples of longitudinal patterns of active channel widths.393

When applied to the Drôme main stem between km 0 and 75 (nearly 26.5394

km upstream from the Rhône confluence) for which the mean width is 60.1395

m (± 52 m) ranging from 5 to 330 m (Fig. 2), different observations can Fig. 2396

be made: (i) the longitudinal structure is characterised by a rough gradient397

with the width increasing by 1.07 m/km. This value is a mean calculated398

from the linear trend linking the width per segment with the longitudinal399

distance. Nevertheless, this series is also characterised by local peaks such as400

at km 30 or 54. (ii) Plateaus are also common longitudinal structures (e.g.,401

homogeneous reaches in terms of mean channel width) separated by stepwise402
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shifts or gradients (such as km 7-12, 13-20 or 70-74). However, plateaus403

are not dominant and can have high inner variability. Transient structures404

are frequent and succeed one another downstream. We then expect to dis-405

tinguish segments with a signal characterised by smoothed hills and valleys406

(understood on the graphs of any variable, not in real geographical space).407

The focus on km 20-23.5 (Fig. 2B) shows a clear step separating a long nar-408

row reach with an abrupt widening (km 21.4). The focus on km 61-70 shows409

a local variability where it is difficult to distinguish homogeneous reaches,410

possibly thresholds at km 63.8 or 65 (Fig. 2C). The different methods were411

applied to the entire watercourse and plotted separately from km 0 to 75412

(Fig. 3) and from km 75 to 101 (Fig.4) with a zoom from km 81 to 87.5 Fig. 3,4413

showing the transition areas found by the eHMM method:414

415

• Only one threshold is detected by all the methods distinguishing clear416

separate reaches in terms of mean width and inner reach variability (A417

on Fig. 3), F on Fig. 4 missed only by the CE model.418

• The number of reaches, at this stage not very closely controlled, varies419

from 6 (lHMM) to 12 (SCC) and 15 for eHMM, but with repetition in the420

last case.421

• For a moderately large number of states, the eHMM graphs are made422

easier to read by considering areas with high frequency change as tran-423

sition areas (Fig. 5). Fig. 5424

• Some methods provide a wide range of reach lengths with very short425

lengths (Pettitt, CE, SCC methods), whereas others provide reaches with426

more homogeneous lengths (Hubert, eHMM, lHMM).427

• The aggregation patterns of lHMM and Hubert are very close as are those428

of the Pettitt and CE methods. The SCC is more specific and also more429

detailed than the others.430

• eHMM provides a good image in the sense that it detected all the thresh-431

olds detected by one method or another with fairly homogeneous reaches432

in terms of length.433

• The Hubert test is also fairly efficient, separating the different main434

structures.435
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• Its simplified version differs only by a minor undetected threshold (G436

on Fig. 4).437

• The wide reaches corresponding to braided sections are not well de-438

tected. Peak B (see Fig. 3) is not detected by the Pettitt or the CE439

method, it is fairly narrow for Hubert and lHMM compared to SCC and440

eHMM. Inversely, peak C is well detected by the Pettitt tests, suggesting441

a long reach similar to lHMM, whereas the SCC method does not detect442

any reach. CE, Hubert, and lHMM suggest different length.443

• Minor thresholds (D, E, or F) are again variously detected.444

4.3. Choosing typical theoretical templates445

This comparison demonstrates the need to better understand the effect446

of local variability and not only the difference in means, which may also be447

linked to the resolution of the elementary objects (e.g., the number of indi-448

viduals in the series), but also the position in the series. In addition, the449

behaviour of the methods needs to be tested with curvilinear structures to450

better understand the threshold variability between methods.451

The methods under study are generally and originally dedicated to identify452

stepwise shifts. The behaviour of the methods, when reaches have more453

curvilinear features or transitory reaches are gradual, is less well understood.454

Consequently, the patterns (Fig. 6 and Table 2) are built with stepwise Fig. 6455

shifts, but transition segments are introduced, using gradients or pieces of456

sine functions (on less than a wavelength). As the methods may be sensitive457

to structures at different scales, the ability to recognise a particular elemen-458

tary pattern may depend on other nearby patterns. A short step with a459

gradient in template 1 and with a long step in template 2 is intended to test460

this hypothesis.461

The expected output from the comparisons are:462

• assessment of parameters (thresholds) giving robustness to the detec-463

tion;464

• control of the number of reaches; and465

• (optionally) detection of reaches with similar properties (here width).466
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Table 2: comprehensive description of templates (with abscissas of points for resolution 1)
template’s
number

Description definition

1
With
gradient

Plateaus =400 on intervals (1,21),(87,91),(97,108);
=600 on (22,41) ; =0 on (63,86),(92,96);
negative slope between 42 and 62

2
Short and
long steps

Plateaus =100 on (1,50), (61,70);
=200 on (51,60), (71,200) ; =220 on (201,300)

3
Increasing
amplitudeb z=l Plateau after l=250

4a Symmetryb z=100c Plateaus up to l=33 and from l=347
a) For three methods only, see Fig. 13
b) Sine function: s = 200 + z sin

(
l−150

25

)
/sin(4)

c) An oscillation of 1.5 wavelength between plateaus (not used in this paper) is obtained
with z = 100, truncated at l=50 and l=250

4.4. Condition for a meaningful comparison on theoretical cases467

Choosing meaningful and fair criteria for comparison is not the least dif-468

ficulty. If the methods are compared with the criterion used to optimise one469

and only one of them, there is no uncertainty on the benchmark; but to avoid470

more subtle bias, comparing methods at similar levels of aggregation is rec-471

ommended, at least in the first step. The practical application may constrain472

the size or the number of the segments to find. Generally, each method has473

a parameter governing this number.474

A comprehensive study of the sensitivity of all the methods to their para-475

meters is not required to assess the influence of the parameter governing the476

number of reaches obtained. The number of reaches happens to be directly477

the parameter of several methods (CE, Hubert, HMM), and in the case of the HT478

methods, it is easy to run the method for a level of risk that accepts a large479

number of reaches and to save and plot the number of reaches as a function480

of the parameter. The case of the SCC method is different, as plotting the481

relationship between the number of reaches and the affinity threshold, which482

is the relevant parameter, requires running the program for many values of483

the affinity threshold.484

Original data have a given resolution (possibly dependent on the objective of485
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the acquisition), but may be aggregated at a lower resolution and the meth-486

ods may be sensitive to this resolution. The method may also be sensitive487

to high frequency variations, which are not within the scope of the delin-488

eation. In synthetic data, these variations are simulated by a noise added489

to the raw templates in Fig. 6. The noise used in the following was drawn490

from a uniform distribution, which is not the type of distribution assumed in491

the underlying models (but we are not checking the identification of a model492

against data simulated with this model). Patterns with and without local493

variability are presented in Fig. 7 to 12, knowing that the templates without494

local variability may be too far from real data and from underlying models.495

4.5. Comparisons of methods applied on theoretical cases496

As a consequence of the pitfalls mentioned in section 4.4, three testing is-497

sues are considered: (i) the sensitivity of algorithms to parameters controlling498

the number of reaches, (ii) the sensivity to resolution and inner variability,499

and (iii) the resilience of the methods against the introduction of patterns500

(such as gradients and hills) not supported by the stochastic models under-501

lying the methods. Note that these three issues may interfere and that the502

same result may be looked at from different points of view.503

4.5.1. Sensitivity to parameters controlling the number of reaches504

The study was conducted for the three resolutions (0.5, 1, 2) for the505

Pettitt method (Fig. 7). The number of reaches is nearly linear with the Fig. 7506

parameter log(α) and highly dependent on the resolution, which implies that507

it is far from its original meaning in the statistical test. The gradient is508

represented by very unequal steps. The last narrow step is the first one to509

be missed when the number of reaches decreases. For the SCC method, as510

the computing time is very long, it was done only for resolution 0.5. Fig. 8 Fig. 8511

shows a very strong nonlinearity, which means that it is difficult to fit a given512

number of reaches. Moreover, a number of major steps are missed until a513

large number of reaches is obtained.514

515

4.5.2. Sensitivity to data resolution and to inner variability516

The results are also dependent on noise. Fig. 9 to 11 show the results of Fig.9517

six methods out of seven, as the linear lHMM is presented for the case without518

noise, on the four templates, and the eHMM for the case with noise, knowing519

that the identification algorithm of the latter sometimes fails without noise.520
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Both variants of the Hubert-Kehagias model are represented, which are very521

similar. The first template is presented in Fig. 9 for resolution 2 and in522

Fig. 10 for resolution 0.5. As all the methods have problems capturing the Fig. 10523

pattern with an overly low resolution (length step 2), we studied the other524

templates only with the highest resolution (length pace 0.5). The second525

template (Fig. 11) shows that the Pettitt and contrast-enhancing methods Fig. 11526

do not detect the small last step, while the other methods see it and detect a527

short reach before the step that was generated by the random process. The528

results of the third template in Fig. 12 show that noise generally improves Fig. 12529

the method’s performance (except for SCC). The Hubert method, simplified530

or not, and the HMM and SCC methods without noise yield similar results; while531

the Pettit and contrast-enhancing methods tend to concentrate more reaches532

in areas of greater variation. On the real case, the sequential methods (Pet-533

titt and contrast-enhancing) miss the first peak. The others obtain similar534

results. As for real cases, for templates with noise and for a large number of535

states, the eHMM model can yield a very large number of very small reaches536

with the same mean.537

538

4.5.3. Performance on gradients and curvilinear profiles539

The Pettit and contrast-enhancing models appear to be error-prone in the540

presence of a gradient (Fig. 10). Contrary to other methods, they split the541

gradient into very unequal segments, so that it would be impossible to design542

a post-treatment to identify a gradient. The other methods, though able to543

‘recognise’ the gradient, may be disturbed in another way: the SCC and lHMM544

models (forced with a small number of states) do not see the narrow step545

on the right-hand side of the profile. In template 3, though it is difficult to546

say what should be the best delineation, the results seem better with noise547

than without, except for the SCC method. In the case without noise, again548

a separation exists between the Pettit and contrast-enhancing methods on549

one hand and the other methods on the other hand, with a longer segment550

delineated at the top of the hill in the first group.551

4.5.4. Treatment of longitudinal repeatability and symmetry552

The point of breaking the symmetry in original data is not that important553

in the real application, as symmetry does not exist in real river networks.554

Even if the focus is not on the identification of periodic structures, it can be555

expected that the same pattern should be recognised when repeated along556
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the river. Fig. 13 shows the results on a symmetrical pattern, which is Fig. 13557

not developed for all methods. Sequential methods such as HT are unable558

to provide symmetrical segmentations from symmetrical patterns (Fig. 13-559

left). Fig. 13 (centre) shows that the nonsequential Hubert method (and560

SCC, not represented) may also be affected by side effects (the symmetrical561

sine function is not exactly centred). Fig. 13 (right) shows the CE method,562

which is the only one to separate the increasing and decreasing parts of a563

function, which may be valuable for hydraulics issues.564

5. Discussion565

The interpretation of the comparisons to help select a method is conven-566

tionally based on theoretical considerations, empirical results on theoretical567

or real cases, and computing times. This latest point is not discussed here568

as we used codes under different systems and written in different languages.569

The theoretical question is the nature of the underlying model: continuous570

or discontinuous, periodic or aperiodic, univariate or multivariate.571

At the hydrographic network scale, scientific debate continues about the572

existence and type of discontinuities and homogeneous reaches. Some au-573

thors consider that discontinuities are arbitrary, the river course being mainly574

characterised by a transitory form. This is notably the case between channel575

patterns, given that the river often passes progressively from a truly braided576

pattern to a truly meandering one with transitory hybrid patterns between577

the two. This is the essence of the so-called geomorphic continuum. Other578

authors considered that discrete structures segment the continuum and con-579

sidered this continuum a set of longitudinal homogeneous segments/reaches580

with distinct properties. In this debate, the hydrographic networks, or at581

least long segments of several tens of kilometers are recognised as complex582

features characterised by gradual changes downstream or distinct homoge-583

neous reaches depending on the observation scale as well as the indicators584

selected. Amongst the different geomorphic variables, the average channel585

slope is most often a continuous variable, whereas the average channel width586

is more frequently characterised by abrupt discontinuities.587

Whether we need an exclusive separation of reaches or accept transition areas588

will influence the choice of the method. The tests done here confirm that the589

longitudinal patterns are complex, combining plateaus, gradual transitions,590

clearer steps, local peaks, and period structures of different amplitudes and591

frequencies. It is therefore difficult to be confident with a single segmenta-592
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tion method and comparisons between them are useful to distinguish robust593

discontinuities and others that are less significant.594

Four key comments emerge from this comparison: (i) Only part of the mean-595

ingful geomorphic pattern is seen if we consider only one variable. We must596

consider this type of approach as a first step in the geomorphic characteri-597

sation, and this variable must be selected carefully because its segmentation598

will have consequences on the calculation of the other variables. We consider599

the active channel or the floodplain widths as good preliminary geomorphic600

variables for establishing a first clustering because they support major plani-601

metric discontinuities and are then fairly integrative whereas the slope may602

show for example more gradual evolution longitudinally. (ii) The longitudinal603

structures are dynamic in time and are adjusted at a different time scale, but604

it is difficult to infer these dynamics from a snapshot of longitudinal struc-605

tures. Multitemporal series of a single variable should also be consistent to606

distinguish permanent structures from transitory ones in time. (iii) We still607

know little about scaling, how the different structures are nested within each608

other. Following Frissel et al. (1986), the conceptual framework is clarified,609

but it is not validated by data. It is still unclear whether the scale-dependent610

structures are nested or partly independent so that chaotic organisation may611

prevail over nested organisation. (iv) The signal results from different drivers612

so that its sequencing based on a single statistical procedure (threshold, peri-613

odicity, or gradient detection) is a significant simplification; but we first need614

to better understand the scale organisation to reconsider which statistical615

tools could be appropriate, whether or not they are combined.616

The identification of periodic structures is hindered by the multiplicity of617

spatial signatures (monotone, periodic, chaotic, variously stationary, etc. of618

geomorphic variables, the scalar dependence of fluvial forms and their spatial619

variations, and the unclear consequences of measurement errors in data.620

Some periodic structures exist within some of the reaches because of hy-621

draulic processes structuring channel forms, notably along sections charac-622

terised by sequences of pools and riffles (Montgomery and Buffington, 1997),623

which may provide inner disrupting structures complexifying the detections.624

Several statistical tools, such as spectral analysis or auto-correlation, usu-625

ally used to describe temporal organisation, have already been applied to626

characterise longitudinal structures along river continuum, notably to high-627

light alternating hydraulic features. The Fourier transform has been used to628

show the longitudinal organisation of the water velocity framework (Hardisty,629

1993) and the channel width and slope (Nakamura and Swanson, 1993). Spa-630
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tial auto-correlation functions, Geary’s c and Moran’s I mainly, more rarely631

non-ergodic correlation and covariance, have been applied to illustrate the632

spatial regularity of hydraulic structures or fluvial forms downstream (Aubry633

and Piégay, 2001). Madej (1999) calculated the Moran’s I to characterise634

the longitudinal regularity of pool-riffle sequences along a long profile and635

the autocorrelation lag as a scalar index (frequency of changes in geomor-636

phic features). The autocorrelation functions were also used to evaluate the637

periodicity of hydraulic parameters (grain and form roughness), the index be-638

ing introduced in hydraulic formulae to predict mean flow velocity (Clifford639

et al., 1992). The longitudinal structure has also been studied in terms of the640

probability of the occurrence of geomorphic features (pool, cascades, rapids,641

riffles, etc.) using the Markov chain (Grant et al., 1990). The aim of period-642

icity detection, different from ours explained in the introduction, is then to643

identify the frequency of a given facies sequence (the pool-riffle sequence for644

example) using a transitional probability matrix where each cell corresponds645

to the probability that a facies can follow another one downstream. The size646

effect has also been considered in such studies, based notably on the fractal647

analysis at a hydrographic network scale (Gao and Xia, 1996).648

Periodic structures were not considered the subject of this study but only as649

disturbances likely to be encountered when focusing on segment/reach scale650

for which discrete structures with fairly clear boundaries and nonperiodic651

structure seems to be easily detected. Consequently, we discarded the meth-652

ods dedicated to recognising periodic structures because we assume they were653

prevailing at a local scale but are not encountered at the scale of the river654

reaches. Nevertheless, this comparison of algorithms showed that sinusoidal655

structures are frequent, sometimes periodic, and that establishing clear dif-656

ferences in scale levels is difficult.657

Beyond the undeniable result that different methods yield different results,658

the comparison on theoretical templates cannot settle the scientific debate659

but can contribute by bringing out the biases stemming from the methods.660

No method is absolutely superior to all the others. However, the methods661

that are run sequentially (the partition at order n + 1 takes all points of the662

partition at order n), the Pettitt and contrast-enhancing methods, which are663

consequently faster, have some propension to determine segments that are664

too unequal in length. This suggests a flaw in the choice of the next reach to665

divide rather than on the detection of heterogeneity. The Hubert method,666

its simplified variant, and the HMM methods produce — with adequate pa-667

rameterisation and a reasonable number of reaches — very few failures in668
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detecting subpatterns introduced in the templates.669

The interpretation problems with the interference of parameterisation is not670

a methodological issue limited to a benchmark. In real application to large671

data sets, it is unlikely that a method might be optimal at any scale and672

on the whole network. So the nature of solutions found with nonoptimal673

parameterisation is part of the problem. In a large network, we should also674

have to take into account the upstream-downstream trends that appear in675

the observed data.676

Algorithms are moderately sensitive to noise. We did not multiply the num-677

ber of trials by tuning the amplitude of noise, but only studied a few cases678

with and without noise. The latest case is an extreme and unrealistic simpli-679

fication, in contradiction with the assumptions underlying models. However,680

it shows that the methods generally resist this simplification with the adapted681

parameters and changes in patterns found. In particular, undisturbed seg-682

ments with constant gradients are easily recognised as a sequence of equal683

subsegments, allowing post-processing; but this procontrainperty is lost when684

there is noise.685

Let us finally come back to the ‘other features’ of section 3.2, parameteri-686

sation, multidimensional, and river network extension. The benchmark was687

done on univariate series and highlighted only the parameterisation issue.688

However, as stated above, delineation is often the means for drawing up a689

typology that can be used as a tool for sustainable river management or for690

further scientific investigation. In this context, the main aim is to select691

the appropriate variable, the one that is sufficiently integrative to provide a692

preliminary segmentation and to choose the appropriate algorithm to iden-693

tify the proper boundaries. Transient gradients and merging of neighbouring694

segments can be performed at a later stage, for example, by linear correla-695

tion and clustering. As for the last one, it is also better from a geomorphic696

point of view because it is based on a wider set of variables.The delineation697

methodology must be adapted to the ultimate aim.698

6. Conclusion699

Four templates were designed as a trade-off between realism, simplifica-700

tion, and low satisfaction of the assumptions underlying the methods under701

study. On these templates and on real data, seven methods belonging to four702

families were run.703

Thresholds of statistical tests and other parameters control the number of704
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reaches obtained. Constraining the number of reaches, whether or not it is705

directly a parameter of the method, is useful to obtain comparable results706

for different methods. However, this number may be difficult to control in707

the SCC method because of the possibility of a critical value of the affinity708

threshold parameter.709

Benchmarking should be done first, allowing ‘optimal’ parameterisation of710

each individual method; secondly looking at downgraded application con-711

ditions as it is unlikely that optimisation can be done simultaneously on712

different parts of a hydrographic network. These downgraded parameterisa-713

tions result in omitting certain patterns that are obvious from a naive point714

of view. This behaviour may depend on the location of the pattern in the715

system.716

In particular, the thresholds and parameters ensuring a given number of717

groups depend on the resolution of the data; but even if the number of718

groups is forced to equal values, the partition will not be the same at differ-719

ent resolutions. As the meaning of statistical tests — their interpretation720

as the probability of exceeding a threshold — is somewhat dubious when721

they are applied in a context different from their fundamental hypothesis;722

the thresholds become mere parameters, possibly used outside their nominal723

values, tuned to satisfy other criteria.724

It should be noted that broader assumptions are allowed by the ergodic HMM725

method. If delineation of homogeneous and exclusive segments is not a com-726

pulsory objective, it may be interesting to analyse the watercourse with this727

method.As it is able to point out patterns other than steps, such as repetition728

of patterns, transition areas or high frequency alternance of substructures,729

without increasing the degree of freedom, it allows to revisit the objectives of730

delineating homogeneous segments and at least to highlight its arbitrariness.731

In other words, the method reveals continuum and discontinuum.
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Figure 1: Topology of an ergodic HMM: the dashed lines correspond to the authorised
transitions in the ergodic model vs. the linear model
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Figure 2: The Drôme River showing (A) longitudinal evolution of the active channel width
showing a complex pattern with plateaus as well as hills, valleys, and gradients. Evident
stepwise shifts are observed (B) as well as reaches with a high local variability and less
evident shifts (C). Length of segments is 100 m
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Figure 3: Drôme River, active channel width, mean, and half standard error for reaches
found by all methods fitted on the whole river but represented on the upstream part
corresponding to Fig. 2. For ergodic HMM, homogeneous sectors for no less than six points.
For SCC, aff. thr. is the affinity threshold, which has the dimension of the variable.
Note that the Pettitt, CE and SCC methods are parameterised with more reaches than the
Hubert and HMM methods
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Figure 4: Part of Drôme River downstream reaches on Fig. 3. All methods with the same
optimisation as on Fig. 3. See zoom of the rectangle on the eHMM subfigure in Fig. 5.

Figure 5: Zoom (km 81 to 87.5) on the Drôme River, active channel width, ergodic HMM,
probabilities of six states. Left: probabilities of different states; centre: reaches separated
on most probable state; right: transition areas for less than six adjacent points having the
same most probable state.
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Figure 6: The four templates (without noise).
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Figure 7: Sensitivity to α (probability of 2nd type risk) and resolution in the the Pettitt
method, top: with noise; bottom: without noise; left: low probability of wrong acceptance
of homogeneity; right: high probability. Top and bottom graphs are all for resolution 0.5.
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Figure 9: 1st template, resolution 2. Left: without noise; right: with noise.
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Figure 10: 1st template, resolution 0.5. Left without noise; right: with noise. The linear
HMM is not optimal but presented to show the same number of states as the ergodic HMM.
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Figure 11: 2nd template, with noise, all methods.
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Figure 12: 3rd template. Left without noise; right: with noise.
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Figure 13: 4th template, treatment of symmetry in different methods. Left: Pettitt; centre:
Hubert(simplified); right: contrast-enhancing.
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