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Wavelet Packets of fractional Brownian
motion: Asymptotic Analysis and Spectrum

Estimation

Abdourrahmane M. Attb, Dominique Pastdr Gregoire Merciet

Abstract

This work provides asymptotic properties of the autocatreh functions of the wavelet packet
coefficients of a fractional Brownian motion. It also disseis the convergence speed to the limit autocor-
relation function, when the input random process is eithigaetional Brownian motion or a wide-sense
stationary second-order random process. The analysisenmnsome families of wavelet paraunitary
filters that converge almost everywhere to the Shannon paaay filters. From this analysis, we derive
wavelet packet based spectrum estimation for fractionalwBran motions and wide-sense stationary

random processes. Experimental tests show good resulesfionating the spectrum df/ f processes.

Index Terms

Wavelet packet transforms, Fractional Brownian motiorayGeode, Spectral analysis.

. INTRODUCTION

Wavelet and wavelet packet analysis of stochastic proselsage gained much interest in the last
two decades, since the earlier works of [1], [2], [3], [4]].[®oncerning the correlation structure of

the wavelet coefficients, and according to the nature of tpetinandom process, one can distinguish,
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first, some results [6], [7], [8], [9], [10], [11], [12], [13][14] dedicated to the wavelet transform of
certain non-stationary processes such as processes atitnary increments and fractionally differenced
processes. These references highlight that wavelet coefficiend to be decorrelated provided that the
decomposition level tends to infinity and the decompositioteril satisfy suitable properties. Second,
results of the same order holds true for stationary randasogsses as shown in [15], [16], [17].

In [17], one can find an attempt for the generalization of theodelation properties to the case of the
wavelet packet transform, when the input random procesti®sgary. On the basis of the framework
of [17], [18] proposes an extension to the case of the deal-wavelet packet transform. The results
stated in [17] and [18] stipulate that for stationary randomcesses, the limit autocorrelation functions
of the wavelet packet coefficients do not depend on the wapalgktet path and the decomposition filters
considered.

However, by using certain families of wavelet filters, it i9ahm in [19] that the limit autocorrelation
functions of the wavelet packet coefficients of band-limitede-sense stationary random process still
depend on the path followed in the wavelet packet deconipnditee. The decompaosition considered in
[19] is performed by using certain paraunitary filters thatvarge almost everywhere to the Shannon
filters (Daubechies and Battle-Lenfarfilters are examples of such families of filters). In fact, the
dependency of the decorrelation process and the waveletsfiites been highlighted earlier by [20]
and this dependency also appears in [14] which discussedettmrelation rate for the standard wavelet
packet decomposition, when the Daubechies filters are used.

More precisely, [21] shows that the results presented i §hd [18] concern only one path of the
wavelet packet decomposition tree, that is the approxonagiath of the standard wavelet transform.
The analysis of the limit autocorrelation functions cannetperformed independently of the type of the
decomposition filters or, equivalently, on the type of motiwarelet used because for the wavelet packet
decomposition, the shift parameter depends on the decatigpogvel and cannot be upper-bounded, so
that convergence criterion such as the Lebesgue’s domimateckergence theorem cannot easily apply
(see [21)).

This paper first extends the results of [19] when the input rangwoocess for the wavelet packet
decomposition is not constrained to be band-limited. Thespafso provides, as a main contribution, the
asymptotic autocorrelation functions of the wavelet packefficients for fractional Brownian motions.
We use the same formalism as that of [19]. The results obtainatplete those of [6], [7], [8], [9], [12]
which are dedicated to the standard wavelet transform ohetitmal Brownian motion.

The paper is organized as follows. In Section Il the asymptptioperties of the autocorrelation
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functions of the wavelet packet coefficients of stationamgdaam processes and fractional Brownian
motions are discussed. Section IV addresses the convergpred of the decorrelation process in order
to evaluate how well we can approach the limit autocorretefiinction of the wavelet packet coefficients.
This convergence speed informs us whether we can obtainautipe, a good convergence rate at finite
decomposition levels. As a consequence of the theoretisalts obtained in Sections Il and 1V, Section
V discusses wavelet packet based spectrum estimation,ibyg ssitable decomposition filters. Finally,
Section VI concludes this work. The next section provides dédimé and basic material used in the

paper (see [19], [22], [23] for further details).

I[I. BASICS ON WAVELET PACKETS

Let @ ¢ L?(R) and U be closure of the space spanned by the translated versiohs of
U = Closuré7,® : k € Z).

The wavelet packet decompositionGfis obtained by recursively splitting the spddento orthogonal

subspacesU = Wi o @ Wi andW,,, = W 12, ® Wji12,41, WhereW;,, C U is defined by
W, = ClosuréW, ,, . : k € Z),

and{W;, . : k € Z} is the orthonormal set of theavelet packet functionsn this decomposition, any

W n i is defined by
Wi (t) = T2 Wjn(t)
= 7o (2’j/2Wn(2’jt)>
= 2792W, (279t — k), 1)

and the sequend@l,, ), >o is computed recursively fronk and someparaunitary filters(H).—o,; with
impulse response@).—o,1 (see [19], [23] for details).

In this paper, we assume thdt is the scaling functionassociated with the low-pass filtd{, so
that Wy = & ([22], [23]). The decomposition spadég is then the space generated by the translated
versions of the scaling function. The recursive splittingldfyields awavelet packet treeomposed of
the subspace®;,,, wherej is the decomposition (or resolution) level andis the shift parameter.
For a given patiP = (U,{W,,};en) in the wavelet packet decomposition tree, the shift paramet

n=np(j) € {0,...,27 — 1} is such thatr»(0) = 0 and
j
np(j) =2mp(j —1) +¢ =Y &2, 2
=1
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wheree, € {0,1}, ¢ indicates that filterH,, is used at the decomposition lewglwith ¢ > 1 (see [19]
for details on paths and shift parameter characterization)

Consider a real-valued centered second-order randomgsdcassumed to be continuous in quadratic
mean. The projection o on awavelet packet spac®;, yields coefficients that define a discrete

random process;,, = (c;n[k])recz. We have, with convergence in the quadratic mean sense :

einlk] = /R X (1), i (t)d. 3)

In what follows, we are concerned by a family of scaling fimas (®[")),. that satisfy almost every-

where (a.e.) the following property

lim Fol'l = Fo5 (a.e), (4)

r—00

where ®°(t) = sin(rt) /7t is the Shannon scaling function. The Fourier transforn®ofis
FO° = Az, (5)

where 1\ denotes the indicator function of a given ge{da(z) = 1if z € A and I (x) = 0, otherwise).
The Daubechies and spline Battle-Lengastaling functions satisfy Eq. (4). The parametenereafter

calledorder, is the number of vanishing moments of the wavelet functmntifie Daubechies functions

[24] and this parameter is the order of the spline scalingtion for the Battle-Lemaé functions [25],

[26]. The decomposition fiIter(sHE[T])ee{Ovl} associated with these functions satisfy (see [24], [25])[2

lim H'" = H> (a.e). (6)

where (Hf)ee{oyl} are the ideal low-pass and high-pass Shannon filters. In theofabe paper, we
assume that!") for e e {0,1} are with finite impulse responses. This holds true for the Deliilee and

Battle-Lemaré paraunitary filters. It the follows that:

]

Remark 1: The wavelet packet functioWj[m’,g is obtained by a recursive decomposition involving
the wavelet functioniv"’: Wﬁ’k(t) = 2732wl (273t — k) where W,/ is defined fore = 0,1 by
Wil (1) = V2> “hllawll(2t — ¢) for everyn > 1, T being a set of finite cardinalittbecause we

teT
assume that the wavelet paraunitary filters with finite impuésponses).

The remark above will prove useful in the sequel. When the Straparaunitary ideal filtergls (low-
pass) andd? (high-pass) are used, then the Fourier transform of a wapeleket functionWﬁn is (see
[23], among others)

FW3, =215, . (7)
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The setA () is such thatA; () = A7, U AIG(n), whereA ., and Aij(n) are symmetrical
with respect to the origin, and (see [19], [23], [27])
Gn)r (Gn)+ 1)w
+
Ao = |2 0 5| (8)

with
G20+ o) = 2G(0) + € if G(¢) iseven ©)
2G(¢) —e+1 if G(¢) is odd
The decomposition spacl = U?® is then ther-band-limited Paley-Wiener spacethat is the space
generated by the translated versions of the Shannon scaiimgidn ®°. The Shannon wavelet packet

tree and the frequency re-ordering induced by the pernautdti are represented in figure 1.

US
W3, W3,
W3, W3, W3, W3,

[07 %] [%’%] [31 E] [%7%} [h 7T] [%Tﬂa%r] [%)%T] [5%7?%]

Fig. 1. Shannon wavelet packet decomposition tree. The positiveop#ire support ot7—'Wﬁn is indicated below each node
W3 ,.. The wavelet packets associated with the sequéngez,es) = (0,1,1) define a path(U®, W3 ,,);=12.3. We have
e; = 0 (resp.¢; = 1) if the low-pass (resp. high-pass) filter is used for computing the wapelekets of decomposition level
j. The wavelet packeWs , 5, of this path is such that(3) = €32° + 22" + €12 = 3 and the positive part of the support of

S : .
W3 .3 I8 AIG(n@)) with G(n(3)) = 4.

From now on, an upper inde% (resp.[r]) will be used, when necessary, to emphasize that the

decomposition is achieved by using fiIte(er)ée{Ojl} (resp.(HE[ﬂ)Ee{Ql}).

[1l. ASYMPTOTIC ANALYSIS
A. Asymptotic analysis of the autocorrelation functions

Let P be a path of the wavelet packet decomposition tree. From therigéion given in Section II,
P is characterized by a sequence of nodgs:);>1, wheren = np(j) is given by Eq. (2) at every
decomposition levej. Let wp, 0 < wp < 7, be the value such that (see [19] for the existence of this
limit)
wp = lim GOPINT

Jj—-+oo 2J (10)
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Assume that the input second-order random proéessa wide-sense stationary with spectrum (power
spectral density)y € L>°(R). Then, the discrete random process, defined by Eq. (3) is wide-sense

stationary and its autocorrelation function is (see [1IB]]

1 127 mw
Rjnm] = 27T/Ry(w)|ij,n(w)|2€Z2 dw. (11)

Whenj increases, the behavior of the autocorrelation funcfign depends on the wavelet packet path

and the paraunitary filters used to decompaseMore precisely, we have:

Theorem 1:Consider a real-valued centered second-order randomgmdcassumed to be continuous

in quadratic mean. Assume that is wide-sense stationary with spectrume L>°(R). We have

(i) The autocorrelation functiomzjsm is

27 .
R3,[m] = / y(w) cos (2/mw)dw. (12)
7 T JAT om)

(i) If ~ is continuous atvp given by Eg. (10), then we have, uniformly in € Z

lim R}, [m] = ~(wp)d[m], (13)

j—too T

where/d|-] is the Kronecker symbol defined for every integee Z by

1 if k=0,
o[k] =
0 if k#0.
(iii) The autocorrelation functiomﬂ satisfies
lim R} [m] = RS, [m]. (14)

r——+00

Proof. Easy extension of [19, Theorem 1]. In this reference, the deosition space is the-
band-limitedPaley-Wiener spacand the spectruny of X is assumed to be supported[iar, 7|. These
assumptions are relaxed here by considering the projeofidh on the space generated by the translated

versions of the scaling function associated with the deasitipn filters used. ]

Now, assume thak is a centered fractional Brownian motion with Hurst paraenet We assume
that0 < « < 1, and that the path considered in the wavelet packet trge#sP,, whereP, is the path
located at the far left hand side of the wavelet packet tra¢éh P, corresponds to the standard wavelet
approximation path since the low-pass filter is used at evesplution level. For pattPy, there is no
convergence for the limit integrals involved in the compiota of the wavelet packet coefficients, with

respect to the wavelet packet functions considered in toikkwn addition, the cases =0 anda =1
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are irrelevant here becauae= 0 corresponds to a white Gaussian process and the spectsitieleof

the wavelet packet coefficients are not(R) for a = 1.
Let R(t, s) stands for the autocorrelation function & We have

R(t,s) = E[X(¢) X (s)]
2

g (o3 (6% o
= T (el sl — e — 5. (15)

Theorem 2 below requires assumptiodsl{A3) used in [12] to prove the existence of the spectral

density of the wavelet transform of a fractional Browniantioi.

Theorem 2:Assume that the wavelet paraunitary filtélﬁéﬂ,HY]) are with finite impulse responses
and that there exists some finite ordgrsuch that for every- > rg, the wavelet functionWl[r] satisfy
the following assumptions:

(AD (1+ (1) € L'(R),
®2 [wl'w=o,
(A3) sfp|w|<n )le[r] (w)/w) < oo for somen > 0.
Then, the discrete random proce#%, n > 1, obtained from the projection of the fractional Brownian

motion X on the wavelet packéwﬂ is wide-sense stationary and its autocorrelation funcigon

T 1 T 129 mw
R fm) = o / Yo | FWI (@) 22 o, (16)
™ JR
with
o?T'(2a + 1) sin(mar
al) = TR, a7)

WhereA;rG(n) is given by Eq. (8) and’ is the standard Gamma function.

Proof: Theorem 2 is a consequence of [12, Theorem 1]. In order to afg@lyTheorem 1] for the

wavelet packet functions, we need to show that e%@%k, j>1landne€ {1,2,...,2/ — 1}, satisfy

assumptionsA1l), (A2) and @A3); which simply follows from remark 1. Appendix A summarizthe

steps involved in the proof. ]

Remark 2:Under assumptiorA3), the integral in Eq. (16) is absolutely convergent for evgair (4, n)
with n # 0. Thus, from the Bochner’s theorem, we derive that, for a gjven1 andn € {1,2,...,2/—1},

the spectral density of the wavelet packet coefficiejgi"ﬂ§ of the fractional Brownian motiotX is:

T 1 T
(W) = = Yal @) FWI (W) 2.

Jn o
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By taking the Fourier transform of Eq. (1), we ha%/V][f;]L(w) = 2112F Wl (29w). Thus, we have

[r] ¥ [ (0F, N2
W) = 2@l FW @), (18)

where (see [19, Lemma 1])

i
r T w T W

fWT[L](w) = Ll_[l He[z](2j+17£) Fpl ](g)’ (19)

the sequencée;, es, . .., €;) being the binary sequence associated with the shift paeametith n of

the form Eq. (2).
Remark 3:Note that assumptionAl) is not satisfied for the Shannon wavel&® () defined by
WP () = 2W5 (2t) — W (8), (20)
where W3 (t) = ®3(t) = sin(nt)/wt. Thus, Theorem 2 does apply in order to obtain the analytic form

of the spectral density of the Shannon wavelet packet coefficief X .

Theorem 3:With the same assumptions as in Theorem 2 above, and unden@ssu
(A4) there exists some positive functigne L' (R) that dominates the sequen@de” Wlm\Q)T and satisfy:
Sup|,|<y 9(w)/|w|* < oo for somen > 0.
The autocorrelation functions of the wavelet packet coefiisieof the fractional Brownian motioX

satisfy

(i)

J )
lim R[-Tll[m] = 2/ Yo (w) cos (2?mw)dw
r—-+00 Js T AIG(n)
S
£ Ryulm] e1)
WhereA;fG(n) is given by Eq. (8).
(if)
lim R}, [m] = va(wp)d[m], (22)

j—-+o0

WhereRin is defined by Eq. (21) withy, given by Eq. (17).

Remark 4:As highlighted by remark 3, Theorem 2 does not apply in ordexttain the analytic form

of the autocorrelation functiof?

J7n1

n # 0, for the wavelet packet coefficients of a fractional Brownian

motion. The above definition (R}-S:n (second equality in Eq. (21)) shows that results similar tzséhof
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Theorem 2 still hold for the Shannon wavelet packets so thamy fEq. (21), we can define the spectral
density of the Shannon wavelet packet coefficients of a fraatiBrownian motion as

s 25—1 ,
’Yj,n(w> = T’Ya( )JIAJ G(n)( w)?

1

— %%(w)\fwﬁn(w)ﬁ, (23)

Where]:WJS,n(w) is given by Eq. (7); Withvjsm(O) = 0 since0 does not belong td\; ;) whenn # 0.

Proof: (of Theorem 3).
Proof of statement (i):

By taking into account [19, Lemma 1], and (i€, €2, . . ., ¢;) is the binary sequence associated with
the shift parameten; that is: if n is of the form Eq. (2), then we ha\EW},’i(w) = 202FW N (2iw),
with ZW given by Eq. (19). Thus, by taking into account Egs. (4) and (&),have thaf F v T]|2
converges almost everywhere \tﬁWﬁnyz whenr tends to infinity.

Since]Hg] (w)|<1forall¢=1,2,...,j, and because we assumeZ 0, we have also from Eg. (19)

that |}‘Wﬂ(w)| < 2927wl (2w)|. Thus, we have
Yo W) FWI ()2 < 2 ()| FW] (20) 2,

and by taking into account assumptig¥4), we have tha%(w)\}“Wj[”jL(w)F is dominated by the function
f(w) = 2974 (w)g(2w) which does not depends an Moreover, the functiory is integrable: indeed, by
setting K1 = 2/0°T'(2a + 1) sin(7wa), we have
f(w) _/mw
LG dw = A |w’2a+1dw
<

K5 1
< ——dw + / 9(2w)dw
/|w|<n jwlze 1 Jwizn

< 00 (24)

for everya, 0 < a < 1, and wherekX, is a constant such thatip,|,, (9(2w)/|w|*) < K2; the existence
of K5 andn being guaranteed by the assumptid).

It follows from Lebesgue’s dominated convergence theorea th

lim R[r][ ]

r—400

= lim (1 / (@) FW (W )|26i2j(k_£)“’dw>
2m

r—-+00

1 .
= 5 [ ) FWE, @) e - (25)
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Statement (i) derives from Eqg. (25), after some straightfosma@lculations by taking into account that
]—"an is given by Eqg. (7). One can easily check that integral in Eq) (2@&bsolutely convergent for
every pair(j,n) with n # 0, becauseifWﬁn(w)\ is compactly supported and 0 does not belong to its

support (see Eq. (7)).

Proof of (ii): Statement (ii) simply derives from Lemma 2 given in appendixfB? # Py, thenwp # 0,
0¢ A;fG(n) (which moreover is a closed set), and the functigiw|?**! is integrable onAjG(n) and

is continuous atup. [ |

From Theorems 2 and 3, we have thﬁt is wide-sense stationary and tend to be decorrelated when
bothr and; tend to infinity, with variancey, (wp) in pathP? # P, of the wavelet packet decomposition
tree. The following highlights that the Daubechies and tHmeBattle-Lemai@ wavelet families satisfy
assumptions of Theorems 2 and 3.

The Fourier transform of a Daubechies or a Battle-LemwzhveIetWF] of orderr has the following
form.

Fw) = B (w/2) Foll(w/2), (26)

where @'l denotes a scaling function arﬁi{r] the associated wavelet filter.

B. Properties of the Daubechies and the spline Battle-Leenfamctions

The following proves that the Daubechies and spline Battledmi® functions satisfy assumptions
(A1-A4) of Theorems 2 and 3. Note that all the Daubechies and Battigakie wavelet functions
satisfy assumptionA2) by construction (null moments condition, see [22], [23M).addition, since the
Daubechies wavelet functions are bounded with compactstff?], they satisfy assumptioi\(). The
Battle-Lemargé wavelet functions satisfy assumptiofil) as well because these functions are bounded
and have exponential decays [22, Corollary 5.4.2]. Sincamagtdon @A4) implies (A3), it suffices now
to check that assumptiorAg@) holds true for the sequences of Daubechies and Battle-liemaavelet
functions.

1) The family of Daubechies wavelet functions satisfies gssoim(A4): More precisely, we have

Proposition 1: The Daubechies wavelet functio(nWlT})T are such that

1

. w2
sin = | 3'{|w|<n}+31{|w|>n}> (27)

[r] 2
‘-7:W1 (2w)]* < K( |w[2

for anyn such0 < n < 27/3, where K > 0 is a constant independent of
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]

Proof: The Fourier transform of Daubechies wavelet funct
(26).
We have from [22, Lemmas 7.1.7 and 7.1.8] that:

of orderr is of the form Eq.

Fal(w)| < SR (28)
(1+ ‘w|)r rlog(2)+log(2)
for everyr =1,2,..., and thus, we derive
02
Foll g — 29
FO < o 29)
On the other hand, the Daubechies wavelet fiffé?] is defined by
) w2\ "
HY\(w) = =/ (12> By (w), (30)

where P, is a trigonometric polynomial (see [22], [23] for more dé&tpi From [22, Lemmas 7.1.3 and

7.1.4], we have thatup,, | P-(w)| < 2"~1. Thus, we get

‘1 _ eiw/Q‘r
2

w7

<ot ‘Sin —

7] <
AP < -

(31)

It follows that|H£T} (w)|] < |sin(w/4)] for |w| < 27/3 and the result derives by taking into account Egs.
(26) and (29), withK = C?2.
[
2) The family of Battle-Lema&i wavelet functions satisfies assumptiéw)( The Battle-Lema@é
scaling and wavelet functions are computed from the nomedlcentral B-spline of ordet. The Fourier

transform of its associated wavelet function is of the form @&®) with (see [23], [28], [29])

O (w+ )

1 w) = e sin(/2)") [ =575 S (32)
and
1 1
Fellw)l = 7 — (33)
\/ D ke [or2kmE
or, equivalently,
Foliw) = |2 /Bt (34)
where
_ sin(w/2 + k) |*"
00 = 3 B2 k) e
w\ 2r w L w 2r w
= (cos Z) @’"(5) + <Sln Z) @T(§ + 7). (36)
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Lemma 1:For everyr =1,2,..., the functionH{r] defined by (32) satisfy

sup |HINw)/w| < 1/v2. (37)
w|<m/2
Proof: If |w| < /2, then (see [25]) we hav®,.(w + 7) < ©,(w), and thus
Op(w+m) 1
O (2w) (sin(w/2))* + (cos(w/2))*" @?(zgi)ﬂ)
1
< 5 o (38)
(sin(w/2))"" + (cos(w/2))""
and since we assume /2| < 7/4, then we obtain
O, (w+m) or
0,2w) 7
and the result follows:
H(@)| _ g jo] sin(w/2)]"
wo| wl
1y _1|sin(w/2)]
— 27‘/2 1| sm(w/2)|r 1 ‘ Sln<w/ (39)
jw/2]
and for |w/2| < m/4, we have|sin(w/2)["~t < 2=+Y/2 and | sin(w/2)| /|w/2| < 1. |
Proposition 2: The Battle-Lema#é scaling functions satisfy
: (40)

i
5 X Yjw|>2n)s

|21 ()2 < Aypj<ony + ]

for everyr =1,2,....
Proof: For everyr = 1,2,..., we have from Eq. (33) thatF®[l(w)| < 1 for everyw € R. This

result follows from that

e ) Do e
(w+ 2km)2r — W2r (w+ 2km)2r 7 W2
keZ ]g;%

On the other hand, for every € R, there exists somg&, € Z such that) < w + 2kom < 27. Thus,

)RS S S
P (w+ 2km)2 (W + kom)?r — (w + 2km)?"
© Ktk
> (41)
~(2m)’
so that| Fol(w)|? < (27 /w)? = (27/w)? x (27/w)? ~2. When|w| > 27, we have(2r/w)? 2 < 1
for everyr = 1,2, .. .. It follows that|F®!" (w)|? < (27/w)? for |w| > 2. ]
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Finally, we have that the family of Battle-Lemarivavelet functions satisfies assumptidw) since
from Egs. (26), (37) and (40), we obtain

2 2T
2

r w
FWT (2w)? < = X Yuiczy + Yz <wisen) + 3 X Yjug>om) (42)

w?
Theorems 1 and 3 specify the asymptotic behavior of the whpeleket coefficients when using some
families of paraunitary filters that converge almost evergxghto the Shannon filters. The following
discusses consequences of Theorems 1 and 3. Due to the caynplethe convergence involved, the
key point is the convergence speed to the limit autocoiogland distributions. In fact, if the convergence
speed is fast, we can expect reasonable decorrelation afakelet packet coefficients for finitg and

T.

IV. ON THE CONVERGENCE SPEED OF THE DECORRELATION PROCESS

Consider a family of paraunitary filters satisfying Egs. (63l @second order centered random process
X being either fractional Brownian motion or wide-senseistetry with spectrumy. The convergence
speed to the limit autocorrelation for the wavelet packeffficients of X depends on two factors:

A. The convergence speed involved in Eqg. (6), that is, the speddeofonvergence to the Shannon
filters.
B. The convergence speed to the limit autocorrelation in the edsere the decomposition used is

achieved by the Shannon filters.

A. Convergence of paraunitary filters to the Shannon filters

Theorems 1 and 3 concern some paraunitary filters that appatithe Shannon filters in the sense
given by Eg. (6). According to these theorems, we can expattusing paraunitary wavelet filters that
are close to the Shannon filters will approximately lead to #raes behavior as that obtained by using
the Shannon filters. In this respect, the following illustsatow close standard Daubechies, Symlets

and Coiflets paraunitary filters can be to the Shannon filters. Tétaselard filters are derived from the

e = (Y5 ) )

Daubechies polynomial

so thatr describes the flatness (H([)r] atw = 0 andw = =« [30]. Figure 2 illustrates the convergence

speed for the scaling filters depending on their orders.
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Fig. 2. Graphs oi]H([f]| for the Daubechies, Symlets and Coiflets scaling filters. “FilterNafheenotes the filter type and

its order,r.

The Meyer paraunitary filters are also close to the Shannon filtdise sense that these filters match
the Shannon filters in the intervah-m, —27/3| U [—-7/3,7/3] U [27/3, 7]. The magnitude response of

the Meyer scaling filter (normalized by/+/2) is given in figure 3.

2 if wel-Z,%],
Ho(w) = vz _ 5 3]2 ) (43)
0 if wel-m-F]UlF,n]
It follows from figures 2 and 3 that we can approach the flatheshefShannon filters with finite
impulse response paraunitary filters. The following now askke the convergence speed when the wavelet

decomposition filters are the Shannon filters.
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Fig. 3. Magnitude response of Meyer scaling filter normalized by the ffdgt’2.

B. Convergence speed for the Shannon paraunitary filters

Consider a pattP associated with nodes (subband#)n);cn. The speed of the decorrelation process
in path depends on the shape of spectrgnof X in the sequence of nested intervals; ¢ (,))jen.

First, if v is constant iNA; ¢, for somejo > 0, that is, if y(w) = y(7G(n(jo))/2”) in
Aj) anie))» then it follows from Eg. (12) that for any > jo

mG(1(jo))

oo )o[m], (44)

}%in[NQ]:: 7(

and the wavelet packet coefficients are decorrelated in aplyaswul (j, ) of pathP, for every;j > jo.
Now, assume thay is approximately lineary(w) = aw + b in A;  cx(j,)), then it follows from Eq.

(12) that, in pathP and for every;j > jo,

B3, [m] = ( 5 )3[m]
Jra if m=0,
+ (45)
DN i gy £ 0,

Note thatA; (., is a tight interval when is large. Forj = 6, the diameter o\ (,,) is 7/2% =~ 0.05. It
follows that the assumptiomyis constant or linear id\; (,,)” is reasonable for approximating (piecewise
linear approximation of a function) the shape of the spectrufor large values of the decomposition
level, for fractional Brownian motions and for wide-sensatisnary processes with regular or piecewise

regular spectra.
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Eqg. (45) has two consequences. First, the convergence speedyihigh since the sequendg?2’
decay very fast wheri increases. Second, I&t!, X2 be two processes having spectra with linear shapes
ap andag in Aj g,y If 0 < a1 < ag, then we can expect that decorrelating procEsswill be sensibly

easier in the paths associated wit) ;(,,) than decorrelating process?.

C. Decorrelation speed, in practice

We first consider a random process with spectryim) = 1/w?, 0 < 3 < 2. The spectrum of such a
process is very sharp near= 0 and becomes less and less sharp whdncreases. Section IV-B thus
tells us that the decorrelation speed will be very slow in path characterized by a sequence of nested
intervals (A; ¢(»))jen for which the limit valuewp close to zero.

More precisely, figure 4 illustrates the decorrelation spémdpath P, /4 (denoted?,,, because
n(j) = 2773 so that the limit autocorrelation function ig(w/4)§[m]), in comparison with the auto-
correlation function obtained in paff, (for which, there is no convergence of the integrals invdlf@ar
computing the autocorrelation functions). It follows tluEcorrelation can be considered to be attained
with reasonable values for decomposition leyel 6 and filter orderr > 7 for path P/, whereas
coefficients of pathP, remain strongly correlated. Note that for a spectrynwith the form 1/w?,

7(0) = co and Theorem 3 does not apply for patp.

Now, we consider a stationary random process (generateddyg white noise with an autoregressive

filter) with spectrumy defined for0 < u < 1, by
Y(w) = (1= p)*/|1 = pe™P2.

For such a process, Theorem 1 applies even for Patand the decorrelation speed thus depends on the
shape of the spectrum in this path. Figure 6 shows that thedéaiion inP, is faster when the spectrum
shape is parameterized ly than when it is parameterized Iy with 1) < uo: that is when the shape

of the spectrum is less sharp. This confirms the role played dspectrum shape in the decorrelation

speed, as highlighted by Eq. (45). Spectra are plotted in figdog 51 = 0.5 and us = 0.9.

V. WAVELET PACKET BASED SPECTRUM ESTIMATION

We now address wavelet packet based spectrum estimatiahedrasis of Theorems 1 and 3. These
theorems provide a general non-parametric method for astim the spectrum ofX assumed to be
fractional Brownian motion or wide-sense stationary wigedrum-~. The principle of the method is

detailed below. Its advantages and limitations are digxligs the Section V-C.
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Fig. 5. Spectrumy for processX; (resp.Xs) with parameten,; = 0.5 (resp.u2 = 0.9).
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Fig. 6. Normalized autocorrelation functions of the wavelet packetficaits (j = 3,6, » = 1,7) of processesX; and X,
with parameterg,; = 0.5, u2 = 0.9, the spectra of these processes are given by figure 5. The apptaxinpath is considered.

For every set of parametejsn, r considered, the correlation is stronger for prooéy%(xz) than for processm (X1). The

J,n

decorrelation process is fast: Process spectrum is very sharp around the null frequency, however, thfigiests of this
process in the approximation path are sensibly decorrelated by usirdasigmaraunitary filters (Daubechies filters with order
r = T are used).

A. Wavelet packet based spectrum estimation

From Theorems 1 and 3, we have tﬂ%ﬁf}l[o] is close toy(mG(n)/27) with a good precision whep
andr are large enough since the absolute value of the differeateeen the two quantities can be made
arbitrary small: for every fixed) > 0, there exist somegy, = jo(¢) andry = r(jo, €) so that for every
Jj = jo and everyr > ro, |Rg.fll[0] — (G (n)/27)| < n. Thus the set of the variances of the wavelet
packet coefficients at decomposition leyg) {Rg’o"j%[o],n =0,1,2,...,2% — 1}, can be described as a
set of 27 estimates for the spectrum valugg(nG(n)/27°),n =0,1,2,...,2% — 1}.

Now, if the spectrumy is not very singular and if we choogg sufficiently large, then we can assume
that v is approximately constant i\; ¢, (this is reasonable because the diamete¥o of Ajo cn)
decay very fast to zero whejg increases). It follows that for any frequeney € [0, 7], the valuey(wy)

can be estimated by the varianB%“’]n [0] of the wavelet packet coefficients located at néglen), where
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n is such thatrG(n) /2> < wg < 7 (G(n) + 1) /2%.
Summarizing, assume that we identify sufficiently large valfier ; and ». We can thus sample
uniformly or non-uniformly the spectrum oX with respect to the valuegv,), chosen in[0, ]. For an

arbitraryw, € [0, 7], the estimation is performed along the following steps.

1) Compute the largest integgrso thatw, > pr/27, that is

{2jw5J

p=|—.

s

2) Compute the shift parameterby using the inverse of the permutatich

n=G"(p),

G~ being obtained from the Gray code (see [23])pof if p = Y5_, €277, with ¢ € {0,1},
then .
J

G'p) = (¢ Derq) 2" (46)
/=1

with the conventionsy = 0 and whered denotes the bitwise exclusive-or.

3) Sety(we) = R} ,[0], where R, [0] is the variance of the wavelet packet coefficients located at

node(j,n) (projection of X on W7 ).

B. Experimental results

The experimental tests conce2® samples of a (simulated) discrete random procéssith spectrum
y(w) o 1/wB. We consider the following wavelet filters for the decomgositof the input process:
Daubechies filters with order 7 and 45, Symlet filters with orden8 30, Coiflet filters of order 5 and
Meyer filters (see figures 2 and 3). The results presented argnetttat decomposition levels 7 and
9. The Welch’'s averaged modified periodogram method [31] withdow size2/*! — 1, J = 7,9 is
also used. The Welch averaged modified periodogram is one afdsé efficient methods for estimating
spectrum of long data [32]. We choose the window size equa’/td — 1 in order to get the same
number of samples of the estimated spectrum as for the wapatket method (at levef, we have
27 subbands and thug’ — 1 spectrum samples because the approximation path is noewwtt by
Theorem 3). The reader can find in [19, Table 1], some complemerteats for the estimates of the
valuesv/(\o),y@),ym)ﬁ/(;) as well as thei95% confidence intervals for 100 realizations of the
process with spectrum parameterized by s = 0.9 (see figure 5).

For a single test, a simple estimateof 3 is obtained by averaging over all the possible combinations

of the form 3(wy,ws) = — logqggj;)/log(i—j), with we > wy > 0. This (non-parametric) approach takes
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Fig. 7. Spectrum estimateda the Wavelet and Fourier-Welch method.

into account the errors made at every sample estimate asd bflects more precisely, the estimation
errors than extracting by a parametric method. The empirical mean of the estimatine estimation
error and the empirical variance of are given in table I. These values are those obtained over 25
tests based on different realizations of the random proéés3his table shows good performance of
the wavelet packet based spectrum estimation, in compadédhe Fourier-Welch method. Note that,
surprisingly, the best results for the wavelet packet nidhare not those achieved by filters with long
impulse responses (filters that are much closer to the Shanners)filthis is due to the fact that the
computation of filters with very very long impulse resporisasd thus, the computation of the wavelet
packet coefficients by using such filters, are subject to nualeinstabilities [23].

Figure 7 gives an estimate of the spectrum computed from caleasdon of X, in comparison with
the spectrum obtained with the Fourier-Welch method. Thisréidughlights the good behavior of the

wavelet packet method whenis close to the null frequency, in contrast to the FourietélWanethod.

C. Discussion

The main limitation of the method seems to be the number of Emmequired to decompose the
input random process up to 6, 7 levels (or more). Howeveg twdt if the spectrum shape is not very
sharp around certain frequency points, it is not necessagetompose up to 6 decomposition levels.
As an example, if we consider a random process whose spedrtimat of figure 5 fory = 0.9 , then

by using the Daubechies filters with order 7, we get (see [1QrEi®]) a good approximation of
1We have 102 (resp. 90) coefficients for the Meyer (resp. Daup}é8}-pass filter.
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TABLE |
EMPIRICAL MEANS, ERRORS AND VARIANCES, OF THE ESTIMATION OF« OVER 25 NOISE REALIZATIONS, BY USING A
FOURIER-WELCH AND WAVELET PACKET BASED METHOD. THE BEST PERFORMANCE OF THE WAVELET PACKET METHOD
ARE IN BOLD, IN THE TABLE. THE WELCH'S AVERAGED MODIFIED PERIODOGRAM METHOD WITH WINDOW size2’+ — 1,
J =7,91S USED AT DECOMPOSITION LEVELJ.

Method Fourier | Wavelet
‘Welch’ | ‘Daub[7] ‘Daub[45]' ‘Symlet[8]' ‘Symlet[30] ‘Coiflet[5] ‘Mey er
J ="
«=0.25 Mean &) 0.2563 0.2520 0.2534 0.2531 0.2546 0.2531 0.2548
| — Mean&)| 0.0063 0.0020 0.0034 0.0031 0.0046 0.0031  0.0048
10* x Var(a) 0.0526 0.0080 0.0271 0.0048 0.0710 0.0084  0.2290
«=0.50 Mean &) 0.5126 0.5049 0.5062 0.5061 0.5075 0.5060  0.5060
| — Mean&)| 0.0126 0.0049 0.0062 0.0061 0.0075 0.0060  0.0060
10° x Var(&) 0.6865 0.1967 0.3849 0.0474 0.3276 0.0894  0.3280
a=0.75 Mean &) 0.7712 0.7590 0.7612 0.7607 0.7612 0.7602 0.7624
| — Mean&)| 0.0212 0.0090 0.0112 0.0107 0.0112 0.0102  0.0124
10° x Var(&) 0.7520 0.2357 0.6134 0.0298 0.6650 0.1980  0.3396
«=1.00 Mean &) 1.0297 1.0135 1.0138 1.0142 1.0147 1.0146 1.0142
| — Mean&)| 0.0297 0.0135 0.0138 0.0142 0.0147 0.0146  0.0142
10* x Var(a) 0.0603 0.0085 0.0773 0.0104 0.0587 0.0168  0.1643
J=09.
«=0.25 Mean(&) 0.2520 0.2476 0.2490 0.2492 0.2504 0.2484  0.2520
| — Mean&)| 0.0020 0.0024 0.0010 0.0008 0.0004 0.0016  0.0020
10° x Var(a) 0.0032 0.0085 0.0214 0.0211 0.1027 0.0237  0.1392
«=0.50 Mean(&) 0.5033 0.4976 0.4992 0.5003 0.5040 0.4995  0.5027
| — Mean&)| 0.0033 0.0024 0.0008 0.0003 0.0040 0.0005 0.0027
10° x Var(a) 0.0100 0.0130 0.0210 0.0068 0.0308 0.0155 0.1185
«=0.75 Mean&) 0.7569 0.7486 0.7518 0.7505 0.7525 0.7511 0.7531
| — Mean&)| 0.0069 0.0014 0.0018 0.0005 0.0025 0.0011  0.0031
10* x Var(a) 0.1496 0.0806 0.1958 0.1564 0.4050 0.0845  0.3587
«=1.00 Mean(&) 1.0089 0.9993 1.0009 1.0031 1.0099 1.0036 1.0122
| — Mean&)| 0.0089 0.0007 0.0009 0.0031 0.0099 0.0036  0.0122
10* x Var(a) 0.0931 0.1154 0.3161 0.1976 0.6106 0.1117  0.2733

« v(0) at decomposition levelz 7,

e 7(m/4) at decomposition levels 5,

« 7(m/2) at decomposition levels 3,

« 7(m) at decomposition levels 2.
Around the null frequencyy is very sharp and 7 decompositions are necessary; othenessedecom-
position levels are sufficient because the spectrum is rdider

The first advantage of the wavelet packet based method is thicimof the spectrum estimatiovia
the technique described in Section V-A. Statistical propsertf the autocorrelation and the convergence

speed to the limit autocorrelation functions ensure thatareexpect good performance of the method by

DRAFT



22

using standard Daubechies or Symilets filters with order laiggr or equal to 7. The second advantage
of the method is that it is non-parametric: in practice, ib d@ used in many applications with r@o
priori on the spectrum shape. Wharpriori information is available, the method could also be improved
with existing techniques. As a matter of fact, if the spetiraf interest has priori exactly the form
1/wP, then we can estimaté by maximum-likelihood estimate as done for the wavelet Basethod

in [33], [34] or by techniques such as [35] if the observatisrtorrupted by additive white noise.

VI. CONCLUSION

The asymptotic autocorrelation functions of wavelet packefficients of fractional Brownian motions
have been computed for some paraunitary filters that appedgithe Shannon paraunitary filters.

The paper also characterizes the convergence speed to thadiimcorrelation and show that approx-
imate decorrelation can be achieved at finite decompositeeld even by using non-ideal paraunitary
filters.

The ideal subband coding yielded by the Shannon wavelet paedetmposition, the convergence of
some standard wavelet filters to the Shannon filters, and thepasiimproperties of the wavelet packet
autocorrelation allow for defining wavelet packet based spet estimation. This spectrum estimation
has been tested in the framework of fractional Brownian omtbut also applies to wide-sense stationary
random processes.

The new wavelet packet based spectrum estimation presemtdk ipaper derives from theoretical
results (those stated in Theorems 1 and 3), has very low caitplaend outperforms the standard
non-parametric Fourier-Welch based spectrum estimafibe. discussion of Section V-C highlights the
limitations and the advantages of the new method. It alsegmts some perspectives on how to improve
the wavelet packet based spectrum estimation.

In future work, we plan to investigate the contributions ofhne of the proposed techniques, among
others, the exploitation of redundancy in the signal donfHitbert transform) or in the wavelet domain

(averaging several-decimate orthogonal wavelets, using complex wavelets utiwavelets).
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APPENDIX A
PROOF OFTHEOREM 2

By taking into account remark 1 and under assumptidh)(the discrete random proceéﬁll repre-

senting the wavelet packet coefficients of the fractionamBrian motion X is defined by

= [ XOW;nalrl(®, @7)
R
with convergence in quadratic mean sense and its autoatorelfunction is

()L@Jﬂ

1) (s)dtds. (48)

7,k

RUL [k, = / R(t, s)W!"
RZ

with R(t, s) given by Eq. (15).

By considering again remark 1 and under assumptfo?),(we have that

/ el (1)t = o, (49)
and thus

/ / 2 tPew (W) (s)dtds = 0. (50)
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By mimicking the proof of [12, Theorem 1] we get
/ t— sPewl) Wl (s)deds
R2

- // dtds[tPW)) | (t+ )W (s),
R2
3 T(2a+ 1) sin(ma) 9

1 — cos(tw) . .
/ /]R (/R jw|2e+t dw) W}”lv’“(“r S)W},jt,z(s)dtdsv

- dwe
MQ A wYa(w)X
// dtds (1 - cos(tw)) WIL (¢ + )Wl ,(s),
RQ TPy
5 1 d
] i WYa(w)x
// dtds cos(tw)Wj[rq]1 Lt + S)Wj[rql o(s),
RQ 1Py
6 1 T 129 (k—0)w
= ——5 [ V@) FW/ ) (w)Pe? FOvdy, (51)
mwo

Thus, from Egs. (48), (50) and (51), we obtain
REEA = o [ ()l FW )P 60 2)
’ 27 R

One can check that under assumpti@8), the integral in Eq. (52) is absolutely convergent for every
pair (j,n) with n # 0. From Eq. (52) we have thaé’jl is a wide-sense stationary random process for
every(j,n) € N x N. With the standard abuse of language, we ded@ﬂ;\[k, (= Rﬂ[k—f} = Rﬂ [m],
with m = k — £ and Eq. (16) follows.

APPENDIX B

Lemma 2:Let f be a real valued function. Consider the sequence of nesiedats (AJ G(ﬂp(]))) .
defined by Eqg. (8) and associated with a wavelet packet PatAssume thatf is locally mtegrablé/on
R. If f is continuous atup given by Eq. (10), then we have uniformly ine Z
2J )
lim 2 / F(w) cos (2 hw)dw = F(wp)dlk]. (53)
A

Jj—+oo T +
3,G(np(5))

2Change of variables.

3 Bahr and Essen representation|gf®, see [36].

4 Fubini’'s theorem, the integrand is absolutely integrable.

5Taking into account Eq. (49).

BWrite cos(tw) = (e + ¢~"*)/2 to obtain Fourier integrals dﬂ/ﬂk and WJ[Z]M
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Proof:
Since f is continuous atp, then for every real number > 0, there exists a real number> 0 such

that, for everyw € [wp — v,wp + v|, we have|f(w) — f(wp)| < n. In addition, since
L GG (Gp() + D

j—Foo 27 j—Fo00 27 ’

there exists an integep = jo(v), such that, for every natural numbge> jo, the valuesG (np(j))m/2’
and(G(np(j))+1)m/27 are within the intervalwp — v, wp +v]. It follows that, for every natural number
j = jo and everyw € A] Glnp (7))’

[f(w) = flwp)| <n.

Therefore, for any natural numbegr> 5,

27
= @) = fwp)ldw
Aj Gnp))
M
<n— / dw = 1. (54)
T A;F,GMP(J'))
On the other hand, for any natural numheg j, and every integek,
‘ / ) cos (27 kw)dw
3,G(np(4))

- / f(wp) cos (ijw)dw’

3,G(np(5))

‘ / — f(wp)) cos (ijw)dw’

3 G("P(J))

<[ 1@ fenld (55)
A? G(np(4))

Hence, we derive from Eqs. (54) and (55) that, for every natuaber; > jo,

’ / ) cos (27 kw)dw

7G(ﬂ7:(7)>
/ f(wp) cos(2kw)dw| < n
AIG(np(j))
uniformly in k € Z. Since
2J .
— f(wp) cos (2 kw)dw = f(wp)d[k],
4 AIG("P(J'))

we conclude that, for every natural numbek jg,

21/ f(w) cos (ijw)dw — f(wp)d[k]
T JAY o)

uniformly in k € Z. ]

<7
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