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Abstract : Hemocytes are the immune effectors in clams, directing cellular but also humoral defences. 
In the Manila clam (Ruditapes philippinarum) and the carpet shell clam (Ruditapes decussatus), two 
phenotypically similar venerid species, fishery and aquaculture importance motivated scientific studies 
to improve knowledge about the participation of hemocytes in immune response. Currently, gaps still 
persist concerning the classification of hemocyte sub-populations as well as their non-immune 
activities. This review summarizes current knowledge about hemocytes of the Manila clam and the 
carpet shell clam, suggests some probable misinterpretations arising from extrapolations from other 
bivalves and vertebrates, and suggests future research prospects. The susceptibility of hemocytes to 
environmental modifications as well as biological and chemical toxicants is also re-evaluated. 
Hemocytes of bivalves are not limited in function to immunity and should be considered in a wider 
scheme including the environment and whole-animal physiology.  
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1. Introduction 
The clam fishery based on the species Ruditapes decussatus is one of the oldest mollusc fishery 
practices in Europe and was one of Europe's most important marine resources until the 1960's 
(Gosling, 2002). For aquaculture purposes, the Manila clam Ruditapes philippinarum was then 
deliberately introduced as hatchery brood stock into France in 1972 and into the UK and Ireland in 
1980 and 1982, respectively (Flassch and Leborgne, 1992; Gosling, 2002). The species Manila clam, 
native to Japan, Korea, and the Philippines, was introduced accidentally, along with Pacific oysters, 
into North America during the 1930's. Currently, the Manila clam is distributed widely on Pacific coasts 
of Canada and the USA, Mediterranean and Atlantic coasts of Western Europe, Korean and Japanese 
waters, as well as on the East coast of China. In contrast, R. decussatus can only be found on the 
Atlantic coasts of North Africa and Western Europe south of Scandinavian waters (Gosling, 2002). In 
Europe, R. philippinarum proved to be hardier and faster-growing than  R. decussatus and today 
contributes 91% to European yields of the two species. Although both clam species are phenotypically 
similar, they constitute two distinct entities with high genetic distance (Borsa and Thiriot-Quiévreux, 
1990) and a reproductive mating barrier (Gérard, 1978). The Manila clam and the carpet shell clam 
may be infected by different kinds of pathogens including bacteria and protozoans, resulting in various 
diseases that sometimes have been associated with mass mortalities (for review, see Bower and 
McGladdery, 2003; Paillard et al., 2004a). Brown ring disease (BRD), macroscopically characterized 
by brown conchiolin deposits in the inner surface of the shell, mostly spreads in the northern part of 
the European Atlantic coast and has been rarely detected below the Loire River and in the 
Mediterranean and Adriatic seas (Paillard, 2004). The bacterium Vibrio tapetis was sometimes 
detected and characterized as responsible for BRD in clams. In 2006, a V. tapetis-like bacterium was 
isolated on the west coast of Korea (Park et al., 2006), possessing a highly similar sequence on partial 
(413 bp) 16S rDNA sequence, from  R. philippinarum showing brown deposits. BRD, however, could 
also be observed without isolation of a bacterial agent. For instance, brown conchiolin deposits can be 
observed in trematode-infected clams (Park and Choi, personal communication) as well as on clams 
with fungal or annelid disturbances of the pallial edges of bivalve shells (Paillard, 2004). Clams 
presenting BRD may show significant weight loss during late stages of the disease (Flye-Sainte-Marie 
et al., 2007), modified defense-associated activities, and ultimately mass mortality (Paillard et al., 1989, 
2004a; Allam et al., 2000; Paillard, 2004). Perkinsosis, induced by protozoan parasites Perkinsus sp., 



is also one of the major, infectious diseases affecting clams. In Europe, west and south coasts of 
Korea, in Japanese waters, and along the northern coast of the Yellow Sea in China, Perkinsus olseni 
frequently induces the formation of visible, milky-white cysts or nodule on the gills, foot, gut, digestive 
gland, kidney, gonad, and mantle of heavily-infected clams. The massive aggregation of Perkinsus sp. 
and hemocytes sometimes forms lesions that may interfere with respiration and other physiological 
processes such as reproduction, growth and/or survival and thus have an impact on fishery 
productivity (Hamaguchi et al., 1998; Park et al., 1999; Liang et al., 2001; Choi et al., 2005). Despite 
the large economic and ecological importance of this living resource, scientific research in marine 
bivalve pathology has traditionally been essentially descriptive, focusing on pathogen morphology, 
anatomopathology and epidemiology. Progress has been made in experimental pathology with the 
isolation and purification of several pathogens. Besides the preparation of specific molecular probes to 
diagnose the presence of potential or known pathogenic agents, the availability of purified pathogens 
allowed the development of in vivo and in vitro models for studying host– pathogen interactions, with a 
special emphasis on host defence processes (Bachère et al., 1995). Clams, as other bivalves, have 
developed an open, hemolymphatic circulatory system. Hemocytes are circulating cells which act as 
sentry cells, scanning the immediate environment to detect foreign material and induce efficient 
immune responses. The major importance of hemocytes as cellular immune effectors in marine 
bivalves was already pointed out in the early 70's (Cheney, 1971). Although hemocytes are involved in 
various physiological processes, including tissue repair, shell production, and nutrition, they were 
mostly studied for their implication in immunity and elimination of pathogens in fishery and aquaculture 
contexts. Consequently, hemopoiesis, life cycle, and non-immune functions of the hemocytes are not 
well characterized at present. Furthermore, current knowledge and understanding of hemocyte biology 
were sometimes extrapolated from vertebrate biology and immunology, potentially leading to 
misinterpretations. 
Objectives of this review are (i) to summarize current knowledge about hemocytes of the clam species,  
R. decussatus and  R. philippinarum, (ii) to point out some probable misinterpretations and (iii) to 
suggest possible future research prospects. In the Manila clam and the carpet shell clam, classification 
of hemocyte subpopulations according to morphological and cytological features may not match 
functional reality and, until now, does not fully elucidate hemopoiesis in the clams (Section 1). Section 
2 summarizes the extensive knowledge regarding the implication of hemocytes in cellular and humoral 
immune responses of clams. This section also identifies extrapolations from other bivalve and 
vertebrate models, and suggests potential research prospects in non-immune functions of hemocytes. 
Finally, Section 3 considers the important function of hemocytes in clam homeostasis and the rapid 
and specific adaptations of these cells to environmental modifications. Susceptibility of clam 
hemocytes to biological and chemical toxicants is also reviewed and re-interpreted.  
 
1.1. Hemocyte types of the Manila clam and the carpet shell clam 
In marine bivalves, two main hemocyte types were described according to morphological features: 
granulocytes, which contain numerous granules within the cytoplasm, and agranulocytes also called 
hyalinocytes, without granules (For reviews see Cheng, 1981; Hine, 1999). The granulocyte subset is 
homogeneous; whereas, subpopulations of agranulocytes were observed in some but not all bivalve 
species, such as small and large hyalinocytes in Crassostrea virginica and Ostrea edulis (Ashton-
Alcox and Ford, 1998; Xue et al., 2001; Hégaret et al., 2003a; Bigas et al., 2006), intermediate cells in 
C. virginica (Goedken and DeGuise, 2004), small agranulocytes in Crassostrea gigas (Lambert et al., 
2003, 2007a; Labreuche et al., 2006) and blast-like cells in  R. philippinarum (Cima et al., 2000), in the 
Sydney rock oyster Saccostrea glomerata (Aladaileh et al., 2007) and in the Suminoe oyster 
Crassostrea ariakensis (Donaghy et al., 2009). As expected, both granulocyte and hyalinocyte 
populations were observed in the Manila clam (Cima et al., 2000) and the carpet shell clam (Auffret, 
1985; López et al., 1997a). Although some authors reported differences in size between granulocytes 
and hyalinocytes, these two cell types seem to possess similar ranges of diameter approximately 10 
µm. Actually, disparities among studies often resulted from the use of various investigation methods. 
For instance, López et al. (1997a) compared cell size between spread hemocytes and the same cells 
fixed in suspension. Granulocytes were then reported as the largest cells when spreading on slides 
but not in suspension. Flow cytometric analysis of Manila clam hemocytes showed hyalinocytes as 
larger cells than granulocytes, according to the values of the forward scatter in arbitrary unit (Fig. 1). 
Although the size of the nuclei also varied between slides and suspension, the nucleus/cytoplasm (N/ 
C) ratio of granulocytes and hyalinocytes remained equal between the two cell types (López et al., 
1997a). Discrepancies between authors also concerned the proportion of each population (differential 
hemocyte count=DHC) in clam hemolymph. First, such discrepancies can reflect the method used for 
observation (Ashton-Alcox and Ford, 1998). Certainly, differences of DHC in clams are associated with 



environmental conditions (rearing sites and seasons) (Soudant et al., 2004; Flye-Sainte-Marie et al., 
2009). Inter-individual variation (Xue et al., 2001) and genetic origin (Delaporte et al., 2007a; Lambert 
et al., 2007b) were also demonstrated to influence DHC in oysters. Many other biotic and abiotic 
factors, such as reproduction, parasitism, food availability, temperature, and pollutants, can also 
modulate DHC in bivalves (Fisher et al., 1996; Carballal et al., 1998). Granulocytes and hyalinocytes 
exhibit the same common eukaryotic organelles in their cytoplasm, such as various quantities of 
mitochondria, Golgi apparatus, endoplasmic reticuloma and a nucleus that can be oval or round, and 
eccentric, or central (Auffret, 1985; López et al., 1997a). Historically, another distinction was made 
between these two cell types on the basis of the low capacity of hyalinocytes to spread and to adhere 
to plastic (López et al., 1997a). However, in  R. philippinarum, Cimaet al. (2000) reported both 
hyalinocytes and granulocytes as round  hemocytes (spherical shape) but also as spreading 
hemocytes (amoebocyte shape) and observed that hyalinocytes were also able to extend 
pseudopodia. The sole ultrastructural feature by which one can unequivocally distinguish both cell 
types is the presence of numerous granules in the cytoplasm of granulocytes (Cheng, 1981; Auffret, 
1985; López et al., 1997a; Hine, 1999; Cima et al., 2000). On the basis of different dye affinities of 
cytoplasmic granules, López et al. (1997a) categorized the granulocytes of  R. decussatus into two 
subpopulations (basophils and acidophils); whereas, Cima et al. (2000) characterized the granulocytes 
of  R. philippinarum into three subpopulations: basophils, acidophils and neutrophils. Cheng (1981) 
suggested that the occurrence of various types of granules might be related to differentiation and 
maturation processes; specifically, basophilic granules were hypothesized to be immature granules 
which mature and become acidophilic. The simultaneous occurrence of both kinds of granules within 
some hemocytes in  R. decussatus and  R. philippinarum might support this hypothesis (López et al., 
1997a). Diverse theories have been proposed to elucidate the hemocyte lineage. Cheng (1981) and 
Auffret (1988), based on the observation of granules in some blast-like cells, proposed two types of 
cell precursors which differentiate into granulocytes and hyalinocytes. More recently, Hine (1999) 
reviewed those statements and, in the absence of granuloblasts, suggested a model with only one 
precursor cell type giving rise to hyalinocytes which further mature into granulocytes. A single 
population of blast-like cells lacking granules in their cytoplasm was described in  R. philippinarum 
(Cima et al., 2000; Matozzo et al., 2008) supporting the hypothesis presented by Hine (1999). 
Circulating hemocytes of  R. decussatus and  R. philippinarum have been mainly studied from the 
hemolymph compartment, but, as there is an open hemolymphatic circulatory system of clams, 
hemocytes also have been isolated in central and peripheral extrapallial fluids from  R. philippinarum 
clams (Allam and Paillard, 1998). These fluids are considered to be the sites of biomineralization, but 
roles of these fluid compartments in other biological processes, such as host defense, remain 
unknown. Hemocytes described in these fluids share the same morphological and cytological 
characteristics with the hemocytes from hemolymph. Morphological characterisation, thus, does not 
allow exact classification of hemocyte sub-populations in clams. A further step in the definition of 
hemocyte subsets could be to improve the description of population-related molecular markers and the 
subsequent production of specific antibodies. In bivalve species, monoclonal antibodies (MAbs) were 
raised against isolated hemocytes of the mussel Mytilus edulis (Noël et al., 1991, 1994); these 
antibodies allowed the distinction between 3 groups of hemocytes: (i) basophilic granulocytes, (ii) 
eosinophilic granulocytes, and (iii) both basophilic granulocytes and hyalinocytes (Dyrynda et al., 
1997). Carballal et al. (1997a) determined possible cross-reactivity among mussel species. MAbs 
developed against the hemocytes of M. edulis (Noël et al., 1991) reacted with the hemocytes of 
Mytilus galloprovincialis, and one of the MAbs exhibited specificity for the basophilic granulocytes. In 
the clam species  R. decussatus, López et al. (1997a) attempted to distinguish different hemocyte 
populations with MAbs raised against the hemocytes of C. gigas (Morvan, 1991) and M. edulis (Noël 
et al., 1994). Cross reaction was observed with only a few MAbs developed against the hemocytes of 
C. gigas. In the oyster species O. edulis, one MAb specifically recognized granulocytes, allowing flow 
cytometric and histological studies (Renault et al., 2001; Xue and Renault, 2001). Finally, 4 MAbs 
were developed against the hemocytes of the scallop Chlamys farreri, but these bound to more than 
one hemocyte type (Xing and Zhan, 2005) and cross-reacted with at least six other bivalve species 
(Xing and Zhan, 2006). This antibody method was developed for the broad characterization of human 
and murine immune cells. As reported by Naik (2008), “prior to the 1970s, lymphocytes were regarded 
as an indistinguishable group of cells, primarily because they appeared identical under the light 
microscope”. About 40 years later, it seems that a new immune-cell subset is still discovered almost 
seasonally. The multiplication of markers and subsets, however, sometimes leads to mistakes. A an 
example of such a mistake is the “extraordinary” discovery of interferon-producing killer dendritic cells 
(IKDCs), a new subset of murine dendritic cells (the main antigen presenting cells of mammal immune 
system; DC). This “revolutionary” DC subset was presumed to share phenotypic and functional 



properties of both DCs and natural killer (NK) cells (Chan et al., 2006; Taieb et al., 2006). Two years 
later, IKDCs were finally demonstrated as only one subset of NK cells, sharing a molecular marker 
with a DC subset, but sharing absolutely no functional properties (Blasius et al., 2008; Caminschi et al., 
2008; Vosshenrich et al., 2008). In bivalves, the identification of molecular-defined hemocyte subsets 
should be relevant if such classification can be related to different functional properties. Indeed, an 
alternative might be the classification of hemocyte types depending upon the function studied and 
relative activities. In this way, recent development of powerful tools, such as flow cytometry, in bivalve 
cellular biology allows the analysis of activities at the single cell level and the appreciation that 
hemocyte subsets may respond very differently in various physiological measurements.  
 
2. Functions of hemocytes  
As previously stated, hemocyte sub-populations may be differentially involved in functions of bivalve 
biology and physiology, including nutrient transport and digestion, tissue and shell formation, 
maintenance of homeostasis, and immune response (Cheng, 1996, 2000; Chu, 2000). As stated 
above, currently, the main function of hemocytes of clams studied thus far is immune response. In 
bivalves, cellular-defence mechanisms against foreign, biological material can be summarized in five 
steps: 1) chemotaxis, 2) opsonization, 3) recognition of non-self particles, 4) phagocytosis, and then 5) 
intracellular degradation of foreign material (Fig. 2). These steps have not yet been described 
completely in  R. decussatus and  R. philippinarum, thus it can only be assumed that these 
phenomena occur in clams as in other bivalves. 
 
2.1. Chemotaxis 
Following the detection of foreign material in the hemolymph or in tissues of clams, competent cells 
then migrate to the affected site. The active migration of hemocytes is induced and regulated by 
soluble molecules named chemotaxins, released either by the foreign agent or by host cells. Migration 
of the hemocytes in response to such mediators is called chemotaxis. In clam species, very few in 
vitro studies have been performed to monitor the responses of isolated hemocytes to foreign, 
biological agents. Three strains of V. tapetis and one strain of Escherichia coli induced chemotaxis of 
isolated hemocytes from  R. decussatus and  R. philippinarum (Lopez-Cortes et al., 1999); whereas, 
hemocytes from the hard clam Mercenaria mercenaria were shown to migrate toward chemical 
products secreted by E. coli (Fawcett and Tripp, 1994). Currently, only a few chemotaxins have been 
identified in molluscs other than clams, including lipopolysaccharide in M. edulis (Schneeweiss and 
Renwrantz, 1993), formyl-methionyl-leucyl-phenylalanine in M. mercenaria (Fawcett and Tripp, 1994) 
and interleukin-8 in M. galloprovincialis (Ottaviani et al., 2000). Currently, most existing data 
concerning chemotaxis of hemocytes in clams has been reported in vivo. Indeed, observation of milky-
white nodules on the surface of mantle, gill, and foot tissue is a common feature of Perkinsus-infected  
R. philippinarum (Fig. 3). Histological studies demonstrated that these nodules were formed by 
inflammation as a consequence of a massive hemocyte infiltration into tissues (granuloma structure), 
surrounding Perkinsus trophozoites (Fig. 4), suggesting active migration of hemocytes from 
hemolymph into tissues (Lee et al., 2001; Park and Choi, 2001; Choi et al., 2005). Similarly, exposure 
of Manila clams to the harmful alga Prorocentrum minimum was reported to also induce an 
inflammatory response, characterized by massive hemocyte incursion into the digestive glands, 
intestine and stomach, as well as in the gonadal follicles from which hemocytes are ordinarily excluded 
(Hégaret et al., 2009). Chemotaxis is not exclusively related to immune responses and may constitute 
an active part in all functions of hemocytes, such as nutrition or tissue and shell repair. For example, it 
may be hypothesized that nutrient-carrier hemocytes, through recognition of molecular signals, would 
specifically migrate and supply nutrients to tissues most in need. In the scallop Pecten maximus, 
Beninger et al. (2003) reported the migration of ferritin-bearing hemocytes from the digestive system to 
oocytes. The ferritin was initially taken up into the intestinal epithelium, subsequently appearing in 
hemocytes among  the connective tissue surrounding the intestine. Ferritin-carrier hemocytes then 
migrated to reach the gonad and were observed in close proximity to oocytes. Interestingly, this 
transport of ferritin by hemocytes was specifically dedicated to developing oocytes: first, ferritin-
containing hemocytes were readily observed near developing oocytes, which accumulate substantial 
vitelline reserves. Contrastingly, such hemocytes were rarely observed within male gonad acini which 
produce small spermatozoa with low energy reserves. Second, ferritin-containing hemocytes were 
always associated with developing oocytes and never with mature oocytes. These facts tend to 
confirm that nutrient-carrier hemocytes specifically migrated towards developing oocytes through 
recognition of molecular signals. Another example of non-immune related chemotaxis may be the 
migration of bivalve hemocytes to a shell-repair edge. In 2004, Mount et al. reported a class of 
granulocytic hemocytes that might be directly involved in crystal production during shell regeneration 



in the eastern oyster C. virginica. After notching the shell of oysters, crystal-bearing hemocytes 
appeared at the mineralization front. Hemocytes implicated in shell repair may then have migrated 
through chemotaxis. In immune-related hemocyte infiltration, however, and in both examples of non-
immune chemotaxis, the nature of the chemotactic signal is currently unknown. Characterization of 
chemotaxins and differential involvement of hemocyte sub-populations should be the next steps in 
understanding chemotaxis in bivalves.  
 
2.2. Secretion of soluble factors 
Secretion of soluble factors by hemocytes plays an important role in the immunity of  R. philippinarum 
and  R. decussatus. This humoral response involves various molecules such as lectins, lysins and 
antimicrobial peptides (AMPs). An important humoral-defense mechanism is the agglutination of 
foreign material, such as bacteria and parasites, to facilitate the inactivation of such pathogens and/or 
to activate/improve hemocyte activity. This is the first step in the process of recognition and 
subsequent internalization of the agglutinated material by the host hemocytes (Chu, 1988). Lectins are 
soluble or membrane-bound factors that recognize specifically, and bind reversibly to, the 
carbohydrate-containing molecules of foreign cells. Lectins appear to participate in the tagging of 
foreign organisms by invertebrates, which are covered with different carbohydrate receptors. Lectins 
play agglutinating and opsonising roles, facilitating interaction of the surface of hemocytes with foreign 
particles (Fig. 5). Ordás et al. (2000a) observed relatively-high agglutination titers among  R. 
decussatus clams that were heavily parasitized with P. olseni, which suggests that a lectin-like 
substance may be involved in immune response against this parasite. In 2006, Kang et al. constructed 
a cDNA library from Manila clams infected with P. olseni. They found 79 ESTs related to 29 functional 
immune genes. Among these ESTs, the largest group was composed of lectins. The lectins MCL and 
MCL3 have  been characterized in  R. philippinarum clams and were upregulated during P. olseni 
infection (Bulgakov et al., 2004; Kang et al., 2006; Kim et al., 2006, 2008a).MCL3 was also detected in 
clams one day after intramuscular injection of V. tapetis (Kim et al., 2008a). Kim et al. (2006) showed: 
(i) that MCL was able to bind to the surfaces of purified P. olseni hypnospores and zoospores; and (ii) 
that fluorescent beads coated with purified MCL were actively engulfed by hemocytes through 
phagocytosis. These authors suggested that MCL could act as an opsonin through recognition of 
residues on P. olseni parasite cells. Takahashi et al. (2008) also purified another lectin isoform from  R. 
philippinarum, MCL4 that might also contribute to the clam immune response against invading 
microorganisms. Indeed, the phagocytic abilities of the hemocytes from  R. philippinarum for the 
bacteria Marinococcus halophilus and Vibrio tubiashii were significantly increased when bacterial 
cellswere oposonized with MCL4. Recently, the gene sequence for a member of the galectin family of 
lectins, MCGal, was cloned in  R. philippinarum clams (Kimet al., 2008b). Expression of this gene was 
also up-regulated in clams infected with Perkinsus parasites or Vibrio bacteria, compared with healthy 
clams. Finally, it is interesting to note that hemocytes from Perkinsus-infected clams expressed 
different sets of lectins than clams with a Vibrio infection, indicating that induction of lectin isoforms 
seems to be specifically related to the nature of the infective microorganism (Kang et al., 2006). 
Antimicrobial peptides (AMPs) are also soluble substances secreted in the hemolymph by hemocytes 
during the infection process. These molecules represent an ancient mechanism of host defense and 
constitute an important component of the clam immune system. According to primary structure and 
consensus cysteine array, these peptides were classified into four groups: mytilins, myticins, defensins, 
and mytimicins. Three different myticin isoforms, and one mytilin, were identified in hemocytes from 
bacteria-stimulated  R. decussatus. These peptide sequences displayed similarity with known mussel 
mytilin and myticin genes (Gestal et al., 2007). Defensins have been isolated from mammals and 
insects, and other invertebrates and characterized as effector molecules of innate immunity (Ganz, 
1999). Five ESTs identified from P. olseni-infected  R. philippinarum showed similarities with a 
defensin-like peptide, MGD1, previously described in the plasma and hemocytes of the Mediterranean 
mussel (MGD1=M. galloprovincialis defensin-1) (Kang et al., 2006). This AMP, however, was not 
reported in hemocytes from bacteria challenged  R. decussatus clams (Gestal et al., 2007). Until 
recently, the opsonic and lytic complement system was thought to exclusively belong to vertebrates. 
Recent work in P. olseni infected  R. decussatus clams, however, identified transcripts matching to 
proteins involved in complement signalling, such as Rd adiponectin- C1q and a multidomain protein 
with similarity to complement related domains (Prado-Alvarez et al., 2008). These authors also 
identified several ESTs with a C1q domain that could be related to the lectin complement pathway in 
innate immunity, closely related to the classical complement pathway in adaptive immunity of 
vertebrates. In this case, comparisons with vertebrate gene banks allowed determination of sequence 
homologies of newly-identified ESTs in bivalves and associated information about putative functions. 



There is also a potential risk, however, of assuming relations between sequences that might have no 
truth in bivalve cell biology. 
 
2.3. Encapsulation 
As described in Section 2.1, milky white nodules can be observed macroscopically in Perkinsus-
infected clam tissues. In these nodules, parasite trophozoites were found, surrounded by a capsule 
mainly composed of eosinophilic, granular hemocytes (Fig. 6) (Lee et al., 2001; Park and Choi, 2001; 
Choi et al., 2005). In 1987, Chagot et al. (1987) first described this inflammatory reaction in  R. 
decussatus infected with Perkinsus parasites. In the connective tissues of various organs, the 
inflammatory response induced granuloma-like lesions in which parasites were frequently encysted 
and surrounded by granulocytes. This was the first observation of the capacity of hemocytes of  R. 
decussatus to encapsulate Perkinsus trophozoites. Eight years later, Montes et al. (1995a) and 
Sagristà et al. (1995) concomitantly described this inflammatory response in  R. philippinarum clams 
infected with Perkinsus parasites. Granulocytes also were found to be involved in the secretion giving 
rise to the encapsulation of the parasites. The specific, defensive hemocyte product was characterized 
as a slightly glycosylated polypeptide and named polypeptide p225 (Montes et al., 1995b). The 
secretion of a polypeptide closely related to p225 was also observed in  R. decussatus (Montes et al., 
1996). Interestingly, this polypeptide was absent from non-parasitized  R. philippinarum clams, 
suggesting the specific and exclusive association of p225 with Perkinsus infection (Montes et al., 
1995b) (Fig. 7). The encapsulation process is commonly thought to be induced to control parasites 
that hemocytes are not able to phagocyte. For instance, Sagristà et al. (1995) observed that Perkinsus 
sp. trophozoites were first located within the host granular cells, but phagocytosis was not successfully 
completed as lysis of hemocytes finally occurred. Release of protein secretion then gave rise to a 
capsule to control free parasites. Currently, the fate of parasites inside the capsule is unknown. 
Montes et al. (1995b) suggested that “the diffusion of this polypeptide (ND: p225), and probably other 
molecules from the capsule, across the trophozoite wall, and accumulation in the invaginations of the 
plasma membrane, could have a negative effect on the viability of the trophozoites”. Mechanisms of 
parasite degradation inside the capsule, however, still have not been described and should therefore 
be further investigated. 
 
2.4. Phagocytosis 
The major cellular mechanism involved in the hemocyte-mediated immune response of marine 
bivalves, and probably the most studied, is the internalization of antigenic material (Canesi et al., 
2002). Recognition and binding of non-self material by receptors expressed at the surface of the 
hemocytes induce the mechanism of internalization called phagocytosis. In clams, engulfment of 
foreign particles by hemocytes occurs by invagination of the cell membrane followed by pseudopod 
formation and particle internalization into an endocytic vacuole, also called the primary phagosome. 
Cytoplasmic lysosomal granules then migrate and fuse with the primary phagosome. Contents of 
granules, i.e. numerous hydrolases, including phosphatases, esterases, amidases, as well as 
carbohydrate hydrolases, and oxidative enzymes such as peroxidase and cytochrome c oxidase 
(López et al., 1997b; Cima et al., 2000), are subsequently discharged in the so-called secondary 
phagosome, accomplishing the enzymatic degradation of engulfed foreign material (López et al., 
1997c). In the carpet shell clam and the Manila clam, phagocytic capability was described for both 
granulocytes and hyalinocytes (López et al., 1997c; Cima et al., 2000). Although circulating 
granulocytes and hyalinocytes from both  R. decussatus and  R. philippinarum are able to internalize 
yeast cells, bacteria, and protozoan parasites (López et al., 1997c; Cima et al., 2000), differences 
were observed in terms of the phagocytic index between the two hemocyte populations or the clam 
species (López et al., 1997c; Lopez-Cortes et al., 1999). Granulocytes are the most powerfully-
phagocytic cells, possessing a constantly high phagocytic index (in this case, the percentage of cells 
having ingested zymosan particles or Vibrio P1 cells, regardless of the quantity of ingested material); 
whereas, the phagocytic index of hyalinocytes seemed related to the nature of the foreign material 
(López et al., 1997c). Such observations suggest functional differences between hemocyte types and 
receptor-based initiation of phagocytosis. This latter point is also supported by the observation that 
granulocytes and hyalinocytes were able to engulf trophozoites but not zoospores from the P. olseni 
parasite (López et al., 1997c). Interestingly, phagocytosis seems inhibited by P. olseni, as heavy 
infection with P. olseni in  R. decussatus and  R. philippinarum tended to decrease phagocytic 
capacities (Ordás et al., 2000a; Flye-Sainte-Marie et al., 2009). Lysosomal enzymes actively 
participate in the killing and degradation of engulfed foreign material. Various enzymatic activities were 
detected in both granulocytes and hyalinocytes from  R. decussatus and  R. philippinarum (López et 
al., 1997b; Cima et al., 2000), but distribution of these enzymes was not homogeneous in the two 



hemocyte subsets, confirming differential involvement in physiological and immune responses (Cima 
et al., 2000). Among these enzymes, lysozyme, a central lysosomal enzyme with bacteriolytic 
properties (McHenery et al., 1986), was detected both intracellularly and as a soluble factor in the 
hemolymph of  R. philippinarum and  R. decussatus (López et al., 1997b; Soudant et al., 2004). In 
clams and oysters infected with, respectively, P. olseni and P. marinus, there was either no difference 
(Chu and La Peyre, 1989, 1993a; Chu et al., 1993; Ordás et al., 2000a), a slight decrease (La Peyre 
et al., 1995; Garreis et al., 1996), or an increase of lysozyme activity (Chu and La Peyre, 1993b). It 
has been suggested that changes in lysozyme activity may be related to environmental factors such 
as temperature and salinity (Steinert and Pickwell, 1985; Fisher and Newell, 1986; Chu, 1988) rather 
than infection status. Actually, lysozyme content and environmental conditions are also difficult to 
correlate. In other bivalve models, although several studies described a seasonal pattern with higher 
lysozyme content during winter and lower values during the summer (Chu and La Peyre, 1989; Chu et 
al., 1995; Volety et al., 1999), Fisher et al. (1996) observed higher lysozyme levels in July and lower 
levels during fall and winter. Finally, Soudant et al. (2004) observed no seasonal pattern for the 
lysozyme content in hemolymph of  R. philippinarum. In this study, lysozyme content appeared to 
depend upon the location of rearing sites. These authors suggested that, in this case, variations in 
food availability and quality might explain lysozyme content in clams. These authors argued that 
lysozyme-induced digestion of bacteria might form a significant part of the bivalve diet (McHenery et 
al., 1986). A large emphasis is put today on the study of phagocytosis in the context of immunity and 
host–pathogen interaction. Although this is undoubtedly an essential aspect of phagocytosis, this 
mechanism of internalization was first a non-immune process in early eukaryote evolution. Indeed, in 
unicellular organisms, phagocytosis is a digestive cellular process used for the intake of nutrients 
(Desjardins et al., 2005). Interestingly, self/non-self recognition mechanisms, opsonin like substances, 
and signal transduction elements were also described in unicellular organisms such as the amoeba 
Dictyostelium sp., although these processes were previously considered to be extant only in higher 
organisms (Lewis and O'Day, 2007). This already-complex and efficient cellular digestive system 
defines the primary function around which phagosomes expended their functional abilities throughout 
evolution (Desjardins et al., 2005). In multicellular organisms, concomitantly with the development of 
nutrition dedicated organs, phagocytosis evolved into immunity mechanisms. In bivalves, little is 
known about whether nutrient uptake through hemocyte phagocytosis may act as an active nutritional 
process or as an accessory mechanism only recycling immune response residues. There are, 
however, few clues suggesting an active role of hemocytes in nutrition of bivalves. Indeed, phagocytic 
hemocytes of bivalves produce and accumulate large amounts of glycogen, the energy-storage form 
of glucose (Cheng, 1975). Glycogen accumulation was detected in granules of hemocytes from 
various bivalve species, including the oysters C. ariakensis (Sun et al., 2006), C. virginica (Harris-
Young et al., 1995), the mussel M. galloprovincialis (Cajaraville and Pal, 1995) and the clams Meretrix 
meretrix (Zhang et al., 2005) and  R. decussatus (López et al., 1997c). Interestingly, Hégaret (2007) 
suggested the involvement of hemocytes in nutrition to be different between oysters and clams, as 
oysters possess phagocytic digestive cells but clam digestive cells function by the process of 
pinocytosis (i.e., the ingestion of small drops of dissolved materials). In the mollusc species Haliotis 
tuberculata, glycogen was also observed in granules of phagocytic hemocytes (Travers et al., 2008). 
Flow-cytometric investigation revealed that, in fasted animals, glycogen content was low and 
increased when feeding occurred (Travers, personal communication). The question may be raised, 
however, whether or not lysozyme molecules expressed by hemocytes are effectively implicated in 
digestion. Actually, high lysozyme activity was detected in the digestive systems of many bivalves 
(Mochizuki and Matsumira, 1983; McHenery et al., 1986; Takahashi et al., 1986). The use of bacteria 
as a food supply by some marine bivalves was reported (McHenery and Birkbeck, 1985; Langdon and 
Newell, 1990), and lysozyme content in clams varied with food availability (Soudant et al., 2004). 
Currently, however, no well-defined information is available about either the production of digestive-
implicated lysozyme by bivalve hemocytes or the differential involvement of hemocyte populations in 
such processes. Indeed, in the oyster C. virginica the molecule cv-lysozyme 1 was mainly expressed 
in mantle, labial palps, gills and to a lesser extent in hemocytes (Itoh et al., 2007), suggesting a role in 
oyster defense, while cvlysozyme 2 was mostly expressed in digestive-gland tissues (Xue et al., 2007) 
indicating a role in digestion. In the Pacific oyster C. gigas, however, a lysozyme molecule was 
detected both in digestive organs and circulating hemocytes (Matsumoto et al., 2006). Further 
investigation is then required to clarify the biological functions of lysozymes in bivalves and the 
implication of hemocytes in digestion. Finally, phagocytosis is also applied during embryogenesis for 
the removal of dying cells and the recycling of their molecules, as well as tissue remodelling in 
multicellular organisms (Desjardins et al., 2005). Hemocyte populations in bivalves might then be 
differentially involved in nutrition, embryogenesis, and tissue remodelling processes. It can be 



hypothesized that a decrease in hemocyte-related immune parameters might then be attributable to a 
higher implication of these cells in another physiological function. It should therefore be important to 
concomitantly measure immune and non-immune parameters of hemocytes. Further investigations still 
are needed to better understand and characterize the non-immune functions of hemocyte subsets in 
bivalves.  
 
2.5. Oxidative mechanisms  
The production of free radicals derived from oxygen and nitrogen in vertebrate cells was described half 
a century ago (Commoner et al., 1954). Reactive oxygen species (ROS) generation is generally 
described as a cascade of enzymatic reactions that starts with the production of the superoxide anion 
(O2 −) by NADPH oxidase (NOX) complexes (Fig. 8) (Dröge, 2002; Bedard and Krause, 2007; Segal, 
2008). Hydrogen peroxide (H2O2) may then be produced from superoxide either spontaneously or 
catalysed by the superoxide dismutase (SOD) enzyme. In the presence of reduced transition metals, 
hydrogen peroxide can be converted into the highly-reactive hydroxyl radical (•OH). Hydrogen 
peroxide may also give rise to highly toxic hypochloride (HOCl), catalysed by myeloperoxidase (MPO) 
in the presence of chloride ion. Reactive nitrogen species (RNS) production is catalysed by the 
enzyme NO synthase (NOS) and starts with the production of the NO radical (NO•), which may then 
be converted to various other RNS such as nitrosonium cation (NO+), nitroxyl anion (NO−) or 
peroxynitrite (ONOO−) (Dröge, 2002). Involvement of ROS in immune response was first 
characterized in the vertebrate polymorphonuclear leukocytes (PMN) (Babior et al., 1973; Klebanoff, 
1975). Ingestion of foreign material through phagocytosis by PMN triggers O2 uptake and induces 
very rapid and strong production of ROS catalysed by NOX complexes and called “oxidative burst” 
(For reviews, refer to Bedard and Krause, 2007; Nauseef, 2008; Segal, 2008). Hemocytes from many 
bivalve species are known to be able to produce ROS. Oxidative mechanisms were reported in the 
oysters  C. virginica, C. gigas, C. ariakensis and O. edulis (Larson et al., 1989; Bachère et al., 1991; 
Hégaret et al., 2003b; Lambert et al., 2003; Goedken and DeGuise, 2004; Labreuche et al., 2006; 
Donaghy et al., 2009), the mussels M. edulis and M. galloprovincialis (Pipe, 1992; Carballal et al., 
1997b; Ordás et al., 2000b) and the scallops P. maximus and C. farreri (Le Gall et al., 1991; Chen et 
al., 2007a,b). In clams, few data are currently available and contradictory results between species 
were reported. No oxidative mechanism was described by López et al. (1994) in the carpet shell clam  
R. decussatus, using two different methods, luminol-dependent chemiluminescence (CL) and the 
reduction of nitroblue tetrazolium (NBT) to formazan by superoxide anion. Three years later, the 
occurrence of NOX activity was not detected in the hemocytes of  R. decussatus (López et al., 1997b). 
The absence of ROS production mechanism in  R. decussatus was confirmed in 2000 and 2008, using 
NBT technique and luminol-dependent CL, respectively (Arumugan et al., 2000; Mar Costa et al., 
2008). Contrastingly, superoxide anion production was detected in both granulocytes and hyalinocytes 
of  R. philippinarum, using the NBT reduction method (Cima et al., 2000). ROS production in the 
Manila clam was since confirmed by the use of flow cytometry and 2′,7′- dichlorofluorescin-diacetate 
(DCFH-DA), a fluorescent indicator of H2O2 and •OH production (Delaporte et al., 2003; Hégaret et al., 
2007; da Silva et al., 2008). The case of  R. decussatus may be isolated because oxidative 
mechanisms were also reported in other clam species such as the Pacific razor clam, Siliqua patula 
(Greger et al., 1995) and the hard clam M. mercenaria (Buggé et al., 2007) using lucigenin dependent 
CL and DCFH-DA, respectively. It may also be argued, however, that ROS production should exist in  
R. decussatus but has not yet been detected. Indeed, successful detection of ROS production in clam 
species was dependent upon the method used. For instance, in the Pacific razor clam, Greger et al. 
(1995) detected ROS production with lucigenin-dependent CL but not with luminol-dependent CL. In 
1976, Cheng (Cheng, 1976) used measurements of oxygen consumption, biochemical assays, 
reduction of NBT, and detection of MPO, but detected no oxidative mechanism in M. mercenaria 
hemocytes. Anderson (1994), also reported an apparent lack of oxidative activity in M. mercenaria 
hemocytes using NBT reduction and luminal dependent CL. In 2003, however, the same authors 
(Anderson et al., 2003) examined again hemocyte production of ROS using another detection method, 
lucigenin-dependent CL. In this study, the authors finally succeeded in showing that hemocytes of M. 
mercenaria were able to generate basal ROS activity, which was further confirmed by flow-cytometric 
study (Buggé et al., 2007). In vertebrates, phagocytosis of foreign material or chemical stimulation was 
shown to induce an increase in ROS production (Bedard and Krause, 2007; Nauseef, 2008; Segal, 
2008). In bivalve species, phagocytosis of zymosan particles increased oxidative mechanisms in the 
oysters C. gigas (Lambert et al., 2003, 2007a), C. virginica (Hégaret et al., 2003b), O. edulis (Bachère 
et al., 1991), the clam species S. patula (Greger et al., 1995), M. mercenaria (Buggé et al., 2007), as 
well as in the pectinid P. maximus (Le Gall et al., 1991). Activation with chemicals such as phorbol 
myristate acetate (PMA) also increased ROS production in C. virginica (Goedken and DeGuise, 2004) 



whereas, PMA exposure resulted in a decrease in ROS in C. gigas hemocytes (Lambert et al., 2003). 
Exposure of hemocytes to extracellular products (ECP) from a pathogenic Vibrio aestuarianus strain 
was shown to increase ROS production in hemocytes of C. gigas (Labreuche et al., 2006) and M. 
mercenaria (Buggé et al., 2007). Contrastingly, no increase in production of ROS could be detected in 
the Manila clam following zymosan phagocytosis, or V. aestuarianus ECP and PMA exposures, when 
measured by flow cytometry using DCFH-DA as a fluorescent probe (Lambert et al., 2005; Rifi, 2005). 
In human and vertebrate immunological responses, phagocytosis or chemically-induced ROS 
production was named “oxidative burst”, based on very high intensity and short reaction time (Toreilles 
et al., 1996). This expression seemed to have been over-used to characterise the increase of ROS 
production in bivalves. Although the “burst” occurs in a few minutes in vertebrate phagocytic cells, it 
appears that the peak happens between 15 and 40min after addition of zymosan particles for oysters 
C. gigas (Toreilles et al., 1996; Lambert et al., 2003), between 20 and 30min for C. virginica according 
to Larson et al. (1989) and 40 to 45min in the scallop P. maximus (Le Gall et al., 1991; Lambert and 
Nicolas, 1998). Using flow cytometry and the DCFH-DA probe, recent studies also reported a peak 
occurring between 30 and 60min in C. virginica (Hégaret et al., 2003b) and around 70min in M. 
mercenaria (Buggé et al., 2007). This highly-delayed reaction time should, on its own, convince us to 
not use the “burst” word to characterize this phenomenon in bivalves. Furthermore, ROS production 
sometimes increased about 1000 to 1500 times in vertebrates (Toreilles et al., 1996); whereas, the 
increase was mostly confined between 2 and 10 times in bivalves (Lambert et al., 2003, 2007a; 
Labreuche et al., 2006; Buggé et al., 2007). Thus, the expression “oxidative burst” should be avoided 
to describe the increased ROS production in the hemocytes of bivalve species. 
More than a terminological discrepancy, the question might be asked whether or not ROS production 
in bivalves can really be compared with the oxidative burst in vertebrate phagocytic cells, in terms of 
mechanisms and purposes. Currently, no direct link has been proven in bivalves between 
phagocytosis of foreign material, its degradation, and ROS production. As described above, 
phagocytosis of zymosan particles induced an increase in oxidative mechanisms in some species. In 
contrast, such an increase was not observed with phagocytosis of the protozoan parasite P. marinus 
by C. virginica hemocytes (Volety and Chu, 1995), the ingestion of a thraustochytrid protist by M. 
mercenaria hemocytes (Anderson et al., 2003), or phagocytosis of V. tapetis bacteria in  R. 
philippinarum (Choquet, 2004; Lambert et al., 2005; Rifi, 2005), and Bacillus megaterium and 
Pseudomonas fluorescens bacteria in C. virginica (Bramble and Anderson, 1999). Furthermore, 
Bramble and Anderson (1999) reported that the inhibition of ROS production did not affect the killing of 
B. megaterium and reduced bactericidal activity towards P. fluorescens by only 4%. Such results 
suggest that ROS production in hemocytes of bivalve species, at least partially, might not be directly 
linked with cytotoxic activity against ingested foreign organisms. This does not, however, diminish the 
probable importance of oxidative mechanisms in physiological processes of hemocytes in bivalves. 
For instance, ROS production was shown to be involved in the induction of apoptotic mechanisms in 
the hemocytes of C. gigas (Terahara and Takahashi, 2008). Furthermore, in vertebrate cells, free 
radicals are also involved in various physiological processes such as cell signalling, gene expression, 
regulation of cell growth, reduction of metal ions, and regulation of matrix metalloproteinases or 
angiogenesis (for reviews, see Dröge, 2002; Bedard and Krause, 2007). In human PMN, the NADPH 
oxidase complex involved in ROS production during the oxidative burst was called NOX2. Since 1999, 
the diversity of isoforms within the NOX family has been increasing with discoveries of members from 
NOX1 to NOX5 and DUOX1 and 2 (Bedard and Krause, 2007). These members were characterised 
by ultrastructural differences and various activation processes, and different isoforms might be 
involved in different, as yet not fully characterized physiological processes (Bedard and Krause, 2007; 
Nauseef, 2008; Segal, 2008). The NOX member(s) expressed in bivalve hemocytes might not be 
related to NOX2. Indeed, PMA is an activator of intracellular C kinase protein (Li et al., 2000) which 
catalyses the phosphorylation of cytosolic proteins of NOX2 (Toreilles et al., 1996), allowing them to 
migrate and activate the protein complex. In some bivalve species, however, PMA stimulation did not 
induce an increase in ROS production. In contrast, the addition of this compound even resulted in 
decreased oxidative activity in C. gigas (Lambert et al., 2003, 2007a) and in the Manila clam (Lambert 
et al., 2005; Rifi, 2005), supporting the hypothesis of a bivalve NOX different than NOX2 expressed in 
bivalve hemocytes. In vertebrates, some members of the NOX family, such as NOX3 and NOX4, do 
not require cytosolic subunits for them to be active. Such ultrastructural organisation of the NOX 
member expressed in bivalves could explain the non-stimulation of PMA in hemocytes. Similarly, 
hemocytes in bivalves were shown to spontaneously express basal levels of ROS without the need for 
exogenous stimulation (Fisher et al., 2000; Anderson et al., 2003; Lambert et al., 2003, 2007a; 
Goedken and DeGuise, 2004). This production of ROS in the absence of phagocytosis or chemical 
stimulation was suggested to be induced by handling of the hemocytes and contact with non-self 



material during bleeding and storage (Lambert et al., 2007a). Spontaneous oxidative activity might 
also be related to structural characteristics of the NOX. Indeed, in the absence of cytosolic subunits, 
NOX4 can be constitutively active without the need for cell stimulation (Bedard and Krause, 2007). 
Once again, care has to be taken with knowledge and techniques derived from vertebrate biology. 
Although strong divergences were observed compared to vertebrate ROS production during 
phagocytosis, oxidative activity in bivalves is still considered as one of the main mechanisms involved 
in bivalve immune response against invading pathogens. Evidence now suggests a re-evaluation of 
the role of ROS production in the cellular mechanisms of hemocytes, in a larger context than immune 
response. Finally, mitochondrial production of ROS is currently studied in human biology for its 
biomedical relevance (for review of mitochondrial ROS production in mammalian, refer to Murphy, 
2009). The mitochondrial ROS origin should therefore also be taken into account in bivalves, and 
further studies are suggested in this field. 
 
3. Hemocytes and environmental parameters 
Environmental factors including temperature, salinity, nutrients, and toxicants affect the health of 
marine bivalves. Cellular defence related parameters were suggested to be especially sensitive to 
variations of these factors and to reflect the physiological and health status of bivalves (Chu, 2000). 
Although field surveys reported that environmental variations induce modifications in hemocytes 
variables, interpretation of such changes is often very difficult (Flye-Sainte-Marie et al., 2009). 
Furthermore, laboratory-controlled conditions did not always induce obvious outcomes in hemocyte 
parameters. At least three hypothesis can be raised to explain the inconsistency of effects of 
environmental parameters on the hemocytes: (i) hemocyte parameters measured, methods used, 
and/or experimental timing might not be the most relevant; (ii) very high inter-individual variation might 
hide potential effects, not allowing demonstration of statistically-significant contrasts; and (iii) 
hemocytes might not be the most sensitive cells to environmental variations, as hemocytes are 
supposed to maintain homeostasis and integrity of bivalves. Temperature and salinity have usually 
been the environmental factors influencing hemocyte parameters in marine bivalves that are most 
studied. In laboratory experiments, temperature and salinity were shown to influence immune status of 
clams. In  R. philippinarum, low water temperature and salinity induced a decrease in the 
concentration of hemocytes, lysozyme activity, and phagocytosis capacity (Reid et al., 2003; Paillard 
et al., 2004b). Several other laboratory experiments underscored the effects of temperature and 
salinity on hemocyte parameters in various bivalve species (Chu and La Peyre, 1993b; Fisher et al., 
1996; Chu, 1998; Allamet al., 2002; Liu et al., 2004; Matozzo et al., 2007;Monari et al., 2007). Only 
few studies, however, have reported the impact of temperature and salinity on hemocyte parameters 
in the field (Fisher et al., 1996; Carballal et al., 1998; Matozzo et al., 2003; Soudant et al., 2004). Very 
recently, multiparametric analyses of field-recorded data reported by Flye-Sainte-Marie et al. (2009) 
reported temperature as the main environmental factor modulating hemocyte parameters such as 
granulocyte count and, subsequently, total hemocyte count (THC). As discussed above, field studies 
reported by Soudant et al. (2004) and Flye-Sainte-Marie et al. (2009) demonstrated seasonal effects 
on THC and hemocyte size. High values of THC were observed in spring– summer and low values in 
autumn–winter. In contrast, hemocyte size was high in autumn–winter and low in spring–summer. 
Thus, large hemocyte size was related to low THC, a relationship that the authors attributed to 
variation in hemocyte cell-division rate. Indeed, when cell division occurred, the size of resulting cells 
was speculated to be smaller than the size of mature cells. This might be an example of the highly-
adaptive nature of hemocytes to altered environmental conditions. Autumn and winter seasons are 
characterized by low temperature and low food availability, dramatically reducing activities and energy 
availability for the clams, respectively. Two nonexclusive hypotheses might explain the decrease in 
THC during winter: (i) cell division requires large energy and material inputs, and should be reduced to 
preserve accumulated reserves; (ii) the decrease in hemocyte concentration in hemolymph might 
result from reduced nutritional activities (reflecting both less food availability and lower temperature) in 
winter, as hemocytes are thought to be involved in digestion and nutrient transport. Food quality also 
influenced both biochemical composition of hemocytes and immune parameters of bivalves. Delaporte 
et al. (2003) evaluated the impact of three diets (Chaetoceros calcitrans, T-Isochrysis and Tetraselmis 
suecica) upon the fatty-acid composition of hemocyte membrane lipids and upon immune parameters 
of the Manila clam. Concentration of hemocytes, percentage of granulocytes, phagocytic activity and 
ROS production were influenced by diets. These changes were speculated to be related to fatty-acid 
composition modifications of  R. philippinarum hemocytes resulting from diets. In the oyster C. gigas, 
arachidonic-acid supplementation induced an increase in hemocyte concentration, phagocytosis, and 
ROS production (Delaporte et al., 2006); whereas, eicosapentanoicacid supplementation resulted in a 
decrease in phagocytosis and ROS production (Delaporte et al., 2007b). The diet of clams is mainly 



composed of microalgae. Some dinoflagellate and diatom species, however, produce biotoxins of 
various kinds (Hallegraeff, 1993; Smayda, 1997a,b). By ingesting such microalgal species, clams are 
exposed to a variety of toxic components. This kind of global phenomenon, called harmful-algal 
blooms (HABs), may cause pathologies and mortalities in the shellfish themselves (Shumway, 1990; 
Landsberg, 2002). Hemocyte parameters were thought to reflect the health status of the clams and to 
be used as biomarkers of the toxic effects of microalgal species. Hemocytes might not be the most-
exposed or sensitive cells to such toxins though. The impacts of two dinoflagellate species (Karenia 
selliformis and Karenia mikimotoi) were demonstrated with sub-lethal, pathological effects upon the 
clam  R. philippinarum (Hégaret et al., 2007; da Silva et al., 2008). After exposure for 3 and 6 days to 
both toxic dinoflagellates, and for 6 weeks to K. selliformis, THC increased in exposed clams and a 
decrease in percentage of apoptotic cells, as well as hemocyte size and complexity, were reported. 
These authors suggested that the small size and complexity of the hemocytes resulted from a toxin 
effect. The increase in THC, however, may have been a result of a cell proliferation process and, as 
the authors said, “these hemocytes are possibly ‘young’ cells less prone to mortality, decreasing the 
percentage of dead hemocytes in the hemocyte population”. The observed decrease in size and 
complexity might also result from this proliferation. Alternately, the observed variation might be 
indirectly induced. Toxins may alter physiological status of digestive cells and other tissues, inducing 
the multiplication of circulating hemocytes to repair and protect the whole organism. Very recently, 
Ford et al. (2008) investigated the effects of Alexandrium tamarense, another dinoflagellate species 
producing paralytic shellfish toxin (PST), on hemocyte parameters of  R. philippinarum. Isolated 
hemocyteswere exposed in vitro to extracts of one highly-toxic, PST-producing strain and one non-
PST-producing strain of A. tamarense. No measurable effect was observed from PST-producing strain 
on hemocytes. In contrast, an extract from the non-PST-producing strain seemed to provoke negative 
effects on hemocytes, resulting in lower adherence and phagocytic activities. Accordingly, definition of 
toxic and non-toxic algae, based upon knowledge and standards from vertebrate studies should not be 
satisfactory to characterize toxicity of algae species on bivalves. Furthermore, direct contact between 
hemocytes and toxins might sometimes not be necessary for effects, depending upon the toxin and 
the capacity of algal species to release it. In this way, in vivo experiments might allow a better 
simulation of physiological reality without the elimination of steps potentially important in 
understanding toxic algae effects. Development of in vitro tests with isolated hemocytes, however, 
represents an easy and rapid way to measure toxicity of microalgal species. Finally, nothing is known 
about detoxification process in hemocyte populations and their capacities to internalize, inactivate, and 
eliminate toxins. Environmental conditions experienced by bivalves may also be altered by 
anthropogenic activities. Heavy metals released into aquatic system have been paid great attention 
because of a high threat for human health. Monitoring and prevention of heavy-metal pollution is an 
enduring topic in environmental research (for review see Zhou et al., 2008). Bivalves are known to 
accumulate metals and are commonly used for biomonitoring of aquatic metal pollution. Assessment 
of aquatic heavy-metal presence can be monitored by various techniques, such as determination of 
the contents of heavy metals, measurements of enzyme activities, or histopathological observations. It 
has been shown that hemocytes of bivalves are able to accumulate high amounts of metals, which 
may have detrimental consequences on the physiological and immune parameters of hemocytes. The 
literature, however, provides clues that the fate of heavy metals and induction of deleterious effects in 
hemocytes differ depending upon both metal and concentration. Furthermore, Fisher (2004a) 
suggested that all heavy metals might not be harmful for bivalves and that “the perception of harm 
originates from the knowledge that such high concentrations would be quite toxic to most other biota”. 
First, all heavy metals are not similarly accumulated and detoxified in clams. The Manila clam was 
shown to accumulate silver (Ag) and cadmium (Cd) over time but not zinc (Zn) (Ng and Wang, 2004). 
Although the carpet shell clam accumulated Cd and copper (Cu), Cd content remained stable after a 
detoxification period of 8 days; whereas, Cu concentration rapidly decreased (Gnassia-Barelli et al., 
1995). Secondly, effects on hemocyte parameters varied with the nature and concentration of heavy 
metals. Matozzo et al. (2001) investigated the response of hemocytes of  R. philippinarum to in vivo 
Cu and Cd exposure. These authors showed that lysosomal alteration was enhanced by high 
concentrations of both metals, but hemocytes from clams exposed to Cu showed a significant 
decrease in phagocytic activity; whereas, no inhibition was observed in cells from Cd-exposed animals. 
In the same way, exposure to Cu but not Cd also caused a significant reduction in hemocyte 
superoxide dismutase, suggesting higher toxicity of Cu than Cd in clams. In contrast, accumulation of 
heavy metals in hemocytes for physiological purposes was demonstrated in eastern oyster, C. 
virginica, hemocytes, in which Cu and Zn might be accumulated for antimicrobial activities (Fisher, 
2004a) and various metals might be involved in shell structure and formation (Fisher, 2004b). Thus, 
although accumulation of some heavy metals in bivalves might lead to sub-lethal, deleterious 



physiological effects, distinctions have to be made between hemocyte reactions and whole animal 
response, and between the different kinds of metals. Although in situ and laboratory-controlled 
environmental parameters influence hemocyte characteristics in clams, such variations are often 
inconsistent with no strong correlations between individual environmental conditions and hemocyte 
parameters, leading to problematic interpretations (Flye-Sainte-Marie et al., 2009). Some studies, 
nevertheless, have succeeded in demonstrating the impact of environmental factors on hemocyte 
parameters, suggesting these as potential biomarkers of the physiological status of clams. Actually, 
environmental modification may lead to two main forms of response, either long-term or transitory 
modification of hemocyte variables. Short-term responses could explain the difficulties in analyzing 
and interpreting data, which then depend upon experimental timing. Concerning long-term responses, 
one of the commonly-raised questions is whether or not resulting hemocyte variations might increase 
the sensitivity of bivalves to another stress, such as infections or pollutants. In fact, only a few studies 
demonstrated a link between environment and bivalve health through modifications of hemocyte 
variables. For instance, Pipe and Coles (1995) reported that the incubation of mussels with copper 
induced modifications in hemocyte variables, leading to increased susceptibility to V. tubiashii infection. 
Hemocytes of  R. philippinarum were affected by a salinity decrease, leading to higher sensitivity of 
the clams to brown ring disease induced by V. tapetis (Reid et al., 2003). Finally, recently, Gagnaire et 
al. (2007) showed that exposure of C. gigas to pesticides increased oyster sensitivity to bacterial 
challenge (Vibrio splendidus-like strains) through modifications of hemocyte variables. Finally, to reach 
higher sensitivity and specificity of the hemocytes as biomarkers, it might be essential to concomitantly 
measure other physiological parameters because some observed effects on hemocytes might be 
indirect and mediated by other impacted organs. Further field studies and development of various bio-
assays have to be performed to improve understanding of the complex relationships between 
environment, hemocytes, and bivalve physiology. 
 
4. Conclusion 
Current knowledge of biology and physiology of hemocytes in clams and, more generally in bivalves, 
ismostly focussed on their involvement in immune response. This restriction might have arisen fromat 
least two main reasons: (i) scientific researches were first conducted on hemocytes in fishery and 
aquaculture contexts. Indeed, mass mortalities of commercially-important bivalves were possibly 
linked with infectious diseases. It was thus important to understand immune responses of bivalves; (ii) 
hemocytes were promptly compared with vertebrate immune cells. Undeniably, both kinds of cells 
circulate in hemolymph/ blood, are involved in immune response, and exhibit some functional 
similarities.Hemocyteswere then sometimes observed through the lens of vertebrate and human 
immunology. Similar immune techniques were developed and some phenomena were sometimes 
extrapolated or anticipated from vertebrate immune principles. The time may have come, however, to 
break from the vertebrate context. Further comparisons might be artificial and lead to 
misinterpretations. In this way, some studies with marine invertebrates have already started to shake 
dogmas based upon vertebrate criteria. For instance, it was commonly assumed that bivalves only 
developed innate immunity. Such a dogma was based upon the absence of antigen-specific 
lymphocytes and immunoglobulins in invertebrates. Recent studies, however, have described a sort of 
immune-specific memory in some invertebrates (For review, see Rowley and Powell, 2007). Self 
recognition receptors were identified in the ascidium Botryllus schlosseri (Nyholm et al., 2006), and 
vaccines were developed in shrimp limiting susceptibility to the White Spot Syndrome Virus (Witteveldt 
et al., 2004, 2006; Rajesh Kumar et al., 2008) and to the bacterium Vibrio harveyi (Alabi et al., 1999). 
The biology of hemocytes in bivalves is complex and not limited to immunity. Future investigations 
should widen study fields to improve understanding of the specific functions of various hemocyte 
subsets in the systemic physiology of bivalves and to discover the astonishing and wide capacities of 
hemocytes. 
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Fig. 1. Flow cytometric analysis of hemocyte sub-populations from  R. philippinarum. (A) Internal complexity (side scatter=SSC) 
against SYBR Green I fluorescence density plot. Single cells were gated in region R1, excluding aggregated cells. (B) SSC 
against Size (forward scatter=FSC) density plot of hemocytes “gated” in region R1 (A). Three subpopulations of hemocytes 
were distinguishable: granulocytes, hyalinocytes and blast-like cells. 
 
 
 
 
 
 

 
Fig. 2. Schematic presentation of putative cellular response in clam defense mechanisms upon microbial infection and 
parasitism. Adapted from Soudant et al., 2008. 1. Chemotaxis, attraction and migration to non-self material; 2. Recognition and 
attachment of invading micro-organisms; 3. Internalization of micro-organisms into a phagosome; 4. The microorganism may be 
destroyed by oxygen dependent and oxygen-independent microbicidal activities. These four steps constitute the so-called 
phagocytosis process. However, at step 3′ hemocytes can encapsulate the micro-organisms; 4′. Eventually, encapsulated 
micro-organisms can be destroyed extracellularly. 
 

 
 
 
 



 
Fig. 3. Macroscopic observation of milky white nodules (red arrows) on the surface of  R. philippinarum body.  
 
 
 
 
 
 
 
 

 
Fig. 4. Histological observation of granuloma structure in the connective tissue of the mantle of  R. philippinarum. A massive 
infiltration of hemocytes was observed around Perkinsus parasite trophozoites, disrupting the tissular structure of the mantle. 
 



 
Fig. 5. Hypothetical process of how lectins affect recognition and elimination of parasites by hemocytes in clams. Adapted from 
Soudant et al., 2008. 
 
 
 
 

 

Fig. 6. Encapsulation of Perkinsus trophozoites in  R. philippinarum tissues. Perkinsus trophozoites (arrow) were surrounded by 
infiltrated hemocytes in granuloma structure. 

 



 

Fig. 7. Schematic representation of Perkinsus sp. encapsulation by the hemocytes of clams ( R. decussatus and  R. 
philippinarum) according to the studies of Montes et al. 1995a,b, 1996. Adapted from Soudant et al., 2008. 

 
 
 
 
 
 
 

 

Fig. 8. Commonly admitted pathways involved in production of major reactive oxygen species and nitrogen species outside the 
cell membrane (left) and inside phagosome (right) in hemocytes of bivalves. Soudant et al., 2008. NO, Nitric oxide; ONOO−, 
peroxynitrite; O2 −, Anion superoxide; HOCl, Hypochloride; iNOS, inductible nitric oxide synthase; SOD, superoxide dismutase; 
EC-SOD, Extracellular superoxide dismutase; MPO, myeloperoxidase. 


