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ABSTRACT

Layered decoding is known to provide efficient and high-

throughput implementation of LDPC decoders. However,

the implementation of layered architecture is not always

straightforward because of memory update conflicts in the

a posteriori information memory. In this paper, we focus

our attention on a particular type of conflict that is due to

multiple-diagonal sub-matrices in the DVB-S2, -T2 and -C2

parity-check matrices. We propose an original solution that

combines repetition of the concerned layers and the write

disable of the a posteriori information memory. The imple-

mentation of this solution on an FPGA-based LDPC decoder

led to an average air throughput of 200 Mbit/s with a paral-

lelism of 45 and a clock frequency of 300 MHz. Increasing

the parallelism to 120 led to an average air throughput of

720 Mbit/s with a clock frequency of 400 MHz on CMOS

technology.

Index Terms— DVB-S2, layered decoder, Low-Density

Parity-Check (LDPC) code, memory conflict, VLSI imple-

mentation,

1. INTRODUCTION

Low Density Parity-Check (LDPC) codes [1] have gained a

lot of attention due to their remarkable error correcting capa-

bilities. The design of structured codes [2] allows practical

hardware implementation of LDPC decoders. This family of

codes have been adopted in several standards such as the 2nd

Generation Satellite Digital Video Broadcast (DVB-S2) [3]

ratified in 2005. More recently, the DVB-T2 and DVB-C2

standards have adopted the same family code as the DVB-S2

standard. In the following, DVB-X2 stands for DVB-S2, -T2

and -C2.

Even if the DVB-X2 standards define structured parity-

check matrices, they are not perfectly structured for layered

decoding because of the overlapped sub-matrices or Multiple-

Diagonal Sub-Matrices (MDSM). These MDSMs lead to
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memory update conflicts in the a posteriori or Soft Output

(SO) memories. The main idea of this paper is to solve the

problem by processing twice the layers containing MDSMs

and generating the appropriate memory control to cancel the

MDSM effects. Layers with MDSM are repeated in such a

way that the extra layers contribute also to the convergence of

the code. The obtained scheduling can be viewed as a com-

bination of the horizontal scheduling and the replica shuffle

scheduling proposed by Zhang and Fossorier [4].

This paper is organized as follows: Section II is dedicated

to describe the memory update conflicts and their resolution

in the state-of-the-art. Section III describes the repeat process

and its implementation. Finally, Section IV presents BER per-

formance and synthesis results.

2. MEMORY UPDATE CONFLICTS DUE TO THE

DVB-X2 MATRIX STRUCTURE

After a short review on the layered decoding algorithm, the

memory update problem is explained and the existing work on

this subject is presented. For further information on layered

decoders, readers are invited to read [2] and [5].

2.1. Layered decoding algorithm

The layered algorithm divides each iteration in sub-iterations

or layers and uses the intermediate Soft Output (SO) for each

variable node v = 1, . . . , N . First, the SOv are initialized

with the channel LLR and messages from check node to vari-

able nodes (Mc→v) are initialized to zero. For each sub-

iteration:

Mold
v→c = SOold

v −Mold
c→v, (1)

Mnew
c→v = 2 tanh−1

(

∏

vc/v

tanh(
Mold

v→c

2
)
)

, (2)

SOnew
v = Mold

v→c +Mnew
c→v, (3)

where vc/v is the set variable node indices connected to check

c excluding v. Combining (1) and (3), we obtain:



Fig. 1. One layer with one DDSM

SOnew
v = SOold

v +∆Mc→v, (4)

where ∆Mc→v is equal to Mnew
c→v −Mold

c→v .

2.2. Memory update conflicts problem

Fig. 1 shows a layer (L̄) with one Double-Diagonal Sub-

Matrix (DDSM). Each square with one diagonal line rep-

resents a shifted Identity Matrix (IM). The first square has

two diagonals D1 and D2 corresponds to a DDSM. Let us

consider two check nodes (c1 and c2) which are connected

through D1 and D2 to the same variable node denoted v̄.

During the processing of this layer, the SOv̄ value should

benefits from c1 according to

SOc1
v̄ = SOold

v̄ +∆Mc1→v̄, (5)

and from c2 according to

SOc2
v̄ = SOold

v̄ +∆Mc2→v̄, (6)

and finaly contribution of c1 and c2 should give

SOv̄ = SOold
v̄ +∆Mc1→v̄ +∆Mc2→v̄. (7)

Since the SO are updated serially in the layered architec-

ture, the SOc2
v̄ will overwrite the SOc1

v̄ value. As a con-

sequence, the contribution of Mc1→v̄ message is cut. This

problem is usually called a “cutting edge”. The existance of

“cutting edge” leads to performance degradation.

Many papers in the literature consider this problem [6,

5, 7, 8, 9, 10, 11, 12, 13, 14] and their solutions are briefly

exposed in the following subsection.

2.3. Existing work

In [6, 5], the authors compute the ∆Mc→v values and add an

access to the SOnew value allowing for concurrent updates

of the SO values. This solution requires an additional access

to the SO value which significantly constrains the implemen-

tation. In [7] and [8] the ∆Mc1→v̄ value is computed only

when there are DDSM. The selective ∆Mc1→v̄ calculation is

efficiently applied to the Min-Sum algorithm with an horizon-

tal layer decoder in [9] and with a vertical layered decoder in

[10]. All the presented solutions based on the ∆Mc1→v̄ cal-

culation require a modified layered decoder and the use of two

barrel shifters.

In [11] the conflicts due to DDSM are efficiently solved

by a parallel computation of the horizontal layers. However,

this implementation is only possible with the Chinese Mobile

Multimedia Broadcasting (CMMB) standard which provides

matrices with a constant variable node degree of connection.

In [12], an architecture supporting MDSM is designed for

CMMB, however, when dealing with a single diagonal sub-

matrix, the architecture is underused.

In [13, 14] the parallelism is first reduced to eliminate

most of the DDSM, then layers with DDSM are modified with

specific scheduling. In [13] the presented design is efficient

but limited to a parallelism of P = 40. In [14] the authors

describe a design without modification of the layered decoder

architecture and using only one barrel shifter. However, simu-

lations showed some degradation for a parallelism higher than

P = 45. For this reason, we propose a new technique that

successfully solves the matrix-structure conflicts, even when

keeping the maximum level of parallelism (i.e. P = 360).

The main objective of this work is to keep the data-path of the

decoder as simple as possible (a single barrel shifter, a sim-

ple layered node processor) in order to obtain both high speed

clock frequency and low area design. Then, starting from this

constraint, we solved the DDSM memory conflicts using an

appropriate control.

3. RESOLUTION OF THE MEMORY UPDATE

CONFLICTS

In this section the repeat process dedicated to solve the

DDSM problem is explained and an efficient architecture

is deduced.

3.1. Principle of the repeat process

The idea is to perform twice the layers with one DDSM to

allow update of the two diagonals serially. Let us consider

the layer in Fig. 1 with two consecutive processing. L̄1 will

refer to the first processing of the layer and L̄2 the second

processing. The result of L̄x on SOv̄ is defined as SOL̄x

v̄ . The

repeat process principle is exposed hereafter by focusing on

the evolution of the SOv̄ value, then control signals required

for the architecture are deduced.

During the first occurrence L̄1, the conflict occurs as de-

scribed in Section 2.2: SOold
v̄ is replaced first by SOc1

v̄ (5),

then overwritten by SOc2
v̄ (6). Thus SOL̄1

v̄ is updated accord-

ing to

SOL̄1

v̄ = SOold
v̄ +∆Mc2→v̄. (8)

During L̄2, we consider a specific control process that dis-

ables the SOc2
v̄ update of equation (6). As a consequence,



SOL̄2

v̄ is updated by applying equation (5) to SOL̄1

v̄ which

gives

SOL̄2

v̄ = SOL̄1

v̄ +∆Mc1→v̄. (9)

The result of the layer repeat process is given by combin-

ing the result of L̄1 and L̄2 respectively (8) and (9):

SOL̄2

v̄ = SOold
v̄ +∆Mc1→v̄ +∆Mc2→v̄. (10)

From (10), one can conclude that the repeat process al-

lows the contribution of both diagonals D1 and D2 to SOv

during a decoding iteration.

The specific control process that disables SOc2
v̄ update

during L̄2 can be easily implemented by an on time Write

Disable (WD) signal on the SO memory. To avoid inconsis-

tency at the next iteration, during L̄2 and update of Mc2→v̄

in the Mc→v memory, the Mc→v memory must also be Write

Disabled to keep Mc2→v̄ unchanged. The same important re-

mark is valid during the L̄1 with Mc1→v̄ . Note that equation

(8) can also be obtained by a WD of the SO memory during

D1 update. To summarize, a Write Disable (WD) of the SO
and Mc→v memories must be active during the processing of

the diagonal D1 of L̄1 and during the processing of diagonal

D2 of L̄2.

Note that during a decoding iteration, the repeat process

implies that all the variables connected to a layer containing

a DDSM are updated two times. If the repeated layer are

separated by several layers, then the second processing will

use more updated SO and thus, contribute more efficiently

to the convergence of the decoder. With a well chosen layer

scheduling, an iteration with x% of layers repetition will per-

form almost equivalent with 1 + x conventional iterations.

3.2. Conflict free decoder

The resolution of memory update conflicts due to pipeline

[15] can be efficiently combined with the repeat process to

design a conflict free decoder. This solution is performed

in three steps: the first step applies the split process [15]

up to the minimum level of parallelism needed to fulfill the

speed requirement of the application; the second step solves

the problem of the remaining DDSMs by repeating the con-

cerned layers. Finally, the third step applies an efficient layer

scheduling (including the duplicated layers) to solve conflicts

due to pipeline. In case of remaining pipeline conflicts, an op-

tional fourth step consisting in scheduling the variable group

inside the layers [16] can be considered.

The complexity added to the control process to drive the

WD signals does not impact the layered architecture. This al-

lows the implementation of a high speed and high parallelism

layered decoder such as the one presented in [17].

Fig. 2. Layered decoder architecture

3.3. Architecture

In Fig. 2, the layered decoder architecture is presented. The

Node Processor (NP) computes (1), (2) and (3). Only one

barrel shifter (Π) is implemented thanks to the computation

of the shift variation ∆Shift as described in [14]. The mod-

ifications required to make the layered decoder architecture

compliant with a WD architecture are described hereafter. In

a layered decoder, the Mc→v memory can be made of a FIFO

memory as a Mc→v update occurs only once during one iter-

ation. In case of repeated layers, the Mc→v are updated more

than once and the Mc→v read and write should be at the same

address as during the first call. This can be implemented us-

ing a RAM and an ad hoc address generator. When a layer

is repeated, an address identical to the first occurrence should

be provided.

The WD signal connected to the SO RAM and the Mc→v

RAM can be generated by detecting DDSM and layer repeat

occurrence. In the proposed implementation, when two con-

secutive IM are connected to a common variable group then a

DDSM is detected. A DDSM counter is then incremented to

access in a specific ROM. The output of the ROM is a single

bit that indicates if the current layer of this DDSM is the L̄1

or the L̄2 layer. The DDSM counter is set to zero at each new

decoding iteration.

The presented modifications are included in the control

block to generate appropriate control signals. These signals

are processed in parallel to the layered decoder and do not in-

crease the latency or the critical path of the layered decoder.

Thus, the modifications retain the layered decoder efficiency.

The splitting process [14], the layer scheduling [15] and the

repeat process can be combined and give the designer the free-

dom to choose the check node update algorithm. Neverthe-

less, if the Mc→v are stored in a compressed way, as can be

the case for the Min-Sum algorithm and its variations, then a

special adaptation of the architecture is required.

3.4. Conflict resolution applied to compressed memories

If the Mc→v messages are compressed in the MMEM
c→v mem-

ory, there are no more direct accesses to the Mc1→v̄ and

Mc2→v̄ in the Mc→v memory to apply the WD signal.



Fig. 3. Modified Mc→v memory

The proposed solution is to store in a compressed way

all the Mv→c messages that do not belong to a DDSM, and

to store individually the messages that belong to a DDSM.

The modifications required to the Mc→v memory are pre-

sented in Fig. 3. Two additional memories, D1 FIFO and D2

FIFO are responsible to memorize respectively the Mc1→v̄

and Mc2→v̄ messages. D1 FIFO stores Mnew
c1→v̄ during the

process of layer L2 (no overwrite of D1)with signal WE D1

while D2 FIFO stores Mnew
c2→v̄ during the process of layer L1

with signal WE D2. The read process in the MMEM
c→v implies

three kinds of memory accesses:

1. Normal access: generation of the Mold
c→v message

based on the compressed information and the current

index of the message.

2. D1 access: the Mold
c1→v̄ message is read in D1 FIFO.

3. D2 access: the Mold
c2→v̄ message is read in D2 FIFO.

The over cost due to added memory depends on the num-

ber of DDSM. A decoder with P = 360 and compatible with

all DVB-S2 code rates will require a maximum of 35 DDSM

(code rate=5/6). The number of Mc→v messages (#Mc→v)

which are required to be stored is given by #Mc→v = 35 ×
360 × 2 = 25200 (over 285120 edges) . With P = 120, this

number is reduced to #Mc→v = 16 × 120 × 2 = 3840 and

with P = 45, #Mc→v = 4× 45× 2 = 360.

4. APPLICATION CASE

The WD architecture was simulated and implemented on an

FPGA platform for validation purpose and synthesized on

CMOS technology for comparison with state of art.

4.1. Simulation results

Fig. 4 illustrates fixed-point simulation results for a rate-2/3,

standard frame (i.e. long frame) with the Normalized Min-
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Fig. 4. BER for R=2/3 long frame DVB-T2 LDPC code for

a decoding throughput equivalent to 30 decoding iterations

without layer repetition

Sum algorithm. The first curve shows a layered decoder not

taking into account the DDSMs. The performance obtained

with a parallelism of P = 45 (no conflict) and nit = 30 de-

coding iterations will be used as the reference curve for the

LDPC code alone (the outer BCH code of the DVB-X2 stan-

dards is not considered in the simulation result). If nit is con-

stant for P=45, 180 and 360, then P = 360 gives best perfor-

mances due to repeated layers, but throughput is also reduced

due to repeated layers. To obtain a fair comparison, the num-

ber of iterations is reduced as a function of the proportion of

added layers. With P = 180, 10 layers are repeated over the

240 layers. To obtain a constant throughput, the number of

iterations is normalized by a factor 240/(240 + 10), which

gives 29 decoding iterations. With a parallelism of 360 (12

DDSM and 120 layers, 27 iterations) at a BER of 10−10, the

curve is less than 0.05 dB away from the reference and at less

than 1 dB from the Shannon limit. Note that for a parallelism

of 360, there are sub-matrices with triple diagonals or even

quadruple diagonals for some rates. In the case of triple (re-

spectively quadruple) overlapped diagonals, the layer must be

repeated three (respectively four) times with an appropriate

WD of the memory to allow the effective update of a differ-

ent diagonal for every repeated layer. Note that, thanks to the

splitting process, all the triple diagonals are removed with a

parallelism less than or equal to 180 [14].

4.2. Synthesis

The WD architecture with finite precision options described

in [17] was synthesized on a Xilinx Virtex-V Pro FPGA

(XQ5VLX110), for validation purposes. The system decodes

long frames of code rates 1/2, 2/3, 3/4, 4/5 and 5/6. The av-

erage number of decoding iterations is reduced to 15 thanks



Paper [8] [19] This

Parallelism 180 180 120

Algorithm 3-min ? NMS

Throughput[Mbit/s] 180 135 720

Frequency[MHz] 270 174 400

Extrinsic [bits] 6 6 5

SOram [bits] 10 8 6

Channel [bits] 6 6 5

Buffer ? ? yes

Capacity[Mbits] 2.68 3.18 2.2

BCH yes yes no

Technologie[nm] 65 65 65

Total area[mm2] 6.03 6.07 5.89

Table 1. Layered decoder CMOS implementation compari-

son

to the addition of an input buffer and the implementation of

the stopping criteria [18]. For code rate 3/5, which has the

most of edges, the average air throughput reaches 200 Mbit/s

considering the clock frequency of 300 MHz after place and

route. For comparison purposes, the decoder was also synthe-

sized with the Synopsis Design Compiler based on Chartered

CMOS 65nm technology.

The implementation of a layered decoder for the DVB-S2

standard was considered in [8] and [19]. Table 1 compares

these implementations in terms of parallelism, air through-

put, signal width and total area. In the proposed architecture,

a buffer of size two (i.e. two RAM of size 64800 to store

temporarily two input messages) is added to store the chan-

nel LLR values to halve the average number of iterations as

described in [18]. To avoid conflicts due to pipeline, reduce

the number of DDSM, reduce area and routing congestion, a

parallelism of 120 is chosen. The memories used in the de-

sign have been synthesized using memory cells giving a total

area of 5.54 mm2 working at 500 MHz. The area occupied by

the barrel shifter, the NPs processing elements and the con-

trol is only 0.35 mm2 working at 500 MHz. We estimated

that the full design can be clocked at 400 MHz which allows

an average air throughput of 720 Mbit/s.

5. CONCLUSION

In this paper, we presented an efficient design of an LDPC de-

coder for the DVB-S2, -T2 and -C2 standard. The main con-

tribution is to repeat the layer that contains DDSMs in such

a way that each layer repetition contributes efficiently to the

convergence of the code. This method allows the use of a lay-

ered decoder with one barrel shifter and no additional patch in

the critical path. We performed two designs, the first targeted

a Xilinx Virtex 5 FPGA with a parallelism of P = 45. Em-

ulation results showed a decoding throughput of 200 Mbit/s.

The second design targeted a CMOS 65 nm technology with

a parallelism of P = 120. The preliminary results gave a total

area of 5.89mm2 and a clock frequency of 400 MHz, which

corresponds to a decoding throughput of 720 Mbit/s. For the

maximum parallelism of P = 360, the repeat layer technique

can solve the DDSM conflicts at a cost of a 0.05 dB when no

throughput degradation is accepted.
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