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Antimicrobial Peptides in oyster hemolymph : the bacterial connection 

 

Abstract 

We have explored antimicrobial compounds in oyster hemolymph and purified four active peptides with molecular masses of 4464, 3158, 655 

and 636 Da. While no exploitable structural elements were obtained for the former three, a partial amino acid sequence (X-P-P-X-X-I-V) was 

obtained for the latter, named Cg-636. Due to both its low MM and the presence of exotic amino acid residue (X), we suspected a bacterial origin 

and tracked cultivable hemolymph-resident bacteria of oyster for their antimicrobial abilities. Supernatants of 224 hemolymph resident bacteria 

coming from 60 oysters were screened against 10 target bacteria including aquaculture pathogens. Around 2 % (5 strains) revealed antimicrobial 

activities. They belong to Pseudoalteromonas and Vibrio genera. Two closely related strains named hCg-6 and hCg-42 have been shown to 

produce Bacteriocin-Like Inhibitory Substances (BLIS) even in oyster hemolymph. We report herein first BLIS-producing bacteria isolated from 
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bivalve hemolymph. These results strongly suggest that hemolymph resident bacteria may prevent pathogen establishment and pave the way for 

considering a role of resident bacteria into bivalve defense. 

keywords: 

antimicrobial peptide, Bacteriocin-like inhibitory substance, hemolymph, bivalve, resident bacteria, probiotic 

 

1.Introduction 

Marine organisms live under the highest microbial pressure and threat on earth due to microbial concentrations in seawater, estimated at 104 

CFU.mL-1 for bacteria, 103 CFU.mL-1 for fungi and around 3.106 viruses. mL-1 [1][2]. So, to fight against microbial infection, marine organisms 

have successfully spelled out and implemented efficient and potent strategies and the first of them are antimicrobial peptides (AMPs)[3]. It is 

now universally accepted in the scientific community that AMPs are ubiquitous in the living kingdom (for reviews the reader is referred to 

[4][5][6][7]). All these antimicrobial peptides have been gathered in various generalist databases such as APD2 [8], cAMP [9] or DAMPD [10] 

or specialized ones such as Defensin knowledgebase [11] or Bactibase [12]. And yet, in spite of a higher biodiversity in marine environment, 

AMPs are far less-described from marine sources[3][7][13][14]. Among marine organisms, filter feeders such as mollusc bivalves are 

particularly exposed to microbial challenge due to their way of feeding. Therefore, it is not surprising that AMPs were described from mussels, 

one of the most efficient filter feeder bivalves. Indeed, since 1996, no fewer than 6 cystein-rich AMP families have been described in mussels eg 

defensin, myticin, mytilin and mytimycin, mytimacins and big defensins [15][16][17][18][19], displaying a real chemical arsenal. It was 
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demonstrated that mussel AMP families eg myticins, mytilins and defensins were differentially distributed throughout the organism and released 

in hemolymph plasma under bacterial challenge for a systemic response [18][20]. On the other hand, oyster AMPs are more recent, dating back 

to 2005 [21]. American oyster defensin (AOD) and Cg-Defm were respectively purified from gill and mantle [21][22]. The latter was shown to 

be constitutively produced in mantle while two isoforms named Cg-Defh1 and Cg-Defh2 were shown to be expressed in hemocytes [22][23]. As 

for mussels, 3 members of big defensin family were also identified in oyster hemocytes [24]. These defensins have been shown to exert their 

antibacterial activity by targeting lipid II [25]. No AMPs have ever been described to be released into oyster hemolymph to provide a systemic 

response to infection although antibacterial activity has been described in hemolymph plasma in oysters [26] [27] [28].  

Furthermore, the natural presence of bacteria in hemolymph of healthy bivalves is now well-accepted but not very documented although this 

resident microflora should play a role in oyster development and health [29]. In this study, we have investigated this paradox. We have first 

analyzed oyster hemolymph for antimicrobial peptides using a functional approach. We report herein the purification and partial characterization 

of antimicrobial peptides from oyster hemolymph. In a second step, we examined cultivable resident bacteria in oyster hemolymph for their 

antibacterial abilities. We report the isolation of hemolymph-resident bacterial strains exhibiting antibacterial potency and their abilities to 

produce antimicrobial peptides in hemolymph in vitro suggesting a potential role in bivalve defense. 
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2. Materiel and Methods 

2.1 Biological material 

2.1.1 Hemolymph sampling and conditioning 

Oysters, Crassostrea gigas, were collected in the Rhuys peninsula, Morbihan gulf, France (47°30’50 North, 2° 37’ 50 West, WGS84 system). 

They were off-size for commercial markets, about 12 cm long and 5 cm wide. After careful opening, oyster hemolymph (1-3 mL) was collected 

in the pericardic cavity using disposable sterile needle. 

For bacterial isolation, each individual hemolymph sample (1.5 mL) was directly laid onto marine agar (Difco™ Marine Agar 2216) using 

automated spiral plater (WASP, AES Chemunex, France) and incubated 72h at 18°C. For antimicrobial studies and bacterial growth assay, 

hemolymph samples (about 500 mL) were pooled, centrifugated (6000g for 10 min at 4°C) and then sterilized, using disposable filter (0.22 µm, 

SFCA serum Filter Unit, Nalgene).  

 

2.1.2 Culture hemolymph-associated bacteria and identification  

After 72h incubation at 18°C, hemolymph-inoculated marine agar plates were observed and numbered. Using morphological criteria, about five 

colonies per plate, that is to say per oyster were selected and sub-cultured in marine broth for 48H at 18°C. Culture supernatants were then 

collected by centrifugation and sterilized using 0.22 µm filters. Hemolymph-associated bacteria were identified using 16S rDNA gene 

sequencing. Bacteria were collected by centrifugation (6000g for 5 min at 4°C) and chemically lysed (SDS 3% at pH 12). DNA was extracted 
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with isoamyl phenol chlorophorm (1:24:25, v/v/v), washed twice in cold ethanol 70% and dried under vacuum before storage in Tris EDTA (TE) 

buffer. Using two couples of universal primers (W18:9F, W20:1462R) or (27F, 1492R) and PCR masterMix (Promega®), 16S rDNA was 

amplified to generate 1500pb PCR products. They were controlled using 1% agarose gel electrophoresis before sequencing (GATC Biotech, 

Germany). Partial 16S rDNA sequences were compared with GeneBank entries using BlastN to identify bacterial genus. Phylogenic trees were 

built using MEGA 5 program package. Nucleotide sequences inferior to 1000 nucleotides were excluded. The 16S rDNA gene sequences 

obtained were deposited in the GenBank database. 

 

2.1.3 Target strains and growth conditions 

Four Gram-positive and six Gram-negative bacteria were used as target bacteria. Culture conditions are presented Table 1. Pseudoalteromonas 

prydzensis ACAM 620T and all strains isolated from oyster hemolymph were grown at 18°C onto Marine Broth or Marine Agar (Marine Agar 

2216, DIFCOTM).  
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Table 1 : Culture conditions of target bacteria 

 

 Bacteria  Strain Medium Temperature 

 Bacillus megaterium  ATCC 10778 LB 30°C 

 Lactococcus garviae  ATCC 43921 TSB 30°C 

 Micrococcus luteus  ATCC 10240 TSB 37°C 

 Vagococcus salmoninarum  18–96 TSB 30°C 

 

 Aeromonas hydrophila  CIP 7614 TSB 30°C 

 Escherichia coli   ATCC 25922 TSB 37°C 

 Listonella anguillarum  NCBIM 829 TSB+NaCl(1.5%, w/v) 25°C 

 Salmonella enterica  CIP 8297 TSB 37°C 

 Vibrio alginolyticus  CIP 103360 MB 18°C 

 Yersinia ruckeri   ATCC 29473 TSB 30°C 

 

2.1.4 Antimicrobial assay 

Antimicrobial activity was assayed in liquid medium. Minimal inhibitory concentrations were determined in standard 96-well microtiter plates 

against the bacterial panel as previously described by Defer et al, 2009 [28] and adapted from [30]. Chromatographic fractions were assayed 
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against target bacteria at 105 CFU.mL-1 coming from an exponential growing phase culture in a final volume of 100µl. The plates were incubated 

for 48h at the optimal growth temperature. Bacterial growth was measured at 600 nm for optical density. Evaluation was carried out in triplicate. 

MIC was defined as the lowest protein concentration displaying 100% growth inhibition. 

Culture supernatants coming from bacteria isolated from oyster hemolymph were collected after centrifugation (6000g for 10 min at 4°C) and 

filtration (0.22 µm, SFCA serum Filter Unit, Nalgene). Antibacterial activity was investigated using the well-diffusion method. Buffered with 

phosphate 100 mM pH 7 (in order to avoid organic acid inhibition) medium agar was inoculated with target bacteria at 1×106 CFU.mL-1 and 

plated in a sterile Petri dish. Wells (diameter, 5 mm) were punched in the agar plate and 50 µl of culture supernatants to be assayed were added. 

The plate cultures were incubated at optimal growth temperature for 18h. Negative control (marine broth) and positive controls were used 

(lysozyme or Nisaplin® (1 mg.mL-1) for Gram-positive bacteria and polymyxine B (1 mg.mL-1) for Gram-negative bacteria). Growth inhibition of 

the indicator bacterium was evaluated by the inhibition zone size surrounding the wells after 18 H of incubation. Assays were carried out in 

duplicate. For activity quantification, a serial two-fold dilution of supernatant in sterile water was assayed against target bacteria. The reciprocal 

of the highest dilution showing a 1-mm zone of inhibition around the well was arbitrarily defined as the number of units of antibacterial activity 

[31]. Each unit of activity was determined from two independent experiments performed in duplicate. 
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2.2 Enzymatic digestion 

To define the chemical nature of the antimicrobial compounds detected, both chromatographic fractions and culture supernatants were subjected 

to proteolytic digestion. Samples in 50 mM phosphate buffer, pH 8 were incubated either with proteinase K (Sigma, P-6556) or trypsin (Sigma, 

T-1426) or α-chymotrypsin (Sigma C-4129) at an enzyme to substrate ratio of 1 to 20 (w/w). After a one-hour incubation at 37°C, samples were 

assayed for antibacterial activity against M. luteus for hemolymph fractions and Y. ruckeri or L. anguillarum for supernatants of hemolymph-

associated bacteria. Samples in 50 mM phosphate buffer pH 8 without enzyme incubated one hour at 37°C were used as positive control. 

 

2.3 SDS-PAGE and overlay assays 

Active fractions and supernatants were examined using 16.5% polyacrylamide gel Tris-Tricine, pH 8.8 to allow suitable resolution of small 

peptides [32]. Sample solutions (1-5 µg) were dissolved (v/v) in sample buffer (2X) containing 5% SDS, 12% glycerol, 2% β-mercaptoethanol, 

10% Coomassie Brilliant Blue G, and 5% 1 M Tris-HCl, pH 6.8, and heated at 100 °C for 5 min. Electrophoresis was done at constant voltage of 

100 V for 2 h. Gels were fixed in 50% (v/v) methanol and 10% (v/v) acetic acid for 20 min and stained with Coomassie Brilliant Blue R-250 

(Bio-Rad). To test for antibacterial activity, unstained polyacrylamide gels were washed with sterile water for 30 min, placed into sterile Petri 

dishes, and overlaid with adapted broth agar (8 g.L-1) inoculated at 106 UFC.mL-1 with the target bacteria. Petri dishes were incubated for 18h at 

optimal temperature of target bacteria and examined for growth inhibition zones (adapted from [33]). 
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2.4 AMPs purification from oyster hemolymph  

2.4.1 C-18 Solid phase extraction  

Filtrated hemolymph was directly loaded and fractionated onto C-18 cartridges (SPE/C18 UPTI-clean, Interchim, France) equilibrated with 10% 

Acetonitrile (ACN), 0.1% trifluoro-acetic acid (TFA). Elution was performed sequentially with 10%, 40% and 80% ACN, 0.1%TFA. 

Lyophilized fractions were reconstituted in sterile ultrapure water (1% (v/v) of initial hemolymph pool volume) and named H10, H40 and H80. 

Protein concentration was determined using the microBCA protein assay kit (Interchim, France). The H10, H40 and H80 fractions were kept frozen 

at −20 °C until antimicrobial assays were performed. 

 

2.4.2 Purification of antimicrobial peptides 

H40 fractions were loaded onto a calibrated size-exclusion column (TSK G2000 SWXL, 5µm, 300X7.8 mm, Tosoh Bioscience, Japan) 

equilibrated in ultra pure water, 45% ACN, 0.1% TFA. Fractions (0.5mL) were collected at a flow rate of 0.5mL.min-1, freeze-dried, dissolved in 

sterile ultrapure water and finally assayed for antibacterial activity as described above. Pooled active fractions were lyophilized and dissolved in 

H2O, 0.1%TFA and further fractionated onto Uptisphere C18 column (C18 5HSC 25QS, 5µm, 250X4.6 mm, Interchim, France). After an initial 

5 min washing step in 20%ACN in 0.1%TFA/water, elution was achieved in 60 min at a flow rate of 0.8 mL.min-1 with a 20 to 50% linear 

gradient of ACN, 0.07% TFA. Fractions were monitored for antibacterial activity. The active fraction was further analyzed by mass 

spectrometry. 
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2.5 Peptide characterization 

2.5.1 Mass spectrometry 

Analyses were performed with a HPLC Surveyor chain connected on-line to an orthogonal electrospray source (Deca XP MS-n Thermo Fisher 

Scientific) operated in the positive electrospray ionization mode (ESI+). The ions were focused into an ion trap, suitable for MS and MS/MS 

analyses. The capillary exit of the electrospray ion source was set at 70 V, the octapole at 3 V. A counter flow of nitrogen was used as nebulizing 

gas. Xcalibur data system was used to acquire the data, which were further processed with Sequest data system. The Chromafix C18 fraction of 

each extract was concentrated on Zip Tip C18 solid phase extraction microcolumn (Millipore), eluted with 5 ml of acetonitrile/0.1% formic acid 

and dried. The pellet was resuspended in 10 ml of 0.1% formic acid in water to be injected onto a C18 Thermo Hypersil column (0.5 mm X 50 

mm, 3 µm) with an acetonitrile linear gradient of 1% per minute in 0.1% formic acid, from 2 to 60%. The MS data were acquired in the scan 

mode considering the positive ion signal. 

 

2.5.2 Edman microsequencing 

Purified antimicrobial peptides were blotted onto Prosorb (Applied Biosystems) before subjected to Edman degradation in an Applied 

Biosystems 492 automated protein sequencer.  
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3. Results 

To explore the potential of hemolymph-associated bacteria to produce antimicrobial compounds in hemolymph, a dual approach was adopted. 

Indeed hemolymph was investigated in parallel for antimicrobial activity and for bacteria producing antimicrobial compounds. The adopted 

strategy is presented Figure 1. 
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Fig. 1. Global strategy used to track AMPs and BLIS-producing bacteria in oyster hemolymph. 
 

3.1 Antimicrobial peptides in hemolymph 

3.1.1 Antibacterial activity in hemolymph fractions 

Filtrated hemolymph exhibited a partial antibacterial activity since only a significant growth delay of target cells was observed (data not shown). 

In order to concentrate, hemolymph pool (around 500mL collected from about 200 oysters) was extracted onto C-18 cartridges, eluted in a three-

step protocol increasing ACN proportion (10, 40 and 80%) and finally freeze-dried. Resulting fractions named respectively H10, H40 and H80 

were assayed against bacterial target cells. While the H10 fraction did not show any antibacterial activity, a potent one was found in the H40 and 

H80 fractions (Table 2). Both of them present very low MICs, around 20 µg.mL-1, against two Gram-positive bacteria, B. megaterium and M. 

luteus. Only the H40 fraction exhibited an anti Gram-negative activity, limited to Y. ruckeri and with MIC being up to 160 µg.mL-1. Moreover, 

the fact that antibacterial activity was recovered into H40 and H80 fractions demonstrates the hydrophobic character of the active compound(s). 
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Table 2. Antibacterial spectrum of activity of the hemolymph fractions expressed as MICs (µg.mL-1) 

    Hemolymph fractions 

  H10 H40 H80 Positive Control 

  [Prot] µg.mL-1 1000 630 150 µg.mL-1 

Target bacteria    MIC (µg.mL-1) 

Bacillus megaterium ATCC 10778  - 20 37 1 

Micrococcus luteus ATCC 10240  - 20 9 4 

Vagocococcus salmoninarum 18-96  - - - 64 

 

Aeromonas hydrophyla CIP 7614  - - - 1 

Escheriachia coli ATCC 25922  - - - 4 

Listonella anguillarum NCBIM 829  - - - 1 

Vibrio alginolyticus CIP 103360  - - - 16 

Yersinia ruckeri ATCC 29473  - 160 - 1 

(-) means that no inhibitory effect was observed. Lyzozyme and Polymyxin B were respectively used as positive control for Gram-positive 

and Gram-negative bacteria. 

 

3.1.2 Partial characterization of the active(s) compound(s) 

In order to investigate the chemical nature of the active compound(s), the H40 fraction was subjected to various basic assays such as protease 

treatments. We first used proteinase K, a broad-specificity serine protease, in order to display the proteinic nature. Incubation at 37°C for 1h with 
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proteinase K resulted in a total loss of antibacterial activity, MIC being higher than 630 µg.mL-1 (Table 2). We can deduce that the active 

compound(s) are at least partially of proteinic nature. To confirm and get structural insights onto amino acids composition, H40 fraction was 

subjected to specific peptidases, trypsin and α-chymotrypsin. Trypsin treatment resulted in a total loss of antibacterial activity while only a 

residual activity (MIC = 630 µg.mL-1) was detected when treated with α-chymotrypsin, (Table 3). So it appears that endopeptidase treatments 

cause at least a dramatic reduction of antibacterial activity.  

Table 3. Protease sensitivity of the H40 fraction 

 

  Hemolymph fraction H40 MIC 

   µg.mL-1 

  - proteinase K-treated > 630 

  - tryspsin-treated > 630 

  - α-Chymotrypsin-treated 630 

  - control  20 
   
control means H40 fraction incubated for 1H at 37°C in 50 mM 

phosphate buffer, pH 8. 

 

To assess the molecular size of the active compound(s) in the H40 fraction unambiguously, we used a method developed for bacteriocin studies. It 

consists in a combination of electrophoretic analysis (SDS-PAGE) and antibacterial bioassay. After electrophoretic migration, washed SDS-
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PAGE gel was overlaid with agar medium inoculated with target cells. After incubation overnight, a single inhibition zone was observed in the 

3.5 kDa size zone (Figure 2). Results from solid phase extraction, enzymatic treatments and molecular size evaluation showed that antibacterial 

activity in oyster hemolymph was arising from hydrophobic, proteinaceous and low MM compounds which are structural characteristics of 

antimicrobial peptides.  
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Fig. 2. SDS-polyacrylamide gel electrophoresis of hemolymph fractions (H40 and H80) and culture supernatant of strain HCg-6 overlaid 
respectively with culture broth agar containing target bacteria M. luteus and Y. ruckeri. 
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3.1.3 Purifications of antibacterial peptide(s)  

Based on molecular size and hydrophobic character determined above, we planned a two-step protocol to purify the active peptide(s) detected in 

the H40 fraction. Antibacterial activity against the most sensitive strain, M. luteus, was used as a functional assay. The H40 fraction was first 

loaded onto a size-exclusion chromatography. Active fractions were further purified by reverse phase HPLC. Finally, the purified and active 

peptide was directly subjected to mass spectrometry analysis. With this strategy, we isolated a 4464 Da active peptide (Figure 3). Unfortunately, 

no structural elements were obtained using automated Edman degradation. Three new purifications were successively attempted using the same 

protocol arising from different hemolymph pools. Each of them resulted in different antibacterial peptides each exhibiting different MM namely 

3158 Da, 655 Da and finally 636 Da (Figure 3).  
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Fig. 3. Molecular weight of the antimicrobial peptides purified from four hemolymph pools (A to D) using an electrospray ionisation mass 
spectrometry. 
 

There is no denying that to accept that purified peptides were hemolymph-pool dependent. No structural elements were obtained using Edman 

degradation except for the 636 Da peptide. The primary structure was partially determined as X-P-P-X-X-I-V, where X defines non-standard 

amino acid. It was named Cg-636 due to both its origin, Crassostrea gigas, and its MM. In the light of sequence and mass elements, we speculate 

that the Cg-636 peptide is composed of small exotic amino acid residues. In the face of such results, we suspected a bacterial origin of these 

peptides. Such an hypothesis is particularly attractive since (i) it would explain, at least partially, the four peptides purified from four hemolymph 
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pools and also since (ii) it has never been explored in bivalves, the bacterial presence in bivalve hemolymph being generally assessed for their 

potential pathogenicity. 

 

 

Fig. 4. Bacterial concentrations in oyster hemolymph. The symbol (&ssdiam) indicates that a strain exhibiting antibacterial activity was detected 
in hemolymph sample. 
 

3.2 Antibacterial bacteria in hemolymph 

Hemolymph, 1.5 mL per oyster, was collected sterilely from the pericardic cavity. It was immediately laid down onto Marine Agar using 

automated spiral plater. After incubation 72h at 18°C, colony-forming units were counted. Bacterial counting revealed a great disparity in 

bacterial concentration in oyster hemolymph (Figure 4) since about 20% of the oysters analyzed exhibited less than 102 CFU.mL-1, while a 
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bacterial concentration higher than 107 CFU.mL-1 was determined for around 10% of oysters. Excluding these extremes, most of the oysters 

collected (70%) displayed an average bacterial concentration in hemolymph of 1.2.104 CFU.mL-1.  

Starting from each hemolymph sample plated, macroscopically different colonies were sub-cultured in Marine broth for 48H. From hemolymph 

samples coming from 60 oysters, 224 strains were cultivated. Their supernatants were assayed using the well-diffusion method against a panel of 

10 bacterial targets including M. luteus and Y. ruckeri as well as significant pathogenic bacteria in aquaculture (Table 4). Antibacterial activity 

was detected in the supernatant of five strains, that is to say around 2.2% of the isolated strains. These strains were named hCg-xx referring to 

their origin, hemolymph of C. gigas number xx. The active strains were mainly active against Gram-negative bacteria. Only supernatants from 

strains hCg-11/2 and hCg-42 exhibited activity against both Gram-positive and -negative bacteria. The E. coli strain tested was not inhibited by 

the hCg-strains supernatants while the A. hydrophyla, L. anguillarum and Y. ruckeri strains, pathogenic in aquaculture, were the most sensitive 

strains. 
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Table 4. Antibacterial activity and protease sensitivity of the culture supernatant of hemolymph-associated strains  

 Supernatant from strain hCg-6 hCg-10 hCg-11/2 hCg-11/3 hCg-42 Reference 

 isolated from hemolymph of oyster n° 6 10 11 11 42  

Target bacteria 

 Bacillus megaterium ATCC 10778 - - - - + +++ 

 Lactococcus garviae ATCC 43921 - - +++ - + +++ 

 Micrococcus luteus ATCC 10240 - - +++ - - +++ 

 Vagocococcus salmoninarum 18-96 - - - - - +++ 

 

 Aeromonas hydrophila CIP 7614 + +++ + +++ ++ +++ 

 Escherichia coli ATCC 25922 - - - - - +++ 

 Listonella anguillarum NCBIM 829 +++ +++ ++ +++ + +++ 

 Salmonella enterica CIP 8297 + - ++ - - +++ 

 Vibrio alginolyticus CIP 103360 - + - + ND ND 

 Yersinia ruckeri ATCC 29473 ++ ++ +++ +++ +++ +++ 
Antibacterial activity (%) after protease treatments 

 Proteinase K  0 0 0 65 0 

 Trypsin  100 79 71 88 50 

 α-Chymotrypsin  ND 83 65 88 ND 

 Control  100 100 100 100 100 
The symbol (-) means that no inhibition was detected using the well-diffusion assay while (+) indicates that an inhibition halo was observed. (+), (++) and 

(+++) were used to quantify the size of the inhibition zone : + < 1 mm large, 1mm < ++ < 2 mm and +++ > 3 mm. ND : not determined Lyzozyme and 

Polymyxin B were respectively used as positive reference for Gram-positive and Gram-negative bacteria. Nisaplin® was used as reference for L.garviae. 

Control means hCg-strain supernatant incubated in 50 mM phosphate buffer, pH 8 for 1H at 37°C. 
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The 16S rDNA partial sequences of the strains were deposited in the NCBI nucleotide sequence database, Gene bank. Accession numbers are 

JX912482, JX912480, JX912478, JX912479 and JX912481 respectively for strains hCg-6, hCg-10, hCg-11/2, hCg-11/3 and hCg-42. 

Identification of active hCg-strains from oyster hemolymph was determined by BLAST analysis of 16S rDNA gene sequence. All the hCg- 

strains belong to the Gammaproteobacteria class, strains hCg-6, -10 and -42 being affiliated to Pseudoalteromonas genus while strains hCg-11/2 

and hCg-11/3 were identified as Vibrio genera (Figure 5). The 16S rRNA gene sequences from Pseudoalteromonas published type strains 

compilated from NCBI taxonomy browser and those determined in this study permitted to build phylogenetic trees using MEGA5 software. The 

phylogenetic tree of the Pseudoalteromas strains revealed that the hCg-6 and hCg-42 strains are very closely related although they were coming 

from two different oysters. Although their 16S rDNA nucleotide sequences exhibited 100% identity, they were considered as different strains 

since their plasmid profiles were different (data not shown). They form a cluster close to Pseudoalteromonas prydzensis and Pseudoalteromonas 

mariniglutinosa exhibiting 99% identity respectively to strain MB8-11 and KMM3635. The strain hCg-10, more distant from hCg-6 and -42 

(Figure 5), is related to Pseudoalteromonas paragorgicola (97 % identity to strain KMM3548) and Pseudoalteromonas elyakovii (97% identity 

to strain KMM162T). The phylotype hCg-10 may represent new Pseudoalteromonas specie [34].  
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Fig. 5. Neighbor-joining tree indicating the phylogenetic relationships inferred from partial 16S rDNA gene sequences of strains hCg within the 
two order of the ã Proteobacteria phylum: Alteromonadales and Vibrionales. Bootstrap values (expressed as percentage of 1000 
replications) > 50% are shown at branching point. Filled circles indicate that the corresponding nodes were also recovered in trees generated with 
the maximum parsimony and the maximum-likelihood algorithms. The Enterobacteriales member Escherichia coli 2012K11 (position 208–
1220) was used as outgroup. Empty circles indicate sequences determined in this study. Bar, 0.01 substitutions per nucleotide. 
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In contrast to hCg-6 and -42, the strains hCg-11/2 to hCg-11/3 were isolated from the same hemolymph sample (oyster 11). Regarding the 

phylogenetic tree based on 16S rDNA gene sequences of the Vibrio, strains hCg-11/2 and hCg-11/3 are respectively affiliated to the cluster V. 

gigantis/crassostreae/tasmaniensis and V.rhizospherae/ruber (Figure 5).  

 

3.3 BLIS production by hemolymph-resident bacteria  

Supernatants from strains hCg-6, -10, 11/2, -11/3 and -42 were subjected to protease treatments in exactly the same way as H40 fraction i.e. 

using proteinase K, trypsin and α-chymotrypsin. Resulting antibacterial activity was estimated using a serial two-fold dilution method. All 

protease treatments resulted in a more or less drastic reduction of antibacterial activity according to the producing strains suggesting at least a 

proteinic part of the active compounds (Table 4). When analyzed using the SDS-PAGE overlaid with target bacteria, only supernatants from 

Pseudoalteromonas hCg-6 and hCg-42 exhibited an inhibition halo in the 3.5 kDa migration zone (Figure 2). We assumed that the active 

compounds in supernatants hCg-10, -11/2 and -11/3 did not withstand denaturating treatment prior to electrophoresis. However that may be, it 

emerges that the Pseudoalteromonas hCg-6 and hCg-42 strains produce low MM, antibacterial and proteinaceous compounds. Such compounds 

present all the characteristics BLIS [35]. 

To get new insight into the BLIS-production abilities of the hCg-6 and hCg-42 strains, they were grown in various media. Marine broth was used 

as a positive control. After a 48 H incubation at 18°C, the biomass yielded was similar in each medium, e.g. around 109 CFU.mL-1. Supernatants 

were collected in order to quantify antibacterial activity. When cultivated in Sea Salt peptone or Sea Salt LB, these strains have exhibited a 
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BLIS-production level equivalent to production in marine broth but no activity was detectable after cultivation in TSB with or without Sea Salt 

(Table 5). Amazingly, the antibacterial activity recovered undergoes a all or nothing rule. To mimic in vivo conditions, sterile hemolymph was 

also assayed as a culture medium. The closest phylogenic strain, Pseudoalteromonas prydzensis ACAM 620T, was used as a negative control. 

Pseudoalteromonas hCg-6 and -42 were shown to be able to grow in hemolymph (data not shown). Moreover, antibacterial activity was detected 

in supernatant at a level as high as the positive control one (Table 5). These results indicate that Pseudoalteromonas hCg-6 and -42 strains are 

able to produce BLIS in oyster hemolymph in vitro. 

 

Table 5. BLIS-production in various media  

 

Antibacterial activity (%)  Marine LB Peptone TSB TSB Hemolymph 

  Broth  +Sea Salts +Sea Salts  +Sea Salts 

                     

Pseudoalt. hCg-6 100 100 100 0 0 100 

Pseudoalt. hCg-42 100 100 100 0 0 100 

 

Pseudoalt prydzensis  0 0 0 0 0 0 

LB and TSB respectively mean Luria Broth and Tryptic Soy Broth. 
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4. Discussion 

 The present study report the purification and partial characterization of antimicrobial peptides and for the first time isolation of BLIS-

producing bacteria from oyster hemolymph. Antimicrobial compounds detected in a concentrated fraction of hemolymph, named H40, were 

shown to be low MW, amphipathic and proteinaceous compounds. All these characters designate them as antimicrobial peptide [36]. Four 

purifications conducted from different hemolymph pools led to as many bioactive peptides exhibiting different MW (eg 4464,1 Da, 3158.4 Da, 

655 Da and finally 636,1 Da). The 4464 Da peptide exhibited a MM similar to that of AOD [21], Cg-Defm [22] and Cg-Defh1 and Cg-Defh2 

[23]. As recombinant oyster defensins, antibacterial activity of the 4464 Da peptide was much more potent against Gram positive bacteria even 

though the main oyster pathogens belong to Gram-negative bacteria [25]. It seems that oysters have developed a strategy based on synergy to 

complete its set of AMPs. Proline rich peptides (Cg-Prps) expressed in hemocyte have exhibited potent synergistic antibacterial activity with Cg-

Def [37]. Moreover, a member of the LPS-binding protein and bactericidal/permeability-increasing protein (BPI) family has recently been 

identified in Crassostrea gigas oyster (Cg-BPI). Cg-BPI production was shown to be constitutive in tissues in contact with the environment and 

triggered by bacterial challenge in hemocytes [38]. A synergistic effect has also been emphasized between the Cg-Defs themselves [39]. For 

most of these defense compounds, production and/or release have been shown to result from a bacterial challenge suggesting pathogen-

associated molecular pattern implication [24].  

Regarding the active peptide purified herein, the only structural elements obtained were a partial amino-acids sequence for the latter one (636 

Da): X-P-P-X-X-I-V, where X refers to non-standard residues. It was therefore called Cg-636. The exotic amino-acid residues account for 212.64 
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Da that is to say for each of them an average MM minus H2O around 71 Da for each of them. This simple calculation orientates towards small 

unusual amino acid residues such as Dehydro-alanine (Dha) whose MM minus H2O is 69.06 Da. The only Dha-containing antibacterial peptides 

known to date are lantibiotics [40], ribosomally-synthetized and highly post-translationally modified peptides produced by Gram-positive 

bacteria.  

Querying Crassostrea gigas genome or expressed sequence tags databases such as GigaDB [41] and GigasBase [42] were fruitless. 

Antimicrobial peptide databases, cAMP [9], APD2 [8], DAMPD [10], Defensins knowledgebase [11], were requested for peptide length inferior 

to 10 amino acids residues coming from invertebrates. Only jelleines met these criteria [43] but did not exhibit any homology at the structural 

level. Research was broadened to microbial peptides such as bacteriocin and nonribosomal peptides by querying specialized databases such as 

Norine [44] or Bactibase [12], also without anysuccess. A microbial origin of the Cg-636 peptide was hypothesized and investigated. 

Bacterial presence in bivalve hemolymph is known for years [45] but to the best of our knowledge, hemolymph-resident bacteria have never been 

explored for their antimicrobial activities. Indeed, the bacterial presence in oyster hemolymph is generally assessed for their potential 

pathogenicity. No information is available about the role of resident bacteria in hemolymph, if any, in bivalve health.  

Hemolymph plating onto marine agar and bacterial counting has revealed the great disparity into bacterial concentration ranging from less than 

102 to more than 107 CFU.mL-1. Five strains exhibiting antibacterial activity were identified as Vibrio and Pseudoalteromonas species. These 

two genera are classically found in bivalve hemolymph [45] and some of them have been shown to be non pathogenic for oyster [46]. 
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Vibrio and especially Pseudoalteromonas antimicrobial activities have been already documented [35][47][48][49][50]. However, to the best of 

our knowledge, this is the first report of antimicrobial strains isolation within mollusc hemolymph.  

We attempted to identify the chemical property of the active compounds produced by the hemolymph-resident bacteria isolated and named hCg-. 

We demonstrated unambiguously that the hCg-6 and hCg-42 are BLIS producing bacteria. Pseudoalteromonas sp. are well-known for producing 

antimicrobial low-molecular weight metabolites such as the alkaloids Tambjamines [51], thiomarinol [52], methylbutanoic acids [53], isatin [54]. 

But very few proteinic antimicrobial compounds have been characterized from Pseudoalteromonas. To date, three proteins named P-153 (MM 

87 kDa), a L-amino acids oxydase (MM 110 kDa) and recently PfaP (MM 77 kDa) have been purified and characterized from respectively 

Pseudoalteromonas piscicida [55], luteoviolacea [56] and flavipulchra[57].  

The BLIS-production ability of the hCg-6 and hCg-42 strains was shown to be culture-conditions dependent, another BLIS producer trait. The 

biosynthesis regulation ways are under the control of stress stimuli for most microcins and lactic acid bacteria bacteriocins (for review see 

[58][59]). Finally, and most significantly, a BLIS-production was detected in hemolymph in vitro. It appears therefore that hCg-6 and hCg-42 

strains may directly inhibit the invasion of pathogens and/or modulate the composition of the microbiota. Such a function has been proposed for 

resident microflora in corals [60][61]. Therefore hemolymph-resident microflora may play a role in the oyster defense and so constitute a 

pertinent source of new probiotics in aquaculture. Our results throw a new light on hemolymph-resident microbiota in oyster and raise the 

questions of its role in bivalve health. 
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FIGURES AND CAPTIONS 

 

Fig. 1. Global strategy used to track AMPs and BLIS-producing bacteria in oyster hemolymph 

Fig. 2. SDS-Polyacrylamide gel electrophoresis of hemolymph fractions (H40 and H80) and culture supernatant of strain HCg-6 overlaid 

respectively with culture broth agar containing target bacteria M. luteus and Y. ruckeri.  

Fig. 3. Molecular Weight of the antimicrobial peptides purified from four hemolymph pools (A to D) using an electrospray ionisation mass 

spectrometry. 

Fig. 4. Bacterial concentrations in oyster hemolymph. 

The symbol (�) indicates that a strain exhibiting antibacterial activity was detected in hemolymph sample.  

Fig. 5. Neighbour-joining tree indicating the Phylogenetic relationships inferred from partial 16S rDNA gene sequences of strains hCg within the 

two order of the γ Proteobacteria phylum: Alteromonadales and Vibrionales. Bootstrap values (expressed as percentage of 1000 replications) > 

50% are shown at branching point. Filled circles indicate that the corresponding nodes were also recovered in trees generated with the maximum 

parsimony and the maximum-likelihood algorithms. The Enterobacteriales member Escherichia coli 2012K11 (position 208-1220) was used as 

outgroup. Empty circles indicate sequences determined in this study. Bar, 0.01 substitutions per nucleotide. 
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Table 1 : Culture conditions of target bacteria 

 

 Bacteria  Strain Medium Temperature 

 Bacillus megaterium  ATCC 10778 LB 30°C 

 Lactococcus garviae  ATCC 43921 TSB 30°C 

 Micrococcus luteus  ATCC 10240 TSB 37°C 

 Vagococcus salmoninarum  18–96 TSB 30°C 

 

 Aeromonas hydrophila  CIP 7614 TSB 30°C 

 Escherichia coli   ATCC 25922 TSB 37°C 

 Listonella anguillarum  NCBIM 829 TSB+NaCl(1.5%, w/v) 25°C 

 Salmonella enterica  CIP 8297 TSB 37°C 

 Vibrio alginolyticus  CIP 103360 MB 18°C 

 Yersinia ruckeri   ATCC 29473 TSB 30°C 
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Table 2. Antibacterial spectrum of activity of the hemolymph fractions expressed as MICs (µg.mL-1) 

    Hemolymph fractions 

  H10 H40 H80 Positive Control 

  [Prot] µg.mL-1 1000 630 150 µg.mL-1 

Target bacteria    MIC (µg.mL-1) 

Bacillus megaterium ATCC 10778  - 20 37 1 

Micrococcus luteus ATCC 10240  - 20 9 4 

Vagocococcus salmoninarum 18-96  - - - 64 

 

Aeromonas hydrophyla CIP 7614  - - - 1 

Escheriachia coli ATCC 25922  - - - 4 

Listonella anguillarum NCBIM 829  - - - 1 

Vibrio alginolyticus CIP 103360  - - - 16 

Yersinia ruckeri ATCC 29473  - 160 - 1 

(-) means that no inhibitory effect was observed. Lyzozyme and Polymyxin B were respectively used as positive control for Gram-positive 

and Gram-negative bacteria. 
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Table 3. Protease sensitivity of the H40 fraction 

 

  Hemolymph fraction H40 MIC 

   µg.mL-1 

  - proteinase K-treated > 630 

  - tryspsin-treated > 630 

  - α-Chymotrypsin-treated 630 

  - control  20 
   
control means H40 fraction incubated for 1H at 37°C in 50 mM 

phosphate buffer, pH 8. 
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Table 4. Antibacterial activity and protease sensitivity of the culture supernatant of hemolymph-associated strains  

 Supernatant from strain hCg-6 hCg-10 hCg-11/2 hCg-11/3 hCg-42 Reference 

 isolated from hemolymph of oyster n° 6 10 11 11 42  

Target bacteria 

 Bacillus megaterium ATCC 10778 - - - - + +++ 

 Lactococcus garviae ATCC 43921 - - +++ - + +++ 

 Micrococcus luteus ATCC 10240 - - +++ - - +++ 

 Vagocococcus salmoninarum 18-96 - - - - - +++ 

 

 Aeromonas hydrophila CIP 7614 + +++ + +++ ++ +++ 

 Escherichia coli ATCC 25922 - - - - - +++ 

 Listonella anguillarum NCBIM 829 +++ +++ ++ +++ + +++ 

 Salmonella enterica CIP 8297 + - ++ - - +++ 

 Vibrio alginolyticus CIP 103360 - + - + ND ND 

 Yersinia ruckeri ATCC 29473 ++ ++ +++ +++ +++ +++ 
Antibacterial activity (%) after protease treatments 

 Proteinase K  0 0 0 65 0 

 Trypsin  100 79 71 88 50 

 α-Chymotrypsin  ND 83 65 88 ND 

 Control  100 100 100 100 100 
The symbol (-) means that no inhibition was detected using the well-diffusion assay while (+) indicates that an inhibition halo was observed. (+), 

(++) and (+++) were used to quantify the size of the inhibition zone : + < 1 mm large, 1mm < ++ < 2 mm and +++ > 3 mm. ND : not determined 
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Lyzozyme and Polymyxin B were respectively used as positive reference for Gram-positive and Gram-negative bacteria. Nisaplin® was used as 

reference for L.garviae. Control means hCg-strain supernatant incubated in 50 mM phosphate buffer, pH 8 for 1H at 37°C. 

 

 

Table 5. BLIS-production in various media  

 

Antibacterial activity (%)  Marine LB Peptone TSB TSB Hemolymph 

  Broth  +Sea Salts +Sea Salts  +Sea Salts 

                     

Pseudoalt. hCg-6 100 100 100 0 0 100 

Pseudoalt. hCg-42 100 100 100 0 0 100 

 

Pseudoalt prydzensis  0 0 0 0 0 0 

LB and TSB respectively mean Luria Broth and Tryptic Soy Broth. 

 

 
 


