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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract 

This research focus on the identification and quantification of odorous 

components in rendering plant emissions by GC/MS and other analytical 

methods, as well as the description of phenomena occurring in biofilter in order 

to improve the removal efficiency of industrial biofilters. 

 Among the 36 compounds quantified in the process air stream, 

methanethiol, isopentanal and hydrogen sulfide, presented the major odorous 

contributions according to their high concentrations, generally higher than 10 

mg.m-3, and their low odorous detection thresholds. The elimination of such 

component mixtures by biofiltration (Peat packing material, EBRT: 113 s) was 

investigated and revealed that more than 83% of hydrogen sulfide and 

isopentanal were removed by biofilter. Nevertheless, the incomplete 

degradation of such easily degradable pollutants suggested inappropriate 

conditions as lack of nutrients and acidic pH. These inadequate conditions 

could explain the lack of performance, especially observed on methanethiol 

(53% of RE) and the production of oxygenated and sulfur by-products by the 

biofilter itself. 

Keywords:  Rendering industry, Odorous emissions, Biofiltration, Odor 

analysis. 

1. Introduction 

Odors emitted by the rendering of animal by-products are among the most 

intense and less tolerated by surrounding neighbours (ADEME, 2008; Bourcier, 

2005; Moletta, 2002). The discontent of the nearby population often leads to the 
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emergence of protest groups and numerous local residents complaints. In order 

to warrant the welfare of the population and appease the social and political 

context within which rendering companies evolves, the control of these odours 

is of major importance.  

Odorous emissions in a rendering plant are mainly due to the degradation 

and fermentation of the animal waste and by-products in the reception bins and 

the thermal degradation and drying during the rendering process. The heating 

of such animal tissues in cookers promotes degradation reactions (Maillard and 

Strecker reactions) and releases numerous odorous compounds (ADEME, 

2008; Luo and Agnew, 2001; Luo and Lindsey, 2006; Rappert and Müller, 

2005), such as sulfur (hydrogen sulfide, mercaptans and sulfides), nitrogenous 

(ammonia and amines), and oxygenated molecules (acids, ketones and 

aldehydes) (Kastner and Das, 2005; Rappert and Müller, 2005). These 

emissions contain numerous compounds at different levels of concentration 

depending on the type, quantity and freshness of the raw material processed, 

the type of process used and the period of the year (Luo and Agnew, 2001; Luo 

and Lindsey, 2006; Rappert and Müller, 2005). For example, 300 compounds 

were observed in the emissions of a rendering plant (Luo and Agnew, 2001; 

Luo and Van Oostrom, 1997). The odor concentration of the encountered flow is 

generally between 20,000 and 1,100,000 OU.m-3 (Luo and Lindsey, 2006; Luo 

and Van Oostrom, 1997; Shareefdeen et al., 2005; Sironi et al., 2007). 

Preventive measures concerning the storage of raw materials and the 

application of strict cleaning rules are recommended to limit the production of 

odors (Bourcier, 2005; ITERG, 2001; Shareefdeen et al., 2005). However, the 
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impact of such measures is often limited and leads inevitably to the 

implementation of air treatment units, where high purification efficiency is 

required to limit local residents complaints (Luo and Lindsey, 2006). Several 

processes such as thermal oxidation, chemical scrubbing and bioprocesses like 

biofiltration and bio-scrubbers have proven to be adapted (Bourcier, 2005; 

Kastner and Das, 2005; Luo and Lindsey, 2006; Sironi et al., 2007). 

Biofiltration is one of the most used because its implementation remains 

easy at low investment and operating costs (Andres et al., 2006; Le Cloirec et 

al., 2001). The exhaust air stream is forced through a humidified packing 

material (peat, compost…) colonized by microorganisms which carry on the 

degradation of the odorous components into water, CO2, biomass, energy and 

metabolites (Le Cloirec et al., 2003; Mudliar et al., 2010).  

The main aim of this research is to identify and quantify the chemical 

compounds responsible for the olfactory impact of rendering plants. In fact, 

previous work had focused on the characterisation of the composition of such 

rendering emissions but not deeply in the quantification of these pollutants. As a 

consequence a chemical characterization of the odorous air before and after the 

biofilter according to GC/MS and other analytical methods was done. The 

biofilter performances over each pollutant are presented and discussed in order 

to present the various adverse phenomena that can be observed on an 

industrial scale, but also to propose possible improvements. 
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2. Materials and methods 

2.1. Rendering plant and biofilter configuration 

The rendering plant studied processes circa 175,000 tons per year of 

animal waste and by-products also called Specific Risk Materials (SRM) and 

operated continuously during 120 hours over the week. After grinding to a 

particle size of 30 mm, the raw materials were dehydrated in continuous steam 

heated cookers at 130°C under 3 bars during 20 min. The evaporated steams 

emitted were continuously extracted and condensed by air condensers and 

water was sent to a wastewater treatment plant and the non-condensable 

fraction fed the air treatment process. The dehydrated material was pressed to 

remove grease from animal meal. The process air captured on these 

equipments were mixed to the ambient air of the facility and then oriented to the 

deodorization devices. A summary diagram of plant operations is described in 

Figure 1. 

[Figure 1 close to here] 

The deodorization process treat about 40,000 m3.h-1 of a mixture of non-

condensable gases emanating from three cookers and process gases picked-

up on one fat press. The gas was first treated in an acid scrubber (pH 4, 

maintained by sulfuric acid injection and regulation, gas residence time: 1.3 s) in 

order to remove nitrogenous compounds (ammonia and amines) and bring the 

relative humidity of the gas close to the saturation, upper than 98%. The biofilter 

influent enters in the gas distribution system which consisted of a 70 cm plenum 

supporting a 20 cm layer of wood chips. The counter-current flow biofilter had a 

surface of 1050 m² and a depth of 1.5 m (Empty Bed Residence Time (EBRT): 
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113 s). It was filled with a mixture of peat and heather (volume percentage: 

30/70) on the first meter and covered with 30 cm of fibrous peat. The 

characteristics of these two materials, determined according to standards 

methods (Anet et al., 2012; Dorado et al., 2010) are summarized in Table 1. 

The biofilter was watered with the lagoon water from the wastewater treatment 

plant (WWTP), which presented the mean following composition on the period 

studied: [N-NH4
+]: 0.85 mg.L-1; [N-NO3

-]: 6.6 mg.L-1; [P-PO4
3-]: 0.58 mg.L-1; pH: 

8.0). There was no either nutrients supply on the operating period and no pH 

buffer incorporation at the biofilter start-up. 

The industrial biofilter was covered and the outlet air stream was drawn at 

a flow rate of 80,000 m3.h-1 and channeled before being released to the 

atmosphere by a chimney (of 30 m height). The gas sampling of the biofilter 

inlet and outlet was carried on the influent and effluents pipes according to 

methods described in the following paragraphs. 

[Table 1 close to here] 

2.2. Gas sampling and analyses 

Gas samples were collected in accord to the AFNOR NF EN 13725 (CEN, 

2003) sampling method with a box-lung system avoiding any contact between 

the 10 L - Nalophan® bag (Charles Frères, France fitted with a 8 mm Teflon 

tube, sealed by a Legris® stopper) and the pumping system.  

The analysis of industrial emissions by gas chromatography coupled to 

mass spectrometry was used to quantify the compounds concentrations and to 

compare the odor thresholds. A suitable volume of 0.2 L for biofilter influent and 

1 L for biofilter outlet was concentrated on Carbotrap 349 (Supelco® ), with the 
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a Gillian LFS-113 pump under a flow rate of 50 mL.min-1. The Carbotrap 

composition allows the selective retention of the heavy compounds from C12 to 

C20 on “Carbopack Y”, while the ”Carbopack B” trap the intermediate 

compounds C5 to C12, and the Carboxen 1003 adsorbs light compounds, from 

C2 to C5. The concentrates compounds are then thermally desorbed by a 400 

Turbomatrix - Perkin Elmer ® unit and are oriented through a transfer line to the 

chromatographic column. The analytical conditions are described in Table 2.  

[Table 2 close to here] 

The Full Scan acquisition was used to analyze fragments ranging from 20 

and 300 AMU (Atomic Mass Unit). The compounds were identified by the 

comparison of obtained spectra with those referenced in the library of the 

"National Institute of Standards and Technology" (NIST) and quantified by 

external calibration developed in the ENSCR on the major odorous contributors. 

The detection limits for aldehydes, ketones, acids and alcohols were 

respectively 1.7, 0.5, 0.7 and 0.3 µg.m-3 for the biofilter inlets and 0.33, 0.10, 

0.14 and 0.07 µg.m-3 for the biofilter outlets according to the sample volume 

concentrated on the adsorption tubes. 

As mass spectroscopy remains unfitted to diluted air stream, a previous 

preconcentration step on concentrating cartridges is needed. This step could 

nevertheless affect the composition of the mixture, and thus the analytical 

results, as mercaptans could dimerize on activated carbon (Boulinguiez and Le 

Cloirec, 2010). Moreover, GC/MS is not adapted to the hydrogen sulfide 

detection and quantification as the mass spectrum of H2S does not present any 

specific peaks. Therefore, the sulfur compounds concentrations were measured 
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by a TRS MEDOR® analyzer (Chromatotec, France). The 400 µL sample loop 

was continuously swept by the sample under a 100 mL.min-1 flow rate. The 

separation was performed on a capillary column swept by reconstituted air 

under 230 mbar, followed by an electrochemical detection in a cell filled with 

CrO3 at 10 g.L-1. The retention times were 70, 110, 170 and 290 s respectively 

for dimethyldisulfide (DMDS), hydrogen sulfide (H2S), methanethiol (MT) and 

ethanethiol (ET). The external calibration was managed with a sulfur mixture of 

20 ppm (± 2ppm) for each components supplied by Linde Gas (Germany). The 

detection limits ranged between 35 and 45 µg.m-3 for H2S, MT, ET and DMDS 

and is close to 75 µg.m-3 for DMS.  

2.3. Packing material collection and analysis 

Packing material samples were collected at 30 and 70 cm bed height from the 

bottom each 117 m2 according to a regular squared grid collection plan. The 

sampling was carried on with an electric core drill (Dewalt® D21583K) fitted with 

a modified bit (L: 400 mm, 102 mm), to collect the sample without structural 

alteration. Humidity was determined by standard procedures. The pH of the 

packing material was measured with a Cyberscan® 510 pH-meter on leachates, 

after immerging and stirring (1 h, 750 rpm, 20°C) 4 g in 100 mL of ultra pure 

water. Sulfates and nitrates concentrations on the packing material were 

measured by ionic liquid chromatography equipped with a Dionex® AS50 

autosampler and controlled by the Vistachrom® software (Dionex DX 120, 

Column: Dionex Ion Pac ® AS19. 4x250 mm; Pre-column: Dionex Ion Pac ® 

AG19. 4x50 mm, Injection volume: 500 �L, Eluent: KOH, 138 bar at 1 mL.min-1, 
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Concentration ramp of 2.33 mm.min-1 from 10 to 45 mM after 10 min of 

equilibration time). 

3. Results and discussion 

3.1. Influent biofilter gas composition 

The detailed composition of the biofilter influent is presented in Table 3. 

The results confirms the complexity of the rendering gaseous emissions, as 

previously reported (Luo and Agnew, 2001; Rappert and Müller, 2005). At the 

biofilter inlet, 36 compounds were observed and the most represented chemical 

families are: aldehydes (12), volatile fatty acids (7), alcohols (7), ketones (5) 

and sulfur compounds (5). Luo et al. (2001) had previously identified 55 volatile 

compounds among the 300 detected. The low number of components identified 

and quantified in this study is due to a deliberate restriction to the most odorous 

compounds family. Moreover, since the pH in the scrubber was maintained at 4, 

basic compounds, such as ammonia and amines were not observed in the 

biofilter inlet. Among the identified compounds, the most concentrated 

pollutants at the biofilter inlet were H2S, MT, isopentanal, isobutanal and 

ethanal with concentrations generally above 10 mg.m-3. 

[Table 3 close to here] 

The odor intensity of a complex mixture cannot be predicted by a model 

integrating the concentrations of different chemical compounds (Rognon and 

Pourtier, 2000). However, in order to identify the compounds that could present 

the most odorous impact, it was suggested to calculate the odor activity value 

(OAV) of each quantified compound (Rappert and Müller, 2005). Neglecting 
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inhibition or exaltation phenomena which certainly occurs, a theoretical odorous 

contribution can be calculated from the concentration and the odor threshold of 

a given compound, according to Devos et al. (1990) (Equation 1). 

        Eq.1  

With, 

: odor activity value of the compound i (OU.m-3); 

 : the concentration of the compound i (�g.m-3);  

 : the odor threshold of the compound i (�g.m-3) equivalent to one OU.m-3 

The OAV chemical family, resulting from the sum of the contribution of 

each compound belonging to a given family, is presented in Figure 2. As 

observed, the reduced sulfur compounds and aldehydes contributed mostly to 

the odorous impact of rendering emissions. It is therefore required to focus 

efforts on the removal of these compounds. The detailed theoretical olfactory 

contribution of sulfur compounds, aldehydes and ketones are presented in 

Figure 3.  

[Figure 2 close to here] 

[Figure 3 close to here] 

Among the quantified sulfur compounds, MT and H2S were the main 

contributors. OAV are between 5700 and 9200 for the MT and between 545 and 

677 for the H2S. Ethanethiol, observed only once, contributed to a lesser extent 

with an OAV close to 153. The OAV observed for DMS and DMDS, which 

remained below 54 and 16 respectively, were therefore not significant. 
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Concerning aldehydes, isopentanal was the main contributor (OAV: 1459 - 

3470).Isobutanal (26 to 124), ethanal (8 to 30) and, to a lesser extent, 

methacroleine (1 to 37) contributions appeared also significant. Hexanal, 

benzaldehyde and pentanal showed minor contributions with OAV less than 8. 

For the acids, butyric acid was found to be the most significant contributor 

with OAV between 19 and 133, followed by isopentanoic acid (26-106) and 

pentanoic acid (6-42). The OAV for propanoic, isobutyric, ethanoic and 

hexanoic acids were between 1 and 13, and hence can be considered as 

almost insignificant. 

The olfactory ketones impact was mainly due to the presence of butadione 

showing odorous contributions between 27 and 168. The contribution of 2,3-

pentanedione remained unknown since no odor threshold was found for this 

compound. The OAV of acetone, methylethylketone (MEK), and 

methylisobutylketone (MIBK) appeared negligible and remained below 0.1. 

According to these results, the mainly odorous contributors in rendering 

emissions were methanethiol and isopentanal, and to a lesser extent: H2S, 

isobutanal, butadione and the butyric and isopentanoic acids. The treatment of 

these pollutants needs to be efficient in order to reduce the olfactory impact of 

rendering plant. 

3.2. Biofilter characteristics and performances 

The biofilter chemical properties are reported in Table 4. This result 

suggests that the humidity of the packing material remained stable during all the 

study, and close to recommended values of 60-70% for peat and heather 

biofilter. Nevertheless, the pH of the packing material was acidic, especially in 
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the first stratum, and tended to decline with time according to the sulfuric acid 

accumulation along the operation period. 

The biofilter removal efficiencies reported in Table 3 are higher than 83% 

for aldehydes and 63% for ketones. The removal capacities (mg.m-3.h-1) ranged 

from a few mg to a few hundred mg for the treatment of ethanal, isopentanal, 

methacroleine and isobutanal. 

Regarding the elimination of sulfur compounds, the biofilter showed good 

elimination of H2S, with removal efficiency in the range of 84 to 90%. Lower 

performances were observed on the reduction of MT and DMS, with removal 

efficiencies respectively in the range of 50 to 74% and 35 to 77%. The lower 

performances concerning these compounds were in line with previous studies 

(Legrand, 2011; Myung Cha et al., 1999; Soupramanien et al., 2012), showing 

that MT and DMS elimination was more difficult in comparison to H2S. Such 

differences could be attributed firstly to an inhibition of the DMS and 

methanethiol degradation by H2S, associated to the energy liberated during the 

pollutant degradation, were the oxidation of H2S bring more energy to 

microorganisms in comparison with the energy liberated by MT and DMDS 

(Smet et al., 1998).  

Moreover the sulfuric acid production during the H2S biodegradation (Anet 

et al., 2012; Dumont et al., 2008) can inhibits the degradation of others reduced 

sulfur compounds. For example, the DMS biodegradation which was strongly 

inhibited below pH= 5 (Sercu et al., 2005; Soupramanien et al., 2012). 

The performances towards DMDS suggested the production of this 

compound by the biofilter itself. It was already reported (van Leerdam et al., 
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2008) that this compound could be produced by chemical oxidation of MT in 

aerobic conditions (2 CH3SH + 1/2 O2 � CH3-S-SCH3 + H2O). It seems that, in 

this biofilter, the physical and chemical characteristics of the biofilm seem to 

favour this chemical reaction. Moreover MT can also react with biosulfur 

particles, leading to the formation of dimethylpolysulfide ((CH3)2S2 and 

(CH3)2S3)) (van Leerdam et al., 2011). 

The degradation of alcohols was also investigated even though they did 

not have an odorous impact at the biofilter inlet. The elimination of simple linear 

alcohols such as methanol, ethanol and propanol remained efficient with 

removal efficiencies higher than 79%. Performances on isobutanol, pentanol 

and volatile acids were also limited and even negative suggesting a production 

during the biofiltration step. These phenomena were previously reported by 

several authors. During the degradation of ethyl acetate, Deshusses et al. 

(1999, a) observed the production of ethanol and other unidentified compounds 

by the biofilter. When treating high loads of isobutanal, Sercu et al. (2005) 

observed a rapid exhaustion of nutrients, leading to a partial degradation and 

the formation of by-products, such as isobutanol and isobutyric acid. They also 

noted an increase of isobutanol production at acidic pH (pH=5.2), compared to 

an alkaline medium (pH=8.4), and have related this phenomenon to the slower 

degradation kinetics of isobutanol under acidic conditions.  

The biofilter performances on isopentanal, H2S and MT are reported in 

Figure 4, which reports a good correlation between the treated loads as a 

function of the inlet loads applied. As reported in Table 3, the highest removal 

efficiency is observed for isopentanal and H2S. Nevertheless, incomplete 
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elimination was observed even if the load applied remained low. For example, 

26 s is sufficient to remove successfully loads up to 4.5 g H2S.m-3.h-1 (RE higher 

than 96%) on pines barks biofilter (Gaudin et al., 2008). Moreover, Kastner et 

al. (2005) observed a total elimination of isopentanal on mulch and bark biofilter 

up to an inlet load of 3 g.m-3.h-1 for isopentanal. 

From these observations, four hypotheses can be formulated to explain 

the formation of alcohol and acid by-products in this study. First, the treatment 

of high loads of isopentanal and isobutanal leads to a partial degradation and to 

the formation of by-products which are not totally removed by the biofilter.  

Secondly, despite a favourable high gas residence time (EBRT: 113 s), 

the degradation kinetics seem to be inhibited by unfavourable operating 

conditions like acidic pH along the biofilter height. Sulfuric acid production 

during hydrogen H2S degradation, inhibits most probably the microbial activity 

and as a consequence the removal efficiency over recalcitrant pollutants.  

Moreover, the nutrient balance applied to the biofilter was extremely low 

as the C/N/P ratio was equal to 100/0.6/0.04. As a consequence this system 

suffers from nutrients lack which can reduce the microbial activity. Even though 

the use of nutrient solutions was not current at an industrial scale for 

economical and practical reasons (clogging of the pumping and dispersion 

system), the incorporation of nutrients in a solid form should be considered for 

stimulating the growth and microbial activity. 

Finally, the incomplete elimination of isopentanal and hydrogen sulphide, at 

low inlet load (>0.7 gisopentanal.m-3.h-1 and > 0.5 g H2S.m-3.h-1) suggests the 

existence of preferential flow paths in the packing, as previously reported on 
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this packing material (Anet et al., 2012), where the performances are reduced. 

So the selection of a more appropriate media according to a hydrodynamical 

point of view would reduce these phenomena. 

3.3. Theoretical odorous contribution of pollutants at biofilter outlet 

The detailed theoretical olfactory contribution of each compound at the 

biofilter outlet is presented in Figure 5. Only few components showed major 

odorous contributions. According to the performances observed, the MT 

presented the most important odorous impact with OAV between 2175 and 

4553, far above the other sulfur compounds such as H2S (OAV from 70 to 88), 

DMS and DMDS (11 to 23). Even if isopentanal was satisfactorily treated, its 

contribution appeared non negligible with OAV ranging from 92 to 172. The 

OAV of pentanoic, isopentanoic and butyric acids which are produced by the 

biofilter itself, ranged respectively from 2 to 98, 10 to 183 and 8 to 203. 

[Figure 5 close to here] 

4. Conclusions 

This study showed that the gaseous emissions of a rendering site are 

composed of a complex mixture of chemical compounds. Among the 36 

identified and quantified in the process air stream at the biofilter inlet, the most 

concentrated pollutants were hydrogen sulfide, methanethiol, isopentanal and 

isobutanal with concentrations generally above10 mg.m-3.Their theoretical 

odorous contributions were calculated based on their respective odor 

thresholds. This revealed, that after a chemical scrubbing at pH=4 which 

removed the nitrogenous compounds (ammonia and amines) the most odorous 

contributors were methanethiol, isopentanal and hydrogen sulfide.  
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The elimination of hydrogen sulfide, aldehydes and ketones was quite 

efficient with removal efficiencies respectively over 84%, 83% and 62%.The 

concentration of methanethiol at the biofilter outlet remained high, according to 

the poor removal efficiency on this pollutant (close to 53%) and could explain 

the residual odor emitted. The treatment of such compounds needs to be 

optimized in order to limit the olfactory nuisances of rendering plants. Finally, 

the formation of alcohols and acids by the biofilter underlines that the operating 

conditions applied were unfavourable, which underlined the need for pH 

correction and nutrients supply management. Moreover, the incomplete 

degradation of hydrogen sulfide, even at low inlet loads, suggests the existence 

of preferential flow paths in the packing material which underscore the 

importance of the selection of more structured materials. 
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 Figure and Table Captions 

Table 1  Physico-chemical and biological properties of the packing 

materials  

Table 2  Analytical conditions of the GC/MS apparatus 

Table 3  Concentrations and odor thresholds of chemical 

compounds observed at the biofilter inlet and biofilter performances  

Table 4  Chemical properties evolutions of the packing the packing 

material  

 

Figure 1 Schematic diagram of the industrial transformation process 

and the deodorization unit 

Figure 2 Theoretical odorous contributions of the major compound 

families at the biofilter inlet (OUtheo.m
-3) 

Figure 3 Theoretical odorous contributions of the identified 

compounds at the biofilter inlet (OUtheo.m
-3) 

Figure 4 Performances of the biofilter on hydrogen sulfide, 

methanethiol and isopentanal as a function of the applied loads 

Figure 5 Theoretical odorous contributions of the identified 

compounds at the biofilter outlet (OUtheo.m
-3) 
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Table 1 
 
Material Fibrous peat Heather Peat and heather mixture 

pH 4.22 5.66 4.31 
M.O. 99.0% 98.9% 98.9% 
%C 51.6% 52.8% 51.9% 
%O 42.5% 41.3% 42.1% 
%H 5.2% 6.0% 6.0% 
%N 0.7% 0.6% 0.6% 

 (-) 61.5% 78.8% 74.4% 

 (kg.m-3) / / 25 

 (g.g-1) / / 2.3 

Log (ng ATP.m-3) / / 6.7 
Log (UFC.m-3) / / 11.2 

Cost (€.m-3) / / 45 
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Table 2 
 
Parameters Conditions 

Thermal desorption 280°C under N2 (50 mL.min-1) 

Internal concentration 5°C on “Carboxen 2003" and "Carbopack B" trap 

Thermal desorption 280°C under 1 mL.min-1 

Carrier gas He at 3.1 bars 

Column CP-FFAP CB-25m x 0.15 mm x 0.25 µm, Varian ® 

Temperature  10°C.min-1 from 60 to 200°C after 5 min of equilibrium  

Ionization Electronic impact 

Detector Quadrupole mass spectrometer Clarus 500 - Perkin Elmer ® 
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Table 3 
 

Biofilter inlet (µg.m-3)  
01/2011 03/2011 04/2011 

Gas Temp. (°C) 24.8 26.1 32.2 

RE (%) Treated load  
(mg.m-3.h-1) 

Sp  
(µg.m-3) 

Hydrogen sulfide 17 400 14000 15500 84 - 90% 298 to 380 25.7 
Dimethylsufide 320 185 210 35 to 77% 2 to 6 5.89 
Dimethyldisulfide 280 170 770 -41 to -219% -8 to -20 47.9 
Methanethiol 17 600 11900 19200 50 to 74% 156 to 293 2.09 
Ethanethiol 430 Nd Nd 100% 11 2.82 
Ethanal 10 228 4 473 2 882 99 to 100% 73 to 259 342 
Methacroleine 14 315 313 553 95 to 97% 8 to 343 389 
Butanal Nd 100 240 97 to 100% 3 to 6 27.5 
Isobutanal 5 947 3 238 15 304 84 to 97% 69 to 375 123 
Isopentanal 25 764 16 046 11 860 94 to 95% 281 to 605 8.13 
Pent-2-enal 651 65 112 83 to 94% 1 to 15 - 
Pentanal 209 152 138 91 to 100% 3 to 5 25.1 
2-ethylbut-2-enal Nd 370 Nd 92% 9 - 
Crotonaldehyde Nd 24 Nd 100% 1 - 
Hexanal 259 116 67 88 to 92% 2 to 5 57.7 
2-methylbut-2-enal 649 182 258 89 to 100% 4 to 16 - 
Benzaldehyde 33 14 2 -29 to 48% 0 to 0,2 186 
Acetone 1 853 692 1 279 63 to 95% 14 to 31 34700 
MEK 3 417 549 566 80 to 93% 11 to 78 23400 
Butadione 2 661 481 426 93 to 96% 10 to 64 15.8 
MIBK 7 Nd 2 100% 0 2290 
2,3-pentanedione 464 22 9 79 to 100% 0,2 to 12 - 
Ethanoic acid 3 118 152 137 -46 to -103% -4 to -74 363 
Propanoic acid 1 372 99 224 -42 to 15% -3 to 1 110 
Isobutyric acid 931 471 456 -30 to 61% -17 to 7 72.4 
Butyric acid 1 923 275 273 -56 to 60% -52 to 4 14.5 
Isopentanoic acid 1 110 275 275 -73 to 59% -36 to 4 10.5 
Pentanoic acid 852 127 132 -135 to 66% -46 to 2 20.4 
Hexanoic acid 510 Nd Nd -149% -30 60.3 
Methanol 256 161 158 79 to 100% 3 to 6 186000 
Ethanol 3 106 1 441 3 252 84 to 98% 36 to 81 55000 
Propanol 1 263 10 57 85 to 96% 0 to 26 6010 
Butan-2-ol Nd 57 Nd 83 % 1 5250 
Isobutanol 17 203 7 -43 to -1168% -7 to 50 2570 
Butanol 285 Nd 52 63 to 80% 0 to 5 1510 
Pentanol 110 44 28 -33 to -340% -13 to 0 1720 
Nd: Not detected 
Sp : odor Threshold compilated by Devos et al. (Devos et al., 1990) 
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Table 4 
 

Height Date pH Humidity (%) [SO4
2-] (mgS.kg-1) [NO3

-] (mgN.kg-1) 

January 2011 2.4 (0.8) 62.3 (16.8) 7567 (8503) 31 (50) 
30 cm 

March 2011 2.5 (0.5) 66.2 (6.9) 8927 (9994) 24 (29) 

January 2011 2.7 (1.1) 75.5 (8.9) 5481 (6484) 89 (119) 
70 cm 

March 2011 3.4 (1.6) 75.8 (3.0) 5810 (8668) 79 (99) 
*Data reported are the average of the 9 samples collected at each period and bed height. 
Standard deviations are reported in brackets. 
 
 


