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Julien Deantoni, Papa Issa Diallo, Joël Champeau, Benoit Combemale, Ciprian Teodorov.
Operational Semantics of the Model of Concurrency and Communication Language. [Research
Report] RR-8584, INRIA. 2014, pp.23. <hal-01060601v2>

HAL Id: hal-01060601

https://hal.inria.fr/hal-01060601v2

Submitted on 18 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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MoCCML operational semantics

Résumé : Ce document définit la sémantique opérationnelle du langage moccml, un meta
langage dédié à la spécification de la concurrence au sein de la définition d’un langage specifique
au domaine. Il définit aussi quelques éléments permettant d’aller vers l’exploration exhaustive
des modèles moccml.

Mots-clés : Sémantique opérationnelle, meta langage, MoC, sémantique, concurrence
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4 DeAntoni et al

1 Introduction

1.1 Purpose

The moccml language is a new formalism to express behavioral semantics of DSLs based on
the Model of Computation (MoC) theory. The Metamodel of the language defines concepts
to model constraints that control the execution of an application model according to formal
execution rules. The modeled constraints are expressed in the form of relations between clocks
representing relevant events of the system. As such, the language takes advantage from the ccsl

formalism which defines constraints on clocks, and from an operational mechanism of relation
description based on finite state automata.

The general idea of adding behavioral semantics to DSLs is driven by the motivation to
provide executable models and to make explicit their concurrency model. In order to perform
analysis (e.g.,by simulation or model-checking), not only the models should be executable, but
also their concurrency model should be explicit and formal.

In practice, the executability and concurrency models are covered by the description of the
execution semantics of DSMLs, whether it is expressed implicitly or explicitly.

Our purpose in this document is to provide a complete formal semantics for the moccml

language by using Plotkin’s Structural Operational Semantics [2]. This formalism provides a
set of rules used to unambiguously specify the behavior or evolution of the elements composing
the language. As a result, abstract mathematical reasoning and proof should be applied to
the model defined in the language. Moreover, the rules of the formal semantics can be used
for the implementation of an execution engine to provide simulation and exhaustive behavior
exploration.

There exist different possibilities to write the formal semantics of models i.e.,axiomatic seman-
tics, denotational semantics (sometimes referred as transformational semantics), or operational
semantics. However, the operational semantics is closer to the definition of simulation engines, as
it basically defines the step-by-step execution rules of a given language. The implementation of
a simulator for moccml models is not the only aspect that operational semantics rules are used
for. In fact, a simulator generally shows only the execution traces of one possible execution path.
As such, the rules can also be used for the exhaustive exploration of all the possible execution
paths.

In this document, we define an operational semantics for the moccml language. The sections
in the document are structured in such a way that, we firstly provide a description of the grammar
rules for the language syntax; then we provide the operational semantics rules. This document
also presents two more parts to identify the elements of the moccml models that are relevant
for simulation and to realize an exhaustive exploration on these elements.

1.2 Perimeter

This document is the version v1 of the D3.2.1 deliverable. The document addresses the oper-
ational semantics of the moccml language, the description of the elements that are relevant to
specify the state of a moccml model as well as the rules that specify the evolution of this state.
It also gives a first description of the way in which moccml models are used for exhaustive
exploration.

Inria



MoCCML operational semantics 5

1.3 Definitions, Acronyms and Abbreviations

• AS: Abstract Syntax.

• API: Application Programming Interface.

• Behavioral Semantics: see Execution semantics.

• CCSL: Clock-Constraint Specification Language.

• Domain Engineer: user of the Modeling Workbench.

• DSA: Domain-Specific Action.

• DSE: Domain-Specific Event.

• DSML: Domain-Specific (Modeling) Language.

• Dynamic Semantics: see Execution semantics.

• Eclipse Plugin: an Eclipse plugin is a Java project with associated metadata that can be
bundled and deployed as a contribution to an Eclipse-based IDE.

• ED: Execution Data.

• Execution Semantics: Defines when and how elements of a language will produce a
model behavior.

• GEMOC Studio: Eclipse-based studio integrating both a language workbench and the
corresponding modeling workbenches.

• GUI: Graphical User Interface.

• Language Workbench: a language workbench offers the facilities for designing and im-
plementing modeling languages.

• Language Designer: a language designer is the user of the language workbench.

• MoCC: Model of Concurrency and Communication.

• Model: model which contributes to the convent of a View.

• Modeling Workbench: a modeling workbench offers all the required facilities for editing
and animating domain specific models according to a given modeling language.

• MSA: Model-Specific Action.

• MSE: Model-Specific Event.

• RTD: RunTime Data.

• Static semantics: Constraints on a model that cannot be expressed in the metamodel.
For example, static semantics can be expressed as OCL invariants.

• TESL: Tagged Events Specification Language.

• xDSML: Executable Domain-Specific Modeling Language.

RR n° 8584



6 DeAntoni et al

1.4 Summary

In the GEMOC project, moccml is dedicated to define the MoC associated with the DSMLs.
The purpose of this document is to define the operational semantics of the moccml language and
also to define the first steps of an approach to provide an exhaustive exploration of the moccml

models.
Chapter 2 presents the operational semantics of the moccml language. The chapter is divided

in several sections that present the grammar rules of the language and the operational rules
mainly defined using mathematical grounds and Plotkin [2] rules. Chapter 3 presents the elements
that are relevant to describe the evolution of a moccml model. Chapter 4 presents a draft of
how exhaustive exploration is to be realized in a context using moccml models. Finally Chapter
5 presents the conclusion.

Inria
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2 moccml semantics

The language is based on the definition of several RelationDefinition which provides clock con-
straints and the state based definitions. The operational semantics defined in the next sections
define the semantics of these RelationDefinition.

First of all, the grammar rules are described using a BNF (Backus-Naur Form) notation. In
this notation, we associate a meaning to the following symbols:

• ::= means is defined by

• A | B means parallel composition of A and B ( if one of the term A or B is absent it means
A or B);

2.1 Operational semantics of the clock constraints

The operational semantics of the clock constraints is the operational semantics of the ccsl

language [1].

2.1.1 Syntax of the moccml declarative operators

This section defines the syntax of the moccml declarative operators on a set of clocks C. With
the primitive constructs provided by the kernel, new constructs can be derived and proposed in
libraries. For the sake of conciseness, we use a symbolic notation for the kernel operators and
constructs. There also exists a concrete textual syntax given in the deliverable D.2.2.1 for the
state machine part and on the http://timesquare.inria.fr/index.php?slab=extendedccsl-grammar website
for the declarative part.

To ease the writing of the semantics, we use a symbolic notation for the moccml declarative
operators. The syntax in given in Tables 1 and 3. The relation named “clock definition” is a
simple clock relation which associates a clock with a clock expression. C includes all the clocks
in the specification. Notice that in the declarative part of moccml, a clock relation applies to
two clock references, themselves possibly defined by a clock expression.

Table 1: moccml constraints and relations

CC ::= (clock constraint)

CC | CR (parallel composition)

| CR

| CR if bool (conditional constraint)

CR ::= (clock relation)

clock rop clock

| clock , CE (clock definition)

Continued on next page
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8 DeAntoni et al

Table 2: Relation operators

rop ::= (relation operator)

⊂ (subclocking)

| # (exclusion)

| = (coincidence)

| ≺ (s_precedence)

| 4 (precedence)

Table 3: moccml clock expressions

CE ::= (clock expression)

bool ? clock : clock (conditional expression)
| clock (clock reference)

| clockˆnatural (wait)

| clock � clock (s_sample)

| clock ↓ clock (sample)

| clock  clock (upto)

| clock • clock (concat)

| clock + clock (union)

| clock ∗ clock (inter)

| clock(naturalSequence)  clock (defer)

| clock ∨ clock (sup)

| clock ∧ clock (inf)

2.1.2 Semantics

We propose to give moccml an operational structural semantics that allows the effective con-
struction of temporal evolutions. Note that we consider only clocks with a discrete set of instants.

moccml Declarative Model A moccml Declarative Model M = 〈C,S〉 consists of a finite
set of discrete clocks C, constrained by a moccmlC specification S. A moccml model is a set of
constraints specified by a natural extension of ccsl [1]. Consequently, this document is a major
update and extension of the [1] document.

mocc Specification A moccml system denotes a set of schedules. If empty, there is no
solution, the specification is invalid. If there are many possible schedules, it leaves some freedom
to make some choices depending on additional criteria. For instance, some may want to run
everything as soon as possible (ASAP), others may want to optimize the usage of resources
(e.g.,processors/memory/bandwidth).

A schedule σ over set of clocks C is a possibly infinite sequence of ticking clocks. σ : N → 2C .

Inria
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Given a clock c, a step s ∈ N and a schedule σ, c ∈ σ(s) means that clock c ticks at step s
for this particular schedule. fσ

s denotes the set of ticking clock at step s in σ. The goal of the
semantics rules is to be specify how to construct a specific schedule. To ease the reading, in the
following rules we denote by F the set of fired clock at the current step for the schedule under
construction.

Based on this, we can define the notion of History. Given a schedule σ, the History over a
set of clocks C is a function Hσ : C × N → N defined inductively as follows for all clocks c ∈ C:

Hσ(c, 0) = 0 (1)

∀n ∈ N, c /∈ σ(n) =⇒ Hσ(c, n+ 1) = Hσ(c, n) (2)

∀n ∈ N, c ∈ σ(n) =⇒ Hσ(c, n+ 1) = Hσ(c, n) + 1 (3)

In consequence, the history of a clock c at the current step during the construction of a
schedule σ is Hσ(c, now). Also, as a syntactic sugar construction, one can obtain the history
in between two step s1 and s2 by using this construction: Hσ(c, s1, s2), which is defined by
Hσ(c, s2)−Hσ(c, s1).

The semantics of a specification S expressed in moccmlC is given as a Boolean expression on
C , where C is a set of Boolean variables in bijection with C as defined later in equations 7 and
8.

letπ : C → C bijection, and J K : kcclC → BC (4)

J K is defined by structural rewriting rules. For convenience, we denote π(c) by c, for all c in C.
c = 1 means that c ∈ σ(now). More generally,

σ |= 〈C,S〉 iff

(∀f ∈ σ : C → {0, 1}) 〈C,S〉
f
−→⇔ JSK (f) = 1

(5)

In Eq. 5, f is a valuation of C , JSK (f) = 1 says that JSK evaluates to 1 for the valuation f . In
the operational semantics rewriting rules, we refer to F as the subset of C in which only the
clock that ticks at the current step are kept.

The next two subsections detail structural transformations from moccmlC to Boolean expres-
sions on C (i.e.,BC ). In Boolean expressions, we use operators ⇒ (implication), = (equality),
# (exclusion), and ite( , , ) (if . . . then . . . else . . . ) such that for any Boolean expression t1, t2,
t3:

t1 ⇒ t2 ⇔ ¬t1 ∨ t2

t1 = t2 ⇔ (t1 ∧ t2) ∨ (¬t1 ∧ ¬t2)

t1 # t2 ⇔ ¬t1 ∨ ¬t2

ite(t1, t2, t3) ⇔ (t1 ∧ t2) ∨ (¬t1 ∧ t3)

A first rule is given right now. This rule expresses the composition of clock relations: the
parallel composition of clock relations is the conjunction of the associated Boolean expressions.

JCR1 | CR2K = JCR1K ∧ JCR2K ( paral ) (6)

RR n° 8584



10 DeAntoni et al

Clocks A clock c is a possibly infinite ordered set of instant Ic. Ic possibly contains two specific
instants, its birth denoted c† and its death denoted c

†

. The birth always precedes the first instant
of its clock and its death is its last instant (possibly synchronous with another instant).

c† ∈ Ic ∧ c

†

6∈ Ic
JcK = c

( clock1 ) (7)

c† 6∈ Ic ∨ c

†

∈ Ic
JcK = ¬c

( clock2 ) (8)

2.1.3 Clock relations

for some of the following rules, we can distinguish two different natures for the semantics rules.
The first kind defines the projection of the constraint to their Boolean representation. The second
kind defines the possible propagation of birth and death among the parameter of the constraints.

Conditional clock relation A Clock relation can be defined conditionally to some Boolean
β. When β is false, JCR if βK is true, whatever the clock relation. Else, we have to compute the
Boolean expression associated with the clock relation.

JCR if βK = (β ⇒ JCRK) ( rcond ) (9)

History-independent clock relations Sub-clocking c1 is a subclock of c2 (or c2 is a superclock
of c1) means that each instant of c1 must be coincident with an instant of c2. In logical words
this says that c1 ticks only if c2 ticks, hence the logical implication.

q
c1 ⊂ c2

y
= (c1 ⇒ c2) ( subclock ) (10)

c

†

2
⇒ c

†

1
( subclock death propagation ) (11)

Recall that c = JcK.
Clock exclusion Two clocks c1 and c2 can be declared exclusive, that is, none of their instants
are coincident, or equivalently, it is forbidden that both c1 and c2 tick at a configuration. This
is expressed by the Boolean expression c1 # c2 equivalent to ¬(c1 ∧ c2) and ¬c1 ∨ ¬c2.

r
c1 # c2

z
= (c1 # c2) ( excl ) (12)

Clock equality This is a special case of double subclocking, there is a bijection between the sets
of instants of the two clocks. The Boolean expression states that c1 ticks if and only if c2 ticks
and conversely.

q
c1 = c2

y
= (c1 = c2) ( coinc ) (13)

Inria



MoCCML operational semantics 11

c

†

2
⇔ c

†

1
( coinc death propagation ) (14)

Clock definition The left-hand side clock ticks whenever the right-hand side clock expression
ticks; also the death of one of them is propagated to the other one.

s
c , CE

{
= (c = JCEK) ( clockDefinition ) (15)

c

†

⇔ JCEK

†

( clockDefinition death propagation ) (16)

History-dependent clock relations The next two clock relations depend on the history of
the concerned clocks. More precisely they depend on the difference of their own history. Let
δ , H(c1, now)−H(c2, now).

Clock precedence c1 ≺ c2 is read “c1 precedes c2”. This means that for any step s in a schedule
that satisfies the moccml specification, H(c1, s) ≥ H(c2, s). This formulation is less intuitive
than the following: for any natural number k, the kth instant of c1 strictly precedes the kth

instant of c2. This precedence between instants explains that this relation is also read as “c1 is
faster than c2”. According to this definition, c1, which is the faster of the two clocks, is never
constrained. As for c2, it is constrained only when its index becomes equal to the index of c1.
Under such a circonstance, c2 can not tick.

β , (δ = 0)q
c1 ≺ c2

y
= (β ⇒ ¬c2)

( precede ) (17)

Another consequence of this rule is that the following invariant property holds:
Invariant: δ > 0

c

†

1
∈ Ic1∧

c

†

2
6∈ Ic2∧
δ = 0

c

†

1
⇒ c

†

2

( precede death propagation ) (18)

Clock causality The cause relation is similar to the previous one. The unique difference is in the
possibility for c2 to tick when δ = 0, provided that c1 also ticks. Hence the Boolean expression
involves two implications.

β , (δ = 0)r
c1 4 c2

z
=

(

β ⇒ (c2 ⇒ c1)
)

( prec ) (19)

The invariant property on δ still holds:
Invariant: δ > 0

c

†

1
∈ Ic1∧

c

†

2
6∈ Ic2∧
δ = 0

c

†

1
⇒ c

†

2

( cause death propagation ) (20)

RR n° 8584



12 DeAntoni et al

2.1.4 Clock expressions

During the construction of a schedule, clock expressions may change. So, we introduce conditional

rewriting rules for clock expressions. A rewriting is expressed as CE → CE′ where CE′ replaces
CE after a firing which meets the condition. Of course, the constraint parameters can also be
rewritten.

A clock expression has an associated implicit clock In the rules below, c stands for the clock
associated with the current clock expression.

For all the following semantic rules; there is no death propagation since it can always be
added by using additional relations.

Conditional clock expression A conditional clock expression defines a clock that behaves
either as a clock c1 or as another clock c2 according to the value taken by the Boolean β.

Jβ ? c1 : c2K = ite(β, c1, c2) ( econd ) (21)

Terminating clock expressions Terminating clock expressions define finite clocks (i.e.,clocks
that eventually die). These clock expressions are used to build more complex clock expressions,
especially through the clock concatenation.

Wait The wait clock expression c1ˆn ticks in coincidence with the next nth strictly future tick
of c1, and then dies.

β , (n = 1)

Jc1ˆnK = (β ∧ c1)
(moccml await ) (22)

c1 ∈ F

c1ˆ1 → Ic = Ic + c

† ( RWawait1 ) (23)

c1 ∈ F n > 1

c1ˆn → c1ˆ(n− 1)
( RWawait2 ) (24)

Strict sampling Sampling clock expressions involve two clocks. The first is considered as a trigger
and the second as a time base. The sampling expression ticks in coincidence with the tick of
the base clock immediately following a tick of the trigger clock, and then dies. There exist two
versions of the sampling: either the strict one (the coincident tick of the base clock is strictly after
the trigger tick) or the non-strict one (the coincident tick of the base clock may be coincident
with the trigger tick when this one is coincident with a base clock tick).

Jc1 � c2K = c ( ssampl ) (25)

c1 ∈ F

c1 � c2 → c2ˆ1
( RWssampl ) (26)

Non strict sampling

Inria



MoCCML operational semantics 13

Jc1 ↓ c2K = (c1 ∧ c2) ( sampl ) (27)

c1 ∈ F c2 ∈ F

c1 ↓ c2 → Ic = Ic + c

† ( RWsampl1 ) (28)

c1 ∈ F c2 6∈ F

c1 ↓ c2 → c2ˆ1
( RWsampl2 ) (29)

Preemption The premption expression c1  c2 behaves like c1 while c2 does not tick. When c2
ticks, the expression dies.

Jc1  c2K = (c1 ∧ ¬c2) ( upto ) (30)

c2 ∈ F

c1  c2 → Ic = Ic + c

† ( RWupto ) (31)

Non-terminating index-independent clock expressions These clock expressions contrast
with the terminating ones: they don’t have explicit death. Among them, many are history-
independent.

Clock concatenation The concatenation clock expression c1 • c2 behaves like c1 up to the death
of c1. When c1 dies, the expression behaves like c2. The concatenation may induce recursive
definitions.

Jc1 • c2K = c1 ( concat ) (32)

c 6= c2

c

†

1
∈ Ic1

c1 • c2 → c2
( RWconcat ) (33)

c

†

1
∈ Ic1

c1 • c → Ic1 = Ic1 − c1

† ( RWrecur ) (34)

Clock union The union clock expression c1 + c2 ticks whenever c1 or c2 ticks.

Jc1 + c2K = (c1 ∨ c2) ( union ) (35)

Clock intersection The intersection clock expression c1 ∗ c2 ticks whenever both c1 and c2 tick.

RR n° 8584



14 DeAntoni et al

Jc1 ∗ c2K = (c1 ∧ c2) ( inter ) (36)

Clock delay The delay clock expression c1(ns)  c2 is a rather complex expression involving
two clocks (c1, c2) and a sequence of natural numbers (ns). c1 is a trigger, c2 a base clock. At
each tick of c1 the head of ns is dequeued and encoded in a binary word bw associated with the
expression. This binary word is a kind of “diary” that contains the future rendez-vous with c2
ticks. For instance, when c1 ticks and the head of ns is 5, then the expression is expected to tick
in coincidence with the next 5th tick of c2. Note that rendez-vous are not necessarily taken in a
monotonic increasing order.

β , (bw = 1.w)

Jc1(ns) c2K = (β ∧ c2)
( defer ) (37)

c1 6∈ F c2 ∈ F b ∈ {0, 1}

c1(ns) c2, b.w → c1(ns) c2, w
( RWdefer1 ) (38)

c1 ∈ F c2 6∈ F h ∈ N
⋆

c1(h.s) c2, w → c1(s) c2, w + (0h−1.1)
( RWdefer2 ) (39)

c1 ∈ F c2 ∈ F b ∈ {0, 1} h ∈ N
⋆

c1(h.s) c2, b.w → c1(s) c2, w + (0h−1.1)
( RWdefer3 ) (40)

Non-terminating index-dependent clock expressions The last two clock expressions de-
pend on the clock history H, or more precisely on the difference of two clocks histories.

The fastest of slower clocks The sup clock expression c1 ∨ c2 defines a clock that is slower than
both c1 and c2 and whose kth tick is coincident with the later of the kth tick of c1 and c2.

β1 , (H(c1) = H(c))

β2 , (H(c2) = H(c))

Jc1 ∨ c2K =
(

(β1 ⇒ c1) ∧ (β2 ⇒ c2)
) ( sup ) (41)

Invariant: H(c) = min{H(c1), H(c2)} and β1 ∨ β2 = 1

The slowest of faster clocks This expression is the dual of the previous one. The inf clock
expression c1 ∧ c2 defines a clock that is faster than both c1 and c2 and whose kth tick is
coincident with the earlier of the kth tick of c1 and c2.

β1 , (H(c) = H(c1))

β2 , (H(c) = H(c2))

Jc1 ∧ c2K =
(

(β1 ∧ c1) ∨ (β2 ∧ c2)
) ( inf ) (42)

Invariant: H(c) = max{H(c1), H(c2)} and β1 ∨ β2 = 1
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MoCCML operational semantics 15

2.2 State machine operational semantics

The moccml language allows the definition of libraries of constraints on clocks with equational
and state based support. The libraries are defined throught RelationDefinition and StateBase-

dRelationDefinition. As such, we assume that the elements defined in the StateRelationBas-

edLibrary are equivalent to clock relations. For instance, the StateBasedRelationDefinition is a
primitive for the description of a new relation between clocks. The description of the semantics
is divided in two parts: The first part gives a description of the grammar rules highlighting
the syntax of the moccml; the second part defines the dynamic evolution of state-based clock
relations defined with moccml.

2.2.1 Syntax Notation

For the sack of simplicity, we will consider that a CRfsm is defined between several clocks,
sometimes using additional formal parameters that are not clocks, eg Integer, Real or Sequence.
A CRfsm can also be defined as a set of clocks assiociated with (,) an CE (Clock Definition).
Table 4 shows the rules corresponding to these considerations.

Table 4: State-Based Relation grammar Notation

CRfsm ::= (simple state-based clock relation)
(clock)∗ rfsmop (clock)∗

| (clock)∗ , CE (clock definition)

rfsmop is a special type of clock relation operator that defines constraints between clocks using
finite state machine (FSM). A clock is a formal parameter of the clock relation, and is defined
as a discrete clock type. The set of all clocks is defined by C. The formal parameters that are
different from clocks (eg Integer or Real) are used for the evaluation of guards or for actions
within the transitions.

The impact of contraints on behaviors is dependent of the evaluation of guards and trig-
gers (presence, absence, returned evalutation value). Accordingly, the grammar rules of the
StateBasedRelationDefinitions are presented in the Tables 5 and 6 that declare the primitives
composing the StateBasedRelationDefinition.

Table 5: Grammar rules for moccml StateBasedRelationDefinition- Part 1

rfsmop ::= (DB)? (Q | T )∗ (fsm-based clock relation operator)
DB ::= (LE | BEI | BE | CE)∗ (declaration block)
Q ::= Q0 QI QT (state set)
Q0 ::= state (initial state)
QI ::= (state)* (intermediate state set)
QT ::= (state)* (terminal state set)
T ::= Q → (G)? / (A)? → Q (transition)

Naturally speaking, a StateBasedRelationDefinition is composed of declaration blocks DB,
of a set of states Q and set of transitions T . The declaration blocks is made up with linear
expressions LE on Integers, boolean expressions on Integers BEI, classical boolean expressions
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16 DeAntoni et al

Table 6: Grammar rules for moccml StateBasedRelationDefinition- Part 2

CE ::= clock | int (set of concrete entities)
LE ::= int LEop int (linear expression)
LEop ::= + | - (linear expression operator)
BEI ::= int BEIop int (boolean expression on integers)
BEIop ::= = | < | > (operators on integer boolean expressions)
BE ::= (boolean expression)

BEI | BE or BE | BE and BE | not BE
G ::= (BE)? (CTrue)? (CFalse)? (guard)
CTrue ::= (clock)∗ (true trigger)
CFalse ::= (clock)∗ (false trigger)
A ::= (Aassign | Ablock | Afinish )* (action)
AAssign ::= int = LE (integer assignment action)
Abloc ::= (Aassign)+ (integer assignment block action)
Afinish ::= kill(clock) (finish clock action)

BE or concrete entities CE , i.e.,clock or int. The set of states is made up with an initial state
Q0 ∈ Q, several intermediate states (QI ∈ Q ∧ Q0 6∈ QI ∧ QT ∩ QI = ∅) and possibly several
finale (or terminal) states (QT ∈ Q ∧Q0 6∈ QT ∧QT ∩QI = ∅). States can have input or ouput
transitions except for the finale states that do not define output transitions. A transition goes
from a state to another and can possibly define a guard and an action. A guard contains from
0 to 3 parts: an optional boolean guard, a first set of clock, which represent the clock that need
to tick for the transition to be triggered and a second set of clock, which represent the clock
that need to not tick for the transition to be triggered. Finally, there are three different kind of
actions (i.e.,IntegerAssignment, IntegerAssignmentBlock or FinishClock).

2.2.2 State based relation operational Semantics

As described in Section 2.1.2, a moccml system is a tuple 〈C,S〉, H, where C is the set of Clock,
S is the specification of clock constraints and H is a given history.

The semantics
q
rfsmop

y
of rfsmop is given as a Boolean expression on C , where C is a set of

Boolean variables in bijection with C which is obtained according to a given history, the current
state crst of rfsmop , where crst ∈ Q; the evaluation of boolean guards and of the triggers on
transitions of a StateBasedRelationDefinition. The rewriting rules depends on the fired transition
and their actions.

If we consider the Figure 1 illustrating an example of state-transition automata. We define
crst as the current state of the state machine where crst ∈ Q. For a given crst (crt) which is not
the initial state, there is possibly one to many possible input transitions for a state (e.g.,t0,t1,t2)
and zero to many output transitions (e.g.,t2,t3,t4,t5). We will not focus on the input transitions
because only the output transitions of crst are used in the construction of

q
rfsmop

y
. Let To being

the set of output transitions of the current state.

Note: in the following we do not detail the semantics of boolean expressions (which is a
classical boolean algebra and integer comparison). We use the same facilities for expressions on
integers.

State Machine
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Figure 1: Partial automata Sample: crt = crst

q
rfsmop

y
= ∨t∈To

JtK ( state machine ) (43)

The semantics of a rfsmop in a current state is defined as a logical or (logical disjunction) on
the set To of output transitions for this specific current state taking into account the semantics
associated to the transition t.
Transition

JtK = JGK ( transition ) (44)

CTrue ⊂ F ∧
∀c ∈ CFalse, c 6∈ F∧
t.source = crst

crst = t.target ∧ JAK ( transition rewriting ) (45)

The semantics of a transition t is given by the coupling of: the semantics of the guard associated
to it and the rule reifying the transition rewriting function between a source state and a target
state. The transition rewriting function depends on a couple of premises. Considering t.source
as the crst, if CTrue ∈ F and CFalse /∈ F , then with the evalution of guard the next crst is
t.target and an action is potentially performed.

Guard

guard = JBEK
J< BE,CTrue, CFalse >K = guard ∧

(

(
∧

c∈CTrue
c) ∧ (

∧

c∈CFalse
¬c)

) ( guard ) (46)

For a given guard and its boolean expression. Depending on the value of the boolean expres-
sion, the c ∈ CTrue tick, when the c ∈ CFalse does not tick. When the c ∈ CFalse ticks or the
guard evaluation is false, then the transition is not operated.

finish action
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Jkill(c)K = (Ic = Ic + c

†

) ( finish action ) (47)

A finish clock action (kill(c)) implies the death of the clock c.

3 Runtime State definition of a moccml state machine

A moccml state-based model has a state which evolves all along a schedule. This state relies
on the definition of the history of the set of clocks. Naturally speaking, the “runtime state” of
a state machine contains the current state of an instance of the state machine and the values of
each of its local variables.

3.1 Configuration definition

The history of a moccml Declarative Model M = 〈C,S〉 for a specific schedule σ has been defined
as Hσ : C × N → N (see section 2.1.2).

The definition of a moccml state-based model history extends the previous definition with
two more parameters, i.e.,: the current states of each state machines and the values of each local
variable.

We expand the history Hσ into three combined functions and formalize it as follows:

Hσ ::=











Hc
σ : C × N → N relation (1)

Hq
σ : 2Q × N → 2crst relation (2)

HCE
σ : 2CE × N → N relation (3)

(48)

The first relation is similar to the one defined in Section 2.1.2, it associates to a clock in C
and a step number in σ the number of tick of the clock at this step. From now, the history Hσ

from Section 2.1.2 is replaced with Hc
σ.

In the second relation, for a given set of set of state (i.e.,the states from all state machines
∈ S) and a step number in σ, Hq

σ provides the set of current state of each state machine.
The third relation says that for a given set of concrete entities (the union of the ones in the

declaration blocks of each state machine ∈ S and a given step number in σ), HCE
σ provides the

set of all the concrete entities values.
At each step in the history, the clocks ∈ S, the state machine ∈ S and the concrete entities in

the declaration blocks of the state machines ∈ S are considered to determine the current history.

4 Towards an exhaustive exploration

The goal of this chapter is to define the approach which provides the capacity to explore the
behavior of the moccml model associated with the dsml model. This functionality provides the
exploration of all the possible behaviors of the mocc associated with the dsml model.

During the Gemoc project, the simulation functionality is the main focus to obtain a trace of
the model execution based on the language workbench tooling. Regarding the exploration, the
simulation trace represents a subset of the exploration and so a subset of the behaviors of the
mocc. The exploration is possible in the scope of the mapping definition between the mocc and
the dsml. The definition of this mapping must take into account the capacity of the exploration
and the constraints with it.
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A moccml model exploration is necessarily based on a configuration definition and also a
definition of an abstraction of the behavior of the DSE events and DSA actions from the explorer
point of view. This abstraction definition must be defined to close the explored behavior.

The definitions of this chapter are the first attempt to define the methodology to explore the
behaviors of the moccml model.

4.1 Configuration definition

A moccml state-based model configuration relies on the history of the set of clocks, the set of
the current states of a StateBasedRelationDefinition and the values of the set of local variables.

In our case, these configurations are defined as the configurations of a Labeled Transition
System where the states encode all the current states of the state machines and the current
values of the RTD variables. The transitions between states are labeled by the events of the fired
events in the state machine behaviors of the given StateBasedRelationDefinition .

In this context, the methodology consists of a selection of the events mapped to clocks and
the selected variables that are defined as RTD. According to the definition of the section 3, the
possible type of the variables is Integer.

The selection of the number of variables and clocks is very important to obtain an ex-
plorable statespace. So one of the methodology key features can be to provide guidelines to
define amenable to exhaustive exploration.

4.2 dsml abstraction

The mapping between dsml and moccml is made at the ecl specification level. In this specifi-
cation, we define events associated with the actions of the DSA and also events associated with
the DSE events. On these event bindings we apply the moccml relations of the MoC Library
to schedule the events. To make an exhaustive exploration of the finite state space of a system
using such scheduling constraints, the idea is to abstract the DSA/DSE behaviors of the dsml

in the form of state machines that will be synchronized with the moccml state-based relations
instantiated on dsml models.

Figure 2 illustrates the elements that are taken into account to provide exhaustive exploration
and simulation. The first two lines of the figure show the ecl mapping ( 5○) definition which
takes as inputs DSA ( 1○), DSE ( 2○) and the moccml relations ( 3○). The ecl mapping is applied
to the dsml models ( 4○) to unfold all the relationships defined in the ecl mapping for this dsml

instance. The resulting model is the dsml +moccml instance ( 7○).
The state machines ( 6○) corresponding to the behavior of the DSA/DSE are also generated

from the ecl mapping ( 5○). To stay within a purely state-based description style, these abstrac-
tions related to DSA/DSE behaviors are made in the form of StateBasedRelationDefinition.

The previous unfolding step, coupled to abstract state-based behaviors (DSA/DSE), allows
building the finite state space that will be used for exhaustive exploration (eg OBP) or simulation
(e.g.,TimeSquare).

5 Conclusion

This document presents the operational semantics of the moccml language which was defined
to create mocc models associated with any dsml.

This semantics is an extension of the ccsl language definition based on equational relations
completed by state based relations.
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Figure 2: Mapping architecture overview

The formal semantics of the moccml language allows for a composition of the two kinds of
relations and is amenable to simulation, i.e.,the construction of schedules , which satisfy the
models. The semantics uses the notion of history, which is used as a basis to define the notion
of “runtime state” itself under study to extend the tooling associated with moccml towards an
exhaustive exploration of the moccml models.

The tooling (moccml editor, TimeSquare, ecl language and the OBP explorer) around the
moccml language must be aligned, or take into account, the definitions of this document.
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