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Abstract

Vibrio tapetis causes the brown ring disease in the Japanese clam Ruditapes philippinarum while Vibrio aestuarianus is
associated with massive oyster mortalities. As extracellular proteins are often associated with the virulence of pathogenic
bacteria, we undertook a proteomic approach to characterize the secretomes of both vibrios. The extracellular proteins
(ECPs) of both species were fractionated by SEC-FPLC and in vitro assays were performed to measure the effects of each
fraction on hemocyte cellular parameters (phagocytosis and adhesion). Fractions showing a significant effect were
subjected to SDS-PAGE, and proteins were identified by nano LC-MS/MS. 45 proteins were identified for V. aestuarianus and
87 for V. tapetis. Most of them belonged to outer membrane or were periplasmic, including porins or adhesins that were
already described as virulence factors in other bacterial species. Others were transporter components, flagella proteins, or
proteins of unknown function (14 and 15 respectively). Interestingly, for V. aestuarianus, we noted the secretion of 3
extracellular enzymes including the Vam metalloprotease and two other enzymes (one putative lipase and one protease).
For V. tapetis, we identified five extracellular enymes, i.e. two different endochitinases, one protease, one lipase and an
adhesin. A comparison of both secretomes also showed that only the putative extracellular lipase was common to both
secretomes, underscoring the difference in pathogenicity mechanisms between these two species. Overall, these results
characterize for the first time the secretomes of these two marine pathogenic vibrios and constitute a useful working basis
to further analyze the contribution of specific proteins in the virulence mechanisms of these species.
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Introduction

Vibrios have frequently been associated with bivalve mortalities,

essentially at the larval stage but also in adults [1–4]. Since 1987,

several mortality events have been reported in clams (Ruditapes
philippinarum) in different sites of the French coastline. Before

death, clams go back to the sediment surface and display a brown

deposit on the inner surface of the valves, between the pallial line

and the edge of the shell [5]. This disease, named the Brown Ring

Disease (BRD), was also described in Spain and Portugal, and

affects both reared and wild clams. Bacteriological studies led to

the identification of a new bacterial species, Vibrio tapetis, capable

of reproducing the BRD in healthy animals [6].

In France, shellfish production is a well-established industry

mainly relying on the commercial farming of the Pacific oyster

(Crassostrea gigas). Annual mass summer mortalities of C. gigas
have been reported since 1980 on the French coast. Several studies

have demonstrated that these mortality outbreaks resulted from

complex interactions between the physiological and/or genetic

status of the oysters, environmental factors, and one or more

infectious agents, among which the herpes virus, OsHV1 [7], and

Vibrio sp. [8]. Analyses of both moribund and healthy oyster

hemolymph revealed that Vibrio aestuarianus was the most

frequently disease-associated species [2] until 2008. Since then, a

more virulent pathogenic herpes virus OsHV1, genotype micro-

var, emerged, reducing the occurrence of V. aestuarianus while V.
splendidus strains are still frequently isolated [9].

The observed variable virulence of the isolates could be linked

to the varying toxicity of the bacterial extracellular products

(ECPs), allowing bacteria to escape the host immune defenses. In a

previous study, the ECPs of the pathogenic strain V. aestuarianus
01/32 were shown to cause lethality in C. gigas, as well as

morphological changes and immunosuppression in oyster hemo-

cytes [10]. Further biochemical and genetic approaches evidenced

the major role of the Vam extracellular metalloprotease in the
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toxicity of V. aestuarianus ECPs and in the impairment of oyster

hemocyte functions [11].

As for V. tapetis, the causative agent of BRD in adult clams, the

pathogenicity process is not well established yet. As in the case of

V. aestuarianus, V. tapetis isolates display variable levels of

virulence [12]. This vibrio is known to decrease both hemocytes

viability and phagocytic activities in R. philippinarum [13].

In vitro experiments showed adhesion capability of V. tapetis to

the clam hemocytes and mantle cells [14], and its cytotoxic effects

after phagocytosis resulted in cell rounding with loss of filipods

[12].

It is recognized that the success of each step of the bacterial

virulence process depends on the orchestrated activity of several

specialized bacterial factors. In vibrios, such virulence factors have

been more identified in human pathogens such as V. cholerae, V.
parahaemolyticus and V. vulnificus [15–17] but also in V.
anguillarum, V. harveyi and other fish, crustacean and mollusk

pathogens [18]. Currently, the only virulence factor characterized

in V. aestuarianus is the secreted zinc metalloprotease, Vam, a

member of the thermolysin family [11]. No similar virulence factor

has been described to date in V. tapetis, but a metalloprotease

(Vsm), a homolog of Vam, was also identified as a major

determinant of the toxicity of V. splendidus ECPs [19]. All this

reinforced our objective to search for other secreted proteins

potentially involved in the virulence of these two marine vibrios.

So far only two vibrio secretomes have been described [20,21] and

the importance of the extracellular compartment on host pathogen

interaction led us to analyze more precisely the proteins of this

compartment in both vibrios.

Materials and Methods

1. Bacterial strains, growth and culture conditions
V. aestuarianus 07/115 was isolated from the hemolymph of an

oyster collected at Aber Benoı̂t (Brittany, France) in September

2007. It was identified by the sequencing of the 16S rRNA and

gyrB genes and was found to be highly virulent when injected in

adult oysters (Jean-Louis Nicolas, unpublished results). The V.
tapetis CECT4600 strain was isolated in Aber Benoı̂t (France) in

Landeda (France) in 1995 from BRD diseased Manila clam

(Ruditapes philippinarum) [22]. These strains were respectively

grown in Difco marine broth 2216 (BD, Franklin Lakes, USA) and

Zobell broth (HiMedia Laboratories, Mumbai, India), or on Difco

marine agar and Zobell agar at 18uC.

2. Preparation of extracellular products (ECPs) and
fractionation by Size Exclusion Chromatography in Fast
Purification Liquid Chromatography (SEC-FPLC) mode

ECPs were produced by the cellophane overlay method as

previously described [10]. Total ECPs of V. aestuarianus and V.
tapetis culture supernatants were filtered through 0.22 mm filter

membranes and concentrated on an Amicon Ultra-4 membrane

with a 10,000 molecular weight cut-off (MWCO) (Millipore,

Billerica, MA, USA). The total protein content was quantified

using a DC protein assay (Bio-Rad, Hercules, CA, USA) with 96-

well micro-plates (Nunc) in a micro-plate reader (Bio-Tek Synergy

HT) and the KC4 v3 software comparing the results with a

calibration curve using standard proteins (Bovine Serum Albumin)

provided with the DC protein assay kit. Then, ECPs were

separated on an ÄKTAFPLC system (GE Healthcare, Piscataway,

NJ, USA) directed by the Unicorn 5.1 software. Aliquots

containing 1.4 mg of total proteins dissolved in mobile phase

(isocratic elution mode in PBS: 10 mM Phosphate Buffer pH 7.4,

137 mM NaCl, and 2.7 mM KCl) and filtered on a 0.22 mm

membrane was injected onto a Superdex S200 HR10/30 gel

filtration column from GE Healthcare (fractionation range of the

column: 10–600 kDa) at a flow rate of 1 ml/min. Absorbance was

monitored at 280 nm and 1 mL fractions were collected. The

protein concentration of each fraction was determined and

protease activity was assayed using azocasein as previously

described [10]. Fractionated ECPs were conserved at 280uC
until in vitro assays.

3. In vitro assays : hemocyte cellular parameters
The effects of the obtained fractions were measured on oyster or

clam hemocytes to assess the action of the ECPs on hemocyte

adherence and phagocytosis capacities. Fractions showing inhib-

itory or stimulatory effects were compared to the negative control

(FSSW: Filtered Sterile Sea Water). For both tests, ECPs of each

bacterial species were tested at 32 mg.mL21 of proteins, following

previously described procedures [10]. Briefly, for phagocytosis

tests, a sub-sample (150 ml) of each hemolymph pool was

distributed into a 5 ml polystyrene tube (Falcon, B-D Biosciences,

San Jose, CA, USA), then underwent a two fold dilution with

FSSW and was maintained on ice. Each sub-sample was

subsequently combined with 30 ml of a fluorescent bead

(2.00 mm in diameter, Fluoresbrite calibration grade, Polysciences,

USA) working suspension (2% of the commercial suspension in

FSSW, final concentration 16107 beads.mL21), and incubated at

18uC for 120 min. The cells were then analyzed on a flow

cytometer (FACSCalibur, BD San Diego, USA). The results were

expressed as the percentage of hemocytes containing three beads

or more [10].

To estimate hemocyte adhesive capacity, the sub-samples

(100 ml) of each hemolymph pool were distributed into 24-well

microplates maintained on ice, as already described by Choquet et
al. [12]. 100 ml of FSSW or ECPs was added in triplicate to each

sub-sample. After three hours of incubation at 18uC, the cells were

fixed by addition of 200 ml of a 6% formalin solution in FSSW.

The supernatants were then transferred to cytometry tubes. The

hemocyte number present in each supernatant was determined by

flow cytometry. The results are expressed as average of non-

adherent cells per ml i.e. an increase of the value compared to that

of the negative control shows a cytotoxic effect of the tested ECPs.

4. Proteins electrophoresis (SDS-PAGE)
The fractions showing a significant effect in vitro on hemocyte

phagocytosis or adherence were concentrated with Corning Spin-

X UF Concentrators (Corning, Lowell, MA, USA) with a 10 kDa

MWCO and applied on a Criterion precast acrylamide gradient

gel 8–16% in Tris-HCl (Biorad, Hercules, CA, USA). After

staining by Coomassie blue (Biosafe Coomassie, Biorad), the gel

bands were cut out manually and conserved at –20uC before

trypsin digestion.

5. Protein identification
5.1. In-gel digestions and peptides recovery. Excised gel

plugs were washed 3 times with water, 100 mM ammonium

bicarbonate and 100% acetonitrile successively. Cysteins were

reduced by a treatment with a 65 mM DTT solution for

15 minutes at 37uC followed by alkylation with 135 mM

iodoacetamide at room temperature in the dark. Gel plugs were

washed again with 100 mM ammonium bicarbonate/acetonitrile

(1:1), 100% acetonitrile, 100 mM ammonium bicarbonate and

100% acetonitrile successively before being dried. Gel pieces were

then re-swollen in a solution of trypsin (12.5 ng/mL in 50 mM

ammonium bicarbonate; Promega), and digestion was performed

overnight at 37uC. The resulting peptides were then extracted

Proteomic Analysis of Two Pathogenic Marine Vibrios Secretomes
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from the gel by sequential incubation in the following solutions:

acetonitrile (ACN)/H2O/trifluoroacetic acid (TFA), 70:30:0.1 (v/

v/v), 100% ACN and ACN/H2O/TFA, 70:30:0.1 (v/v/v), and

extracts were eventually concentrated by evaporation to a final

volume of 30 mL.

5.2. Mass spectrometry (MS) analysis. Peptide mixtures

were separated on a nano-HPLC system (Ultimate 3000, Dionex,

Jouy-en-Josas, France), with an injection volume of 22 mL: first,

they were concentrated into a reversed-phase C18-PepMap

trapping column (5 mm, 300 Å/300 mm i.d. x 5 mm, Dionex),

and were then eluted with a 75-min gradient of ACN (from 2 to

90%) in aqueous 0.05% formic acid, at a flow rate of 250 nL/min.

The nano-LC apparatus was coupled on-line with an Esquire

HCT Ultra PTM Discovery mass spectrometer (Bruker Daltonik,

GmbH, Bremen, Germany), equipped with a nanoflow ESI source

and an ion trap analyser (ITMS). The mass spectrometer was

operated in the positive ionization mode. The EsquireControl

software (Bruker Daltonik, GmbH) automatically alternated MS

and CID MS-MS acquisitions with the following criteria: up to

seven ions per MS scan with an intensity threshold of 30,000 and a

dynamic exclusion of 15 sec.

5.3. Protein identification. The DataAnalysis 3.4 software

(Bruker Daltonik, GmbH) was used to create the peak lists from

raw data. For each acquisition, a maximum of 2,000 MS/MS

spectra were detected with an intensity threshold of 100,000 and

the charge state of precursor ions was automatically determined by

resolved-isotope deconvolution. The proteinScape 2.0 software

(Bruker Daltonik, GmbH) was used to submit the MS/MS data to

the genomic V. aestuarianus 02/041 database (3693 CDS

sequences; 1125373 residues, unpublished results), the only V.
aestuarianus sequences available at that time. Peptide sequences

were found to be 100% identical to the identified proteins in the

database. Similarly, the MS/MS data for V. tapetis were

submitted to the V. tapetis CECT4600 database (5498 sequences;

1633991 residues, unpublished). Submission to randomized

versions of these databases (decoy) was used to determine the

false positive rate (FPR), defined as the number of validated decoy

hits/(number of validated target hits + number of decoy hits)*100,

using the Mascot algorithm (Mascot server v2.2.07; http://www.

matrixscience.com). Trypsin was selected as the cleaving enzyme

with one allowed missed cleavage. In addition, carbamidomethy-

lation of cysteins was set as fixed modifications and methionine

oxidation were considered as variable modifications. The mass

tolerance for parent and fragment ions was set to 0.6 and 0.5 Da,

respectively. Peptide identifications were accepted if the individual

ion Mascot scores were above 25 or the identity threshold (the ion

score is 210*log(P), where P is the probability that the observed

match is a random event, p-value,0.05). In case of ambiguous

assignments (one compound fitting more than one peptide), the

peptide sequence with the highest score was retained. The

compilation of peptides identified to proteins was performed with

the ProteinExtractor algorithm [23], so that every protein reported

was identified by at least one peptide with a significant ion Mascot

score (above the identity threshold) that could not be mapped to a

higher-ranking protein already in the result list. This means that

the final protein lists contain only those proteins and protein

Figure 1. UV spectrum of total ECPs of V. aestuarianus and V. tapetis on a Superdex S200 10/30 column. Eluted fractions were collected
with a flow of 1 mL/min. Fractions are numbered according to their elution time (top and bottom X-axes, respectively). Gel filtration profile was
expressed in milliabsorbance units (mAU).
doi:10.1371/journal.pone.0113097.g001
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variants that could be distinguished directly by MS/MS. For every

protein reported in the identification lists, a combined protein

score (metascore) was calculated from the peptide scores with the

ProteinExtractor algorithm. Finally, protein identifications were

accepted if the False Positive Rate of the search was lower than

1%.

5.4. Bioinformatics. For each result of proteomic identifi-

cation, we used various softwares and algorithms to determine i/a

score of identification; this score was given by the MASCOT

software, ii/the presence or not of a signal peptide and the

predicted position of the cleavage site; the algorithm SignalP 3.0

(probability.0.93) was used except in the case of TolC for which

SignalP 4.01 was used instead (http://www.cbs.dtu.dk/services/

SignalP/) and iii/the subcellular localization using PsortB and

Psort Gram negative bacteria (http://psort.hgc.jp/form.html); in

case of ambiguity (score above threshold for two locations), the

highest score was chosen. Lipoproteins and their localisation (outer

membrane associated versus inner membrane associated) were

predicted using LipoP1.0 (http://www.cbs.dtu.dk/services/

LipoP/). In general, lipoproteins are periplasmic but anchored

to one or the other membrane by their acyl moiety (indicated by

P/OM for instance). In most cases, they were associated with the

OM. In some cases, they could be associated with the OM and

facing outward.

Figure 2. Effect of V. aestuarianus 07/115 (right bars) and V. tapetis CECT 4600 (left bars) total ECPs on oyster and clam, respectively,
hemocyte phagocytosis capability (top panel) and hemocyte adhesion (bottom panel). Tests were carried out in triplicates as described in
M&M and the error bars correspond to SD. Incubation of hemocytes with sterile sea water (SSW) was used as a negative control.
doi:10.1371/journal.pone.0113097.g002
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Results and Discussion

1. Preparation and fractionation of V. aestuarianus 07/115
and V. tapetis CECT4600 ECPs

The proteins from the extracellular compartment are of

particular interest for functional investigation of bacterial patho-

gen virulence, because they come into direct contact with host

tissues and are often effectors of pathogenicity. Several lines of

evidence highlight an important role of ECPs in the virulence of

pathogenic vibrios. For example, a previous study on V.
aestuarianus 01/032 showed that its ECPs displayed immuno-

suppressive activities on oyster hemocyte functions [10]. Similar

effects were described in V. tapetis, in which ECPs were shown to

significantly decrease adhesive- [12] and phagocytic- [13] activities

of clam hemocytes. However, although the biological activity of V.
aestuarianus ECPs has been associated with the secretion of the

zinc metalloprotease, Vam [11], few studies have been carried out

to date in V. tapetis and nothing is known about the molecular

components responsible for the biological activity of the V. tapetis
ECPs.

The extraction of secreted proteins was performed under

conditions known to induce virulence [11,12]. ECPs were

fractionated, their biological activity against hemocytes was

assayed, and their protein contents were analyzed, as described

in Materials and Methods.

In the case of V. aestuarianus, fractionation of total ECPs gave

four major peaks (Fig. 1). A first symmetrical peak eluted in the

void volume of the column, suggesting that it was composed of a

mixture of protein aggregates or complexes larger than 600 kDa.

Three poorly resolved additional peaks eluted at 16, 18 and

22 minutes, respectively. The elution diagram obtained with V.
tapetis ECPs comprised a first peak also eluting in the void volume,

and a second broad peak, lower in absorbance than the three

peaks of V. aestuarianus, but exactly superimposed. The fractions

were recovered every minute and numbered according to the

elution time. Determination of fraction protein contents allowed us

to select a set of fractions (8, 9, 16 to 23 for V. aestuarianus ECPs

and 8, 9, 14 to 21 for V. tapetis ECPs) showing a minimal

concentration of 0,3 mg/ml of protein, to carry out further

analyses.

2. Effects of V. aestuarianus and V. tapetis ECPs on
phagocytosis and adherence activities of oyster and clam
hemocytes respectively

We first assayed the activities of unfractionated ECPs. In both

cases, the biological parameters assayed were hemocyte adhesion

and phagocytosis. We found that V. aestuarianus ECPs induced a

decrease of phagocytosis and adherence properties of oyster

hemocytes as shown in Fig. 2. This result is in keeping with

previous results obtained by Labreuche et al. [10]. Similarly, V.
tapetis ECPs triggered a decrease of hemocytes adherence as

previously described [12]. However, V. tapetis total ECPs did not

impact the phagocytic ability of clam hemocytes, contrary to what

was found by Allam and Ford [13] who previously described a

decrease in phagocytosis after treatment by bacterial supernatants

obtained from liquid cultures. This discrepancy may be due to the

different conditions used to prepare the ECPs (liquid culture versus

cellophane overlay on plate).

Figure 3. Effects of V. aestuarianus (panels A and C) and V. tapetis (panels B and D) fractionated ECPs on oyster (A and C) and clam (B
and D) hemocyte phagocytosis capacity (A and B) and adhesion properties (C and D). Tests were carried out in triplicates as described in
Materials and Methods and the error bars correspond to SD.
doi:10.1371/journal.pone.0113097.g003
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The different FPLC fractions of ECPs previously obtained were

then similarly tested for biological activity towards oysters (V.
aestuarianus)- and clam (V. tapetis)- hemocytes. The results

presented in Fig. 3 showed that all the assayed fractions obtained

from V. aestuarianus decreased the adhesive capacities of oyster

hemocytes, with an increase of non-adherent hemocytes ranging

from a factor 1.8 (fraction 16) to 2.5 (fraction 20). The only

extracellular virulence factor described to date for V. aestuarianus
is the Vam metalloprotease, which causes aggregation and the loss

of pseudopods of oyster hemocytes [11]. Only the fractions 16 and

17 contained an azocaseinase activity (data not shown), suggesting

that Vam is not responsible for this loss of adhesion and that V.
aestuarianus 07/115 extracellular products, in particular in

fraction 20, contain additional factors playing a role in adherence

decreasing.

However, although total V. aestuarianus ECPs decreased the

phagocytic activity of hemocytes (Fig. 2), none of the V.
aestuarianus ECP fractions affected the oyster hemocyte phago-

cytic activity (Fig. 3A). This result suggests that phagocytosis

inhibition by ECPs may involve the joined activity of several

factors that have been eluted in separate fractions.

In the case of V. tapetis ECPs (Fig. 3B), a reduction in clam

hemocyte phagocytosis capacity was recovered in fractions 19–20–

21, in accordance with previously published results [13]. This

suggests that an inhibitor of this activity is present in the total V.
tapetis ECPs, which was separated during fractionation. As in the

case of V. aestuarianus, all the recovered fractions displayed an

effect on hemocyte adhesion, but with more variations amongst

fractions. For example, fraction 14 triggered in excess of a 4-fold

increase in non-adherent hemocytes whereas fraction 8 had only a

2-fold effect (Fig. 3D).

In summary, our results indicate that both V. tapetis and V.
aestuarianus ECPs have major effects on hemocyte properties

including loss of adherence and inhibition of phagocytosis,

especially in the case of V. tapetis. In the case of V. aestuarianus,
inhibition of adhesion is independent of Vam, and is maximal in

fraction 20. In the case of V. tapetis, we could partly separate

adhesion inhibition activity (maximal in fraction 14) and

phagocytosis inhibition activity (maximal in fractions 19–21). In

contrast, the observed phagocytosis inhibition in V. aestuarianus
was lost upon fractionation, suggesting that it requires several

factors acting in a complementary way while with V. tapetis, it was

detected only after fractionation, suggesting the presence of an

inhibitor in total ECPs.

3. Proteomic analysis of the two secretomes
Fractions combining both a significant effect in vitro on

hemocytes, and sufficient protein amounts were further charac-

terized by proteomic analysis. Accordingly, fractions 8 and 16 to

23 for V. aestuarianus and 9, 14 to 17 and 19 to 21 for V. tapetis
were subjected to SDS-PAGE for further protein identification by

nano LC-MS/MS. Several fractions (18 to 22 for V. aestuarianus
and 19, 20, 21 for V. tapetis) did not show any band after

Coomassie Blue staining, but were directly trypsinolyzed and

analyzed by liquid chromatography tandem mass spectrometry

(LC-MS/MS) starting from a total protein content of 5 mg. As

shown in Fig. 4, active fractions from both bacteria contained

multiple proteins. In order to identify them, 16 and 43 distinct

bands were excised for V. aestuarianus and V. tapetis, respectively,

and analyzed by mass spectrometry, as described in Materials and

Methods. Using the known proteome from both species, our

proteomic analysis of V. aestuarianus and V. tapetis secretomes led

to the unambiguous identification of 45 and 87 proteins,

respectively (Tables 1 and 2). Only five proteins in the ECPs of

V. tapetis and none in the V. aestuarianus secretome were

predicted to be cytoplasmic, emphasizing the quality of our

protocol and the absence of cell lysis.

98% and 70% of the proteins in the V. aestuarianus and V.
tapetis secretomes, respectively, were predicted to have a signal

peptide (see Materials and Methods for the algorithms used),

indicating that they are periplasmic or outer membrane compo-

nents (see Tables 1 & 2). Most of the proteins appeared to be

normal components of the outer membrane and the periplasmic

space, suggesting that they were released in the medium most

probably as membrane vesicles, as was previously described for

other bacteria [24]. In accordance with this hypothesis, 98% of the

Figure 4. SDS-PAGE of different FPLC fractions showing a significative effect on hemocyte adherence and/or phagocytosis
properties: fractions 8A, 15A, 16A for V. aestuarianus (A) and 9T, 14T, 15T, 16T, 17T for V. tapetis (B).
doi:10.1371/journal.pone.0113097.g004
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proteins in the case of V. aestuarianus and 78% in this of V. tapetis
came from the FPLC fractions eluted in the column void volume,

corresponding to materials larger than 600 kDa. Proteomic

composition of these fractions appears to reflect mostly the native

composition of the bacterial envelope, with no obvious specific

enrichment. However, it is also possible that some of this material

correspond to aggregates rather than vesicles.

The identified proteins were classified according to their

biological functions (Tables 1 and 2) 1/Structural components,

envelope biosynthesis and quality control, stress response, 2/

energetic metabolism, 3/transporter components, 4/iron acquisi-

tion (except in V. aestuarianus), 5/catabolism, including chitin

utilization, 6/motility, flagellar genes, 5/extracellular proteins, 6/

unknown function.

4. Identification of known and potential virulence factors
in the vibrio secretomes

The only extracellular virulence factor characterized to date in

V. aestuarianus is the secreted zinc metalloprotease, Vam, which

was shown to cause lethality of C. gigas oysters [11]. This protein

was clearly identified and found to be quantitatively dominant in

two active soluble fractions (16 and 17) in our study. More

interestingly, we also identified a second extracellular protease in

the V. aestuarianus secretome which we named Vpp (for Vam

processing protease). Vpp is a homologue of Epp, a secreted

protease which processes the secreted metalloprotease EmpA in

Vibrio anguillarum [25], EmpA being a homologue of Vam.

Hence, Vpp might be the Vam processing enzyme. Vpp is also a

homologue of PrtV of V. cholerae. In V. cholerae, PrtV was found

to play a role in resistance to grazing by natural predator, outside

the host, rather than in pathogenicity to humans [26]. Further

studies should clarify the role of Vpp in V. aestuarianus, especially

as fraction 8 that contains Vpp was found to decrease oysters

hemocyte adherence.

Up to now, no secreted virulence factors have been described in

V. tapetis. The only virulence factor characterized to date is the

inner membrane protein DjlA, which was shown to be required for

cytotoxicity towards clam hemocytes [27]. In contrast to V.
aestuarianus, no metalloprotease was found in the V. tapetis
secretome, suggesting different virulence mechanisms between the

two species. However, two serine proteases (i.e. KM596588 and

KM596661) carrying a signal peptide (Table 2) have been

identified in two different fractions. As secreted serine protease

was already shown to be involved in the virulence of several

pathogenic bacteria [28], these two proteins could also play a role

in the pathogenesis of V. tapetis.
The secretomes of both vibrio species contained an extracellular

triacylglycerol lipase (Table 1). This protein belongs to the same

family as the phospholipase Pla1, a secreted virulence factor of

Aeromonas hydrophila [29] and Cef, a toxin with cell elongation

activity produced by Vibrio hollisae, which causes diarrhea in

humans [30]. Phospholipases can act as potent membrane

destructors and can manipulate host signalling pathways [31].

Another protein of interest is KM596634, identified in fraction

16 of the V. tapetis secretome, which contains the signatures of

RTX toxins and autotransporters. Autotransporters are bacterial

virulence factors that contain an N-terminal extracellular ("pas-

senger") domain and a C-terminal b barrel ("b") domain that

anchors the protein to the outer membrane. Upon autocleavage,

the passenger domain is secreted. RTX (Repeat in toxins) toxins

are virulence factors containing glycine- and aspartate-rich repeats

binding Ca(2+) ions [32]. Such proteins were shown as virulence

factors in other vibrio species [33,34].
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Finally, it should be noted that, contrary to V. aestuarianus, the

V. tapetis secretome contains one receptor (GbpA) and several

chitinases, underscoring the role of chitin as a carbon source in the

environment. Besides, chitinases have already be shown to be

bacterial virulence factors, eg in Listeria monocytogenes [35], and

Legionella pneumophila [36]. Chitin is also a component of the

shell organic matrix, and V. tapetis as a pathogen forms biofilms

on the inner surface of the shell, typically at the level of the pallial

line at the growing edge of the shell [37]. Hence, chitin use may be

especially relevant to V. tapetis pathogenicity.

5. Proteins common to the V. aestuarianus and V. tapetis
secretomes

Finally, the sequence of each secretome protein of a given

species was compared in silico (using blastP) to the full proteome of

the other species, allowing us to identify 21 common proteins. The

results are presented in Table 3. The only potential virulence

factor is the putative extracellular lipase (Pla1) already mentioned

above. The other proteins corresponded to normal components of

the envelope in gamma proteobacteria, and/or in the Vibrio
genus.

Conclusion

Extracellular products, especially secreted proteins, enter in

direct contact with the host cells, and play a major role in the

virulence of pathogenic bacteria. As a consequence, secretomic

approaches are of particular relevance to identify the proteins

involved in the infection process, and several studies have been

carried out for different pathogens in recent years [38–41]. It

should be noted that to date, only two secretomes of vibrios have

been reported in the literature, i.e. those of V. coralliilyticus [20]

and V. cholerae [42].

In this paper, we characterized the extracellular proteome of V.
aestuarianus and V. tapetis, two vibrio species pathogenic to

mollusks, as a first step towards the identification of new potential

virulence factors. Although the extracellular products from both

species were shown to be involved in bacterial virulence, only one

extracellular virulence factor has been characterized to date, in the

case of V. aestuarianus, the Vam zinc metalloprotease [11].

This protein appeared as a major component of the V.
aestuarianus secretome. However, we showed that a metallopro-

tease-free fraction (fraction 8) also displayed biological activity to

hemocytes, thus suggesting the occurrence of other potential

virulence factors in this species.

Table 3. Proteins found in both the V. aestuarianus and V. tapetis secretomes (based on Blast of each secretome against the other).

V. tapetis
Genbank
accession Nr Protein name/function

V. aestuarianus
Genbank
accession
Nr

KM596604 Putative TRAP-type transport system KM588612

KM596594 LptD KM588604

KM596600 TolC KM588615

KM596589 Putative lipoprotein LpoA, activator
of penicillin binding protein 1A

KM588605

KM596596 TorA KM588608

KM596586 Tsp KM588600

KM596603 AapJ KM588611

KM596585 Periplasmic component of the
Tol-Pal system, YbgF-like

KM588602

KM596635 Conserved lipoprotein of unknown function KM588621

KM596592 NlpI KM588607

KM596582 OmpU KM588597

KM596638 Conserved lipoprotein of unknown function KM588619

KM596583 BamA (YaeT) KM588599

KM596640 Conserved outer membrane
protein of unknown function

KM588626

KM596642 Putative outer membrane
protein of unknown function

KM588625

KM596650 LamB KM588632

KM596647 Lpp KM588630

KM596662 Putative extracellular lipase KM588638

KM596652 Long-chain fatty acid outer
membrane porin FadL

KM588616

KM596646 OmpA KM588598

KM596641 Conserved outer membrane protein
of unknown function

KM588628

doi:10.1371/journal.pone.0113097.t003
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As the V. tapetis secretome does not contain any metallopro-

tease, the virulence mechanisms in this species are necessarily

different from those in V. aestuarianus. In addition, we showed

here that several chromatographic fractions of ECPs displayed

biological activity towards oyster- and clam-hemocytes, for V.
aestuarianus and V. tapetis, respectively, indicating that other

factors are also responsible for the biological effects on hemocytes.

Overall, we could identify 44 and 87 different proteins in the

active fractions of the V. aestuarianus and V. tapetis secretomes.

Our data constitute the first valuable resource to further

investigate the virulence factors of these two marine pathogen

vibrios. Future works will aim at assessing the actual role of specific

secreted proteins in the virulence.
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philippinarum: pathogénicité d’un Vibrio sp. C R Acad Sci Série 3 310: 15–20.

23. Thiele H, Glandorf J, Hufnagel P (2010) Bioinformatics strategies in life sciences:

from data processing and data warehousing to biological knowledge extraction.
J Integr Bioinform 7: 141.

24. Unal CM, Schaar V, Riesbeck K (2011) Bacterial outer membrane vesicles in
disease and preventive medicine. Semin Immunopathol 33: 395–408.

25. Varina M, Denkin SM, Staroscik AM, Nelson DR (2008) Identification and
characterization of Epp, the secreted processing protease for the Vibrio
anguillarum EmpA metalloprotease. J Bacteriol 190: 6589–6597.

26. Vaitkevicius K, Lindmark B, Ou G, Song T, Toma C, et al. (2006) A Vibrio
cholerae protease needed for killing of Caenorhabditis elegans has a role in

protection from natural predator grazing. Proc Natl Acad Sci U S A 103: 9280–
9285.
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