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Abstract

A multisite stochastic generator for wind speed is proposed. It aims

at simulating realistic wind conditions with a focus on reproducing the

space-time motions of the meteorological systems. A Gaussian linear

state-space model is used where the latent state may be interpreted

as regional wind conditions and the observation equation links regional
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and local scales. Parameter estimation is performed by combining a

method of moments and the EM algorithm. The model is fitted to

6-hourly reanalysis data in the North-East Atlantic. It is shown that

the fitted model is interpretable and provides a good description of

important properties of the space-time covariance function of the data,

such as the non full-symmetry induced by prevailing flows in this area.

Keywords: Multisite wind generators, Space-time model, State-space

model, EM algorithm, Identifiability.

1 Introduction

Many natural phenomena and human activities depend on wind conditions.

However meteorological data are often available over periods of time that are

not long enough to estimate reliably probabilities of complex events. In order

to overcome this insufficiency, stochastic weather generators have been devel-

oped. Those stochastic weather generators are statistical models that simulate

sequences of meteorological variables with statistical properties similar to the

ones of the observations. They have been adopted in impact studies as a

computationally inexpensive tool that generates quickly as many synthetic

time series of unlimited length as desired, see for instance (Srikanthan and

McMahon, 1999) and references therein. Stochastic weather generators can be

adapted to in-filling tools that simulate missing data (Yang et al., 2005) or to

downscaling global climate models, see for instance (Maraun et al., 2010) and

references therein. Wind generators have in particular been used to assess var-

ious quantities related to wind power production (Brown et al., 1984; Castino

et al., 1998; Hofmann and Sperstad, 2013), drift of objects in the ocean (Ailliot

et al., 2006a) or coastal erosion (Skidmore and Tatarko, 1990).
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A review of stochastic models for wind time series can be found in (Monbet

et al., 2007). Most of the existing models are designed for wind time series at a

single location. The most classical approach consists in using the Box-Jenkins

methodology, where an ARIMA model is fitted after achieving stationarity and

applying a marginal transformation to obtain Gaussian like margins. Non-

linear models have also been proposed and, in particular, weather type models

with a discrete latent variable, see (Ailliot and Monbet, 2012) and references

therein.

Generalizations to space-time models have been explored recently. Mul-

tisite wind models have to deal with the temporal and spatial dependence

and it is known that these two components are generally not separable when

air masses are moving in a prevailing direction (Gneiting, 2002). Black-box

models such as artificial neural networks may be fitted but they lead to non-

interpretable models (Lei et al., 2009). A first alternative is based on Gaussian

fields (Gneiting, 2002; Rychlik and Mustedanagic, 2013) where non-separable

parametric covariance functions can be considered to take into account the

mean displacement of the air masses. Another approach consists in using

vector AutoRegressive-Moving-Average models (Haslett and Raftery, 1989;

de Luna and Genton, 2005) where the wind dynamic is described by the au-

toregressive matrices. Motions can be introduced using covariates or latent

variables. For example, in (Ailliot et al., 2006b) the autoregressive coefficients

depend on a latent process that describes the motion of the air masses. In

(Šaltytė Benth and Šaltytė, 2011), a latent field describes the spatial structure

of the autoregressive parameters at each station. Following similar ideas, var-

ious authors developed models that aim at embedding physical insights into

a probabilistic model. The Bayesian framework is very convenient to deal
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with such coupling (Wikle et al., 2001). For instance, in (Milliff et al., 2011),

classical partial differential equations for the wind at the sea surface are per-

turbated by adding a white noise and the parameters are estimated following

a Bayesian inference method.

In the present paper, a structural model that aims at simulating wind speed

at several locations is investigated. The main idea consists in introducing a la-

tent variable that aims at describing regional wind conditions and the observed

local wind is modeled as a function of the regional wind at different lags in

order to reproduce the mean displacement of the air masses. The framework is

kept simple with a linear Gaussian model used to describe both the dynamics

of the latent process and the link between the latent and the observed process.

It leads to an interpretable model with efficient numerical procedures avail-

able for parameter estimation and simulation. Despite its simplicity, the model

leads to non-separable and anisotropic covariance functions. No physical equa-

tions were embedded because their resolution is generally computationally too

expensive for a stochastic generator but the suggested model involves quanti-

ties that have a physical meaning in the proposed context. It could be used as

a surrogate of the atmospheric model (emulator) for data assimilation or data

fusion.

The data considered in this paper are presented in Section 2. The model is

described in Section 3. Parameter estimation and fitting procedures are also

discussed in this section. The model is validated in Section 4 and it is shown

in particular that the fitted model is able to reproduce the anisotropy and

non-separability of the data. However, the model includes a large number of

parameters and various reduced models are introduced in Section 5. Conclu-

sions are given in Section 6. Parameter identifiability and non full-symmetry
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are proven in the supplementary materials.

2 The wind dataset

In situ data are neither available on a long time period nor on a large area

offshore Brittany in France. Reanalysis data, which are obtained by combining

observations with numerical weather prediction models, provides a relevant al-

ternative for meteorological or climatological studies. In this paper we consider

wind speed at 10 meters above sea level extracted from the ERA Interim Full

dataset produced by the European Center of Medium-range Weather Forecast

(ECMWF). It can be freely downloaded and used for scientific purposes at

the URL http://data.ecmwf.int/data/. This dataset is available on a regular

space-time grid with a temporal resolution of 6 hours and a spatial resolution

of 0.75◦. However the methodology introduced in this paper could easily be

adapted to handle datasets with a more complicated space-time sampling such

as the one obtained when considering networks of meteorological stations.

We focus on 18 gridded locations between latitudes 48◦N and 49.5◦N and

longitudes 6.25◦W and 9◦W (see Figure 1). The dataset consists of 33 years of

wind data from 1979 to 2011 and we focus on the month of January. Further,

the statistical inference is based on the assumption that the 33 months of

January are 33 independent realizations of a common stationary stochastic

process. This assumption is usual for meteorological processes but it does

not take into account low frequency variations such as the North Atlantic

Oscillation (NAO).

In the studied area prevailing air masses moves are generally eastward.

It induces non-separability and non full-symmetry properties of the space-
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Figure 1: Left panel: mean wind speed at the 18 numbered points under study
in the North-East Atlantic. Right panel: estimated values of the power in the
Box-Cox method at the 18 locations.

time covariance function of the wind speed as for the dataset of wind speed

in Ireland considered in (Haslett and Raftery, 1989; Gneiting, 2002). The

lagged by 1 cross-correlations shown in Figure 2 highlight this phenomenon.

Indeed, the asymmetry with respect to the difference of longitude shows that

the correlation between yt(p) and yt+1(p
′) is higher when location p is more

westerly with respect to p′ than when p is easterly with respect to p′; in average

western locations see the meteorological events before the eastern locations.

This asymmetry is less pronounced in latitude but reveals flows from north to

south. Furthermore, the correlations reveal some anisotropy as dependences

in latitude and longitude differ (see Figure 2).

Wind speed distribution is known to be skewed. It is often modeled as

a Weibull distribution (Brown et al., 1984) but other distributions such as

the skew normal distribution have also been considered (Flecher et al., 2010).

A classical method to handle such asymmetry in time series analysis con-

sists in applying a Box-Cox transformation in order to get a time series with
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Figure 2: Lagged-one cross-correlations against differences of latitude (left)
and longitude (right).

approximately Gaussian marginal distribution. This method has been exten-

sively used for analyzing wind time series at a single location, see for example

(Brown et al., 1984). In (Rychlik and Mustedanagic, 2013) a different power

transformation λi is used at each location. More precisely, let us denote

 yλi,i,t =
y
λi
i,t−1
λi

if λi > 0

yλi,i,t = log(yi,t) if λi = 0,

with yi,t the wind speed at time t and location i. Following (Hinkley, 1977),

λi can be estimated by searching the roots of the asymmetry measure

S(λi) =
mean(yλi,i,t)−median(yλi,i,t)√

var(yλi,i,t)
. (1)

The resulting estimates are shown in Figure 1 with values ranging from about

1 (Gaussian distribution) in the north-west to 0.7 closer in the south-east.

Despite this spatial variability, we have chosen to use the same power trans-

formation at all sites in order to preserve the spatial structure of the wind
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fields as done in (Haslett and Raftery, 1989). The value λ̂ = 0.85 is used

in the sequel. It is the average value of the λ̂i shown on Figure 1. The

simulation results given in Section 4 (see Figure 5) indicate that this simple

transformation permits to reproduce the marginal distributions of the wind

data considered in this study.

3 A linear Gaussian state-space model for wind

speed

State-space models first appeared in engineering and have then been exten-

sively used in many domains. State-space representations bring a very flexible

framework for modeling time series (Durbin and Koopman, 2012; Brockwell

and Davis, 2006) and space-time processes (Wikle and Hooten, 2010). The

model introduced in this section is a linear Gaussian state-space model. One

of the main advantages of this class of models is that estimation, forecasting

and smoothing can be processed through general and efficient procedures.

3.1 Model

The observed wind fields are generally smooth, which leads to a high corre-

lation between the different sites. Although the smoothness observed here is

inherent to reanalysis data that are known to be smoother than observations

(Milliff et al., 2011), it is coherent with the considered spatio-temporal scale.

This regularity suggests to explain an important part of the multisite wind

by using a common scalar process (the ‘regional wind condition’). This scalar

process, denoted by {Xt} in the sequel, can not be observed directly and is

thus introduced as a latent (or ‘hidden’) process. In order to model the prevail-
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ing motion of the air masses we propose to let the wind conditions at western

locations depend more on the leading one-lag Xt+1 and Xt signals than on the

lagged signal Xt−1 with the reverse phenomenon at eastern locations. More

precisely, the Gaussian state-space model, which is considered in this paper,

is defined as

(M)

 Xt+1 = ρXt + σεt+1,

Yt = α1Xt+1 +α0Xt +α−1Xt−1 + Γ1/2ηt

for t ≥ 0,

Yt ∈ RK is the observed process, its K coordinates correspond to the mean-

corrected transformed wind speed at the K = 18 locations. {εt} and {ηt} are

independent Gaussian white noises with zero-means and identity covariance

matrices. α1, α0 and α−1 are K-dimensional vectors that link the lagged

values of the regional process {Xt} to local wind conditions. The covariance

matrix Γ ∈ RK×K models the spatial structure of small-scale fluctuations. In

finance and economics or when high dimensional data are considered this co-

variance matrix is often assumed to be diagonal (Wikle and Hooten, 2010).

Here it would imply that the local wind conditions are conditionally indepen-

dent given the regional conditions, which is a very strong assumption. As a

first step, we have chosen to work with a full non-parametric covariance ma-

trix but reduced parametric models are explored in Subsection 5.1. In the

sequel, we denote Λ = (α1|α0|α−1) ∈ RK×3 and θ = (ρ, σ,Λ,Γ) the unknown

parameters.

The temporal dynamics of the observed process is mainly contained in

the latent process {Xt} and explained by the coefficient ρ. The model thus

imposes the same long-term temporal dynamics at each location. Under the

assumption |ρ| < 1, the AR(1) process {Xt} is stationary and so is the process
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{Yt}.

3.2 Second-order structure and identifiability

Identifiability is required to get sensible and reliable parameter estimates. The

introduction of a latent process {Xt} is a source of non-identifiability since the

unknown parameters need to be identified uniquely from the distribution of the

observed {Yt} and Gaussian linear state-space models are known to be non-

identifiable without additional constraints (Hannan and Deistler, 1988; Ljung,

1999; Bai and Wang, 2012; Bork, 2010). Identifiability of linear Gaussian

state-space models was initially investigated in control theory and has been

largely explored during the last decades. However we could not find any result

that applies directly to the model considered in this paper.

{Yt} is a zero-mean stationary Gaussian process that is thus characterized

by its second-order structure given below

covθ(Yt,Yt) =
σ2

1− ρ2
(
α1(α1 + ρα0 + ρ2α−1)

t +α0(ρα1 +α0 + ρα−1)
t +

α−1(ρ
2α1 + ρα0 +α−1)

t
)

+ Γ, (2)

covθ(Yt,Yt+1) =
σ2

1− ρ2
(
α1(ρα1 +α0 + ρα−1)

t +α0(ρ
2α1 + ρα0 +α−1)

t +

ρα−1(ρ
2α1 + ρα0 +α−1)

t
)
, (3)

covθ(Yt,Yt+k) =
σ2

1− ρ2
ρk−2(α1 + ρα0 + ρ2α−1)(ρ

2α1 + ρα0 +α−1)
t, (4)

for all k ≥ 2.

The study of this space-time covariance function leads to the following Propo-

sition, which is proven in the supplementary materials.

Proposition 1 Assume that (M) holds. Assume further that σ2

1−ρ2 = 1 and
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that the vectors α1, α0 and α−1 are linearly independent. Then the parameters

can be identified from the distribution of the process {Yt}.

These identifiability constraints are interpretable and were always satisfied

when fitting the model to the data. The first one implies that Xt has a unit

variance, the variance of the wind at the different locations being explained

by the scaling matrix Λ. The second one implies that Yt actually depends on

the three lagged values Xt−1, Xt and Xt+1 and not only on one or two lagged

values.

We will see in Section 4 that the proposed model enables to reproduce

various complex properties of the observed space-time covariance. Under

constraints of Proposition 1, the covariance defined by (2-4) is neither full-

symmetric nor separable (see the supplementary materials). Other non-sym-

metric space-time covariance models have been proposed in the literature.

Some of them have been fitted to the Irish wind dataset, see for instance

(Gneiting, 2002). They generally rely on strong assumptions such as spatial

stationarity and isotropy, which are not realistic for our dataset. A noticeable

exception is the model proposed in (de Luna and Genton, 2005) which is based

on the specification of a vector autoregressive process and captures a part of

the anisotropy that is observed on the Irish dataset.

3.3 Parameter estimation

Two methods of estimation have been implemented and compared. The first

one is a method of moments based on the second-order structure of the pro-

cess {Yt} given by (2-4). It consists in numerically minimizing the following
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objective function

θ → ‖ĉov(Yt,Yt)− covθ(Yt,Yt)‖22 + ‖ĉov(Yt,Yt+1)− covθ(Yt,Yt+1)‖22 (5)

+‖ĉov(Yt,Yt+2)− covθ(Yt,Yt+2)‖22 + ‖ĉov(Yt,Yt+3)− covθ(Yt,Yt+3)‖22,

where ĉov denotes the empirical covariance function and ‖.‖2 stands for the ma-

trix Frobenius norm. This method, denoted by GMM for Generalized Method

of Moments in the sequel, is usual in geostatistics (Cressie, 1991). We have

chosen to consider only the first four lags of the autocovariance function when

building the objective function (5). It corresponds to the minimal number of

terms needed to identify the parameters (see the supplementary materials).

Simulation results indicate that including more lags does not lead to more

accurate estimates.

The second method performs Maximum Likelihood (ML) estimation using

the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). The

EM algorithm aims at maximizing the incomplete log-likelihood function

θ → E(log(p(X1, ..., XT ,Y1, ...,YT ; θ))|Y T
1 = yT1 )

by performing recursively two steps (E-step and M-step). For linear Gaussian

state-space models efficient numerical procedures exist for both steps. In the

E-step, the Kalman recursions lead to an exact computation of the various

conditional expectations involved and in the M-step analytical expressions of

the maximizers of the intermediate function are available. More details about

the Kalman recursions and EM-algorithm can be found in the supplementary

materials.

Both methods are sensitive to the initial parameter values, which need to be
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chosen carefully. We used the following procedure that involves the properties

of the second-order structure of {Yt}:

- ρ =
cov(Yt,Yt+3)i,j
cov(Yt,Yt+2)i,j

for all i, j ∈ {1, ..., K} is initialized as the empirical

mean of
ĉov(Yt,Yt+3)i,j
ĉov(Yt,Yt+2)i,j

.

- Λ is estimated by minimizing

θΛ → ‖ĉov(Yt,Yt+1)− covθ(Yt,Yt+1)‖22 + ‖ĉov(Yt,Yt+2)− covθ(Yt,Yt+2)‖22

as a function of Λ with ρ being fixed to the value obtained in the previous

step. Note that this function does not depend on Γ according to (3) and

(4).

- Γ is determined by minimizing

θΓ → ‖ĉov(Yt,Yt)− covθ(Yt,Yt)‖22

as a function of Γ with ρ and Λ being fixed to the value obtained in the

previous steps.

These rough estimates are used as initial conditions of the numerical opti-

mization of the function (5) to compute the GMM estimates, which in turn

are used to initialize the EM algorithm. An extra step could be added to

refine the output of the EM algorithm with a numerical optimization of the

likelihood function, which is known to be more efficient close to local maxima

(Durbin and Koopman, 2012). However we did not find any improvements in

practice with such a procedure.
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Bias Sd RMSE
Parameters GMM ML GMM ML GMM ML

ρ 0.036 0.004 0.022 0.017 0.042 0.017
α1 [-0.11;-0.009] [-0.069;-0.019] [0.065;0.108] [0.071;0.097] [0.067;0.149] [0.068;0.127]
α0 [-0.047;-0.234] [0.054;0.144] [0.11;0.182] [0.11;0.144] [0.125;0.292] [0.127;0.228]
α−1 [-0.080;0.022] [-0.035;0.012] [0.078;0.114] [0.062;0.104] [0.086;0.139] [0.079;0.117]
Γ [-0.199;0.007] [-0.108;0.013] [0.058;0.367] [0.029;0.368] [0.053;0.199] [0.053;0.115]

Table 1: Bias, standard deviation and RMSE of parameters estimates. For
the multidimensional parameters, minimal and maximal values are given in
brackets.

3.4 Properties of the estimates

Under suitable conditions, GMM (Newey and McFadden, 1994) and ML (Newey

and McFadden, 1994; Shumway and Stoffer, 2006; Hannan and Deistler, 1988;

Caines, 1988) estimates are consistent and asymptotically Gaussian. In order

to assess the performances of the estimates for the practical application con-

sidered in this paper, we perform a simulation study. N = 100 independent

sets of the size of the studied data are simulated for the parameters set esti-

mated by ML on the wind data. Table 1 gives the bias, standard deviation

and Root Mean Square Error (RMSE) of ML and GMM estimates computed

from the simulations. Bias and standard deviations are low. ML generally

outperforms GMM except when estimating Γ, where both methods give com-

parable results. Both methods estimate more accurately α1 and α−1 than α0

and Γ is the less accurately estimated quantity.

4 Results

In order to validate the proposed model we check its physical realism and its

ability to generate artificial wind conditions with statistical properties similar

to the ones of the dataset. We compare the GMM and ML estimates through

14



351 352 353 354 355

4
8

.0
4

8
.5

4
9

.0
4

9
.5

Longitude

L
a

ti
tu

d
e

0.0

0.5

1.0

1.5

2.0

351 352 353 354 355

4
8

.0
4

8
.5

4
9

.0
4

9
.5

Longitude

L
a

ti
tu

d
e

0.0

0.5

1.0

1.5

2.0

351 352 353 354 355

4
8

.0
4

8
.5

4
9

.0
4

9
.5

Longitude

L
a

ti
tu

d
e

0.0

0.5

1.0

1.5

2.0

Figure 3: ML estimates of α1 (left panel) α0 (middle panel) and α−1 (right
panel).

this validation in order to investigate their robustness in a practical context.

4.1 Interpretability

The loading matrix Λ links the latent process to the observed wind conditions.

The values ofα1 and α−1 shown on Figure 3 reveal the site-dependent relations

with the latent process. Western locations depend more on Xt+1 than on Xt−1

and the reverse is true for eastern locations. This was expected since western

locations are the first locations affected when meteorological events enter in

the studied region.

Since large-scale variability is supposed to be contained in the latent pro-

cess, Γ should contain only small-scale variations. This is confirmed when

comparing the spatial sill and range of Γ with the ones of the original covari-

ance function of the data (see Figure 4). The shape of Γ has a block structure

that is induced by the geometry of the domain and the numbering of the sites

(see Figure 1). The level sets of the blocks, except the top right corner (and

by symmetry bottom left corner), look like saddle point level sets: the model

better explains the wind observed at the central locations of the domain than

15
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Figure 4: Empirical covariance matrix of the wind data (left) and ML estimates
of Γ (right).

at the locations that are close to the boundary. The top right corner has el-

liptical level sets. These geometrical differences raise problems when trying to

develop simple parametric models for Γ (see Section 5.1).

4.2 Realism of simulated sequences

In order to further validate the model, we have checked its ability to simulate

realistic wind conditions. For that, artificial time series are simulated with the

fitted models and their statistics are compared with the ones of the original

data. According to the quantile-quantile plots shown on Figure 5, the model is

able to reproduce the general shape of the marginal distribution of the process

at the central station 9 except for very low wind speed. Similar results were

obtained at other locations.

Figure 7 shows that the cross-correlations at lags 0 and 1 are well repro-

duced by the fitted models with a slightly better fit for the GMM estimates.

This was not unexpected since the GMM is designed to make the first lags
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Figure 5: Quantile-Quantile plot at location 9 for the model (M) and the
parameters estimated by GMM (left) and ML (right). The dashed lines cor-
respond to 90% prediction intervals computed by simulation.

of the empirical autocovariance function coincide with the one of the fitted

model. Figure 6 shows however that the fit is better for lags greater than one

day with the ML estimates, which take into account longer term dynamics and

leads to a higher value of ρ (0.76 for ML against 0.70 for GMM). The better fit

of the ML estimates is also coherent with Table 1. Note also that the models

reproduce the time shift between locations 13 and 18 that is induced by the

prevailing westerly flow (see Figure 6).

5 Some improvements of the model

In this section we explore reduced models for Γ and Λ with the aim of reducing

the number of parameters involved in the model.
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Figure 6: Observed (full lines) and simulated (dashed lines) cross-correlations
between locations 13 and 18 (upper row) and auto-correlation at location 9
(lower row) for the model (M) with parameters estimated by GMM (left) and
ML (right). 90% prediction intervals are computed from 100 independent
simulated samples of the size of the original data.
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Figure 7: Theoretical correlations against observed correlations at lag 0 (left)
and lag 1 (right) for the model (M) and the two methods of estimation.

5.1 Parameterization of Γ

The spatial structure of the estimated Γ shown on Figure 4 suggests to model

the covariance between locations i and j in {1, ..., K} as a function of the

distance di,j between these locations. In the sequel, we consider two different

models, one with Gaussian correlation function

Γi,j = σiσj(exp(−λ1d2
i,j) + λ2δi,j) for i, j ∈ {1, ..., K},

and the other with wave correlation function

Γi,j = σiσj

(sin(λ1di,j)

λ1di,j
+ λ2δi,j

)
for i, j ∈ {1, ..., K},

where (σ1, ..., σK , λ1, λ2) are positive parameters and δi,j denotes the Kro-

necker delta. λ1 and λ2 are respectively the range and nugget parameters,

and σ2
i (1 + λ2) represents the variance of the field at location i. These models

are well defined covariance functions (Cressie, 1991; Abrahamsen, 1997) and
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are denoted respectively (MΓ∼Gauss) and (MΓ∼Sinus) hereafter.

The difference in dependence on latitude and longitude of Γ suggests the

use of an anisotropic distance (Refice et al., 2011; Haskard, 2007; Šaltytė Benth

and Šaltytė, 2011)

di,j =
√

∆Lat(i, j)2 + θ1∆Long(i, j)2 + θ2∆Lat(i, j)∆Long(i, j)

where ∆Lat(i, j) and ∆Long(i, j) denote respectively the difference in lati-

tude and longitude between locations i and j expressed in kilometers. The

constraint θ1 >
θ22
4

is imposed to ensure the positive-definiteness of the dis-

tance.

These covariance structures have first been fitted by least square estimation

to the estimated Γ shown on Figure 4. The fit is globally good for the wave

covariance whereas the Gaussian shape can not cope with the negative correla-

tions observed between western and eastern locations. However the covariance

between the northern and southern locations are poorly reproduced. As men-

tioned in Section 4.1 these blocks have a particular elliptical shape that is dif-

ficult to reproduce with parametric models. Estimated anisotropy coefficients

for the sinus and the Gaussian structures are respectively (θ̂1, θ̂2) = (0.2, 0.04)

and (θ̂1, θ̂2) = (0.23, 0.005). For both models θ1 is lower than one and θ2 is

close to zeros and thus the spatial range is maximum in the west-east direction.

In a second step, the parameters have been re-estimated using the GMM

and ML methods. A numerical optimization needs to be performed in the

M-step of the EM algorithm to update the values of (σ1, ..., σK , λ1, λ2). Note

that the function to minimize can be expressed in a compact way (see sup-

plementary materials) that leads to an efficient numerical procedure. The
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Model Parameters Log-likelihood BIC
(M2) 209 -24849 52040
(M) 208 -24954 52238

(MΛ) 186 -25399 52895
(MΓ∼Gauss) 78 -29110 59082
(MΓ∼Sinus) 78 -35615 72094

Table 2: Table of log-likelihoods and BIC indexes for the different models.

models have been validated in the same way as the model (M) (see Section 4).

Similar results were obtained for the marginal distributions and the temporal

correlation functions but the description of the spatial structure was deterio-

rated when using a (MΓ) model instead of (M). This miss-specification is also

confirmed by the Bayes Information Criterion (BIC) values given in Table 2

where BIC = −2 log L + Np log(Nobs) with L the likelihood of the model, Np

the number of parameters and Nobs the number of observations. The reduced

models (MΓ) are clearly outperformed by the full model (M). Other paramet-

ric models such as the Matérn one have been tried without more success and

it seems difficult to find a simple reduced model that can reproduce all the

complexity of the covariance matrix Γ of the observation error.

5.2 Parameterization of Λ

The structure of α1, α0 and α−1 reveals a quadratic dependence in longitude

and the dependence in latitude suggests the use of an intercept depending on

latitude (see Figure 8). The following parameterization is then proposed

Λ =

(
1 | Long | Long2

)
βLat
1 βLat

4 βLat
7

β2 β5 β8

β3 β6 β9
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Figure 8: Estimatedα1 (top), α0 (middle) andα−1 (bottom) against longitude
at latitude 48◦ N (left) and against latitude at longitude 6.75◦ W (right). Solid
line: ML estimation of Λ for model (M) , dashed line: parametric structure
fitted by least square.

where βLat
i for i ∈ {1, 4, 7} takes a different value for each latitude and

Long ∈ RK is a vector containing the longitude of each site. Let (MΛ) denote

the corresponding model. The rank of Λ is 3, and thus the parameters are

identifiable (see Section 3.2), indeed the matrix


βLat
1 βLat

4 βLat
7

β2 β5 β8

β3 β6 β9

 is full

ranked because the matrix

(
1 | Long | Long2

)
is full ranked.

The parameterization is easily handled in the GMM procedure whereas a

numerical optimization is again needed to update Λ in the M-step of the ML

procedure. Moreover a joint optimization on Λ and Γ should be done since

both of them are involved in the same part of the log-likelihood function. In
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Figure 9: Theoretical correlations against observed ones at lag 0 (left) and lag
1 (right) for the model (MΛ).

order to avoid a numerical optimization in a high-dimensional space, separate

optimizations in Λ and in Γ have been performed leading to a so-called Gener-

alized EM algorithm (see the supplementary materials for more details). The

reduced (MΛ) and the full (M) models give similar results for the marginal

distribution and the autocorrelation function. (MΛ) leads also to an accu-

rate description of the spatial structure of the data (see Figure 9). Again,

lagged-one correlations are better reproduced by GMM parameters than by

ML parameters. The model (MΛ) is slightly inferior to the full model (M) in

terms of BIC according to Table 2. Nevertheless, it clearly outperforms the

models (MΓ). It seems easier to find an appropriate reduced model for the

loading matrix Λ than for the covariance matrix of the observation error Γ.

6 General discussion

Several multisite models, all based on Gaussian linear state-space models, are

proposed to generate synthetic multivariate time series of wind speed. The
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main innovation, with respect to the other space-time models that have been

proposed for meteorological variables, is the introduction of a continuous latent

process describing regional conditions. The proposed models are interpretable

and can reproduce the marginal distribution of the wind speed and important

properties of the space-time covariance structure such as the asymmetries in-

duced by prevailing motions of the air masses.

An important advantage of Gaussian linear state-space models is that ef-

ficient and easy to implement procedures of estimation are available. Two

estimation procedures, one based on a method of moments (GMM) and the

other on the likelihood function (ML) have been compared. GMM yields to

better results when looking at the short-term space-time structure but ML is

better in reproducing the long-term dynamics.

According to the BIC values given in Table 2, the ranking of the model

coincides with the complexity of the model and the quality of the model is

systematically worsened when the number of parameters is reduced. Note

that higher-order autoregressive models have been considered for modeling

the dynamics of the hidden state but they led to very slight improvements and

are not further discussed here (the model with autoregressive models of order

2, denoted (M2), is given in Table 2). In order to check the relevance of the

BIC criterion, we have performed a cross-validation study (see supplementary

materials) that confirmed the ranking of the models given by BIC. Similar

results were obtained on the Irish wind dataset considered in (Haslett and

Raftery, 1989; Gneiting, 2002), which has a different space-time resolution

with daily data and stations on an irregular spatial grid. This highlights the

difficulty to find parsimonious and realistic models for describing the space-

time evolution of wind.
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Supplementary materials

This file contains the proof of Proposition 1, a description of the Expectation-

Maximization (EM) algorithms used to fit the models introduced in the paper

together with a description of the Kalman recursions involved in the EM-

algorithm (supp estimation.pdf).
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