Decomposing Berge graphs

Nicolas Trotignon

To cite this version:

Nicolas Trotignon. Decomposing Berge graphs. Cahiers de la Maison des Sciences Economiques 2006.02 - ISSN 1624-0340. 2006. <halshs-00082823>

HAL Id: halshs-00082823

https://halshs.archives-ouvertes.fr/halshs-00082823
Submitted on 28 Jun 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Centre d'Economie de la Sorbonne

CENTRE NATIONAL
DE LARECHERCHE
SCIENTIFIQUE

Decomposing Berge graphs

Nicolas Trotignon*

January 11, 2006

Abstract

A hole in a graph is an induced cycle on at least four vertices. A graph is Berge if it has no odd hole and if its complement has no odd hole. In 2002, Chudnovsky, Robertson, Seymour and Thomas proved a decomposition theorem for Berge graphs saying that every Berge graph either is in a well understood basic class or has some kind of decomposition. Then, Chudnovsky proved a stronger theorem by restricting the allowed decompositions and another theorem where some decompositions were restricted while other decompositions were extended. We prove here a theorem stronger than all these previously known results. Our proof uses at an essential step one of the theorems of Chudnovsky. AMS Mathematics Subject Classification: 05C17, 05C75

1 Definitions and known theorems

In this paper graphs are simple and finite. A hole in a graph is an induced cycle of length at least 4. An antihole is the complement of a hole. A graph is said to be Berge if it has no odd hole and no odd antihole. A graph G is said to be perfect if for every induced subgraph G^{\prime} the chromatic number of G^{\prime} is equal to the maximum size of a clique of G^{\prime}. In 1961, Berge [1] conjectured that every Berge graph is perfect. This was known as the Strong Perfect Graph Conjecture, was the object of much research

[^0]and was finally proved by Chudnovsky, Robertson, Seymour and Thomas in 2002 [4]. In fact, they proved a stronger result: a decomposition theorem, first conjectured by Conforti, Cornuéjols and Vušković [7], stating that every Berge graph is either in a well understood basic class of perfect graph, or has a structural fault that cannot occur in a minimum counter-example to Strong Perfect Graph Conjecture. Before stating this decomposition theorem, we need some definitions.

We call path any connected graph with at least a vertex of degree 1 and no vertex of degree greater than 2. A path has at most two vertices of degree 1 that are the ends of the path. If a, b are the ends of a path P we say that P is from a to b. The other vertices are the interior vertices of the path. We denote by $v_{1}-\cdots-v_{n}$ the path whose edge set is $\left\{v_{1} v_{2}, \ldots, v_{n-1} v_{n}\right\}$. When P is a path, we say that P is a path of G if P is an induced subgraph of G. If P is a path and if a, b are two vertices of P then we denote by $a-P-b$ the only induced subgraph of P that is path from a to b. The length of a path is the number of its edges. An antipath is the complement of a path. Let G be a graph and let A and B be two subsets of $V(G)$. A path of G is said to be outgoing from A to B if it has an end in A, an end in B, length at least 2 , and no interior vertex in $A \cup B$.

If $X, Y \subset V(G)$ are disjoint, we say that X is complete to Y if every vertex in X is adjacent to every vertex in Y. We also say that (X, Y) is a complete pair. We say that X is anticomplete to Y if there are no edges between X and Y. We also say that (X, Y) is an anticomplete pair. We say that a graph G is anticonnected if its complement \bar{G} is connected.

Skew partitions were first introduced by Chvátal [5]. A skew partition of a graph $G=(V, E)$ is a partition of V into two sets A and B such that A induces a graph that is not connected, and B induces a graph that is not anticonnected. When $A_{1}, A_{2}, B_{1}, B_{2}$ are non-empty sets such that (A_{1}, A_{2}) partitions $A,\left(A_{1}, A_{2}\right),\left(B_{1}, B_{2}\right)$ partitions B, and $\left(B_{1}, B_{2}\right)$ is complete, we say that $\left(A_{1}, A_{2}, B_{1}, B_{2}\right)$ is a split of the skew partition (A, B). An even skew partition (first defined in [4]) is a skew partition (A, B) with the additional property that every induced path with ends in B, interior in A and every antipath with ends in A, interior in B have even length. If (A, B) is a skew partition, we say that B is a skew cutset. If (A, B) is even we say that the skew cutset B is even. Note that Chudnovosky et al. [4] proved that no minimum non-perfect graph have an even skew partition.

We call double split graph (first defined in [4]) any graph G that may be constructed as follows. Let $m, n \geq 2$ be integers. Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$, $B=\left\{b_{1}, \ldots, b_{m}\right\}, C=\left\{c_{1}, \ldots, c_{n}\right\}, D=\left\{d_{1}, \ldots, d_{n}\right\}$ be four disjoint sets. Let G have vertex set $A \cup B \cup C \cup D$ and edges in such a way that:

- a_{i} is adjacent to b_{i} for $1 \leq i \leq m$. There are no edges between $\left\{a_{i}, b_{i}\right\}$ and $\left\{a_{i^{\prime}}, b_{i^{\prime}}\right\}$ for $1 \leq i<i^{\prime} \leq m$;
- c_{j} is non-adjacent to d_{j} for $1 \leq j \leq m$. There are all four edges between $\left\{c_{j}, d_{j}\right\}$ and $\left\{c_{j^{\prime}}, b_{j^{\prime}}\right\}$ for $1 \leq j<j^{\prime} \leq n$;
- there are exactly two edges between $\left\{a_{i}, b_{i}\right\}$ and $\left\{c_{j}, d_{j}\right\}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$ and these two edges are disjoint.

Note that $C \cup D$ is a non-even skew cutset of G and that \bar{G} is a double split graph. Note that in a double split graph, the vertices in $A \cup B$ all have degree $n+1$ and vertices in $C \cup D$ all have degree $2 n+m-2$. Since $n \geq 2, m \geq 2$ implies $2 n-2+m>1+n$, it is clear that given a double split graph it is relevant to consider the matching edges, that have an end in A and an end in B, independantly of the choice of the sets A, B, C, D. Figure 1 are depicted 2 examples of double split graphs.

Figure 1: The double-diamond and $L\left(K_{3,3} \backslash e\right)$
A graph is said to be basic if one of G, \bar{G} is either a bipartite graph, the line-graph of a bipartite graph or a double-split graph.

The 2-join was first defined by Cornuéjols and Cunningham [9]. We say that a partition $\left(X_{1}, X_{2}\right)$ of the vertex set is a 2-join when there exist disjoint non-empty $A_{i}, B_{i} \subseteq X_{i}(i=1,2)$ satisfying:

- every vertex of A_{1} is adjacent to every vertex of A_{2} and every vertex of B_{1} is adjacent to every vertex of B_{2};
- there are no other edges between X_{1} and X_{2}.

The sets X_{1}, X_{2} are the two sides of the 2-join. When sets A_{i} 's B_{i} 's are like in the definition we say that ($X_{1}, X_{2}, A_{1}, B_{1}, A_{2}, B_{2}$) is a split of (X_{1}, X_{2}). Implicitly, for $i=1,2$, we will denote by C_{i} the set $X_{i} \backslash\left(A_{i} \cup B_{i}\right)$.

A 2-join $\left(X_{1}, X_{2}\right)$ in a graph G is said to be connected when for $i=1,2$, every component of $G\left[X_{i}\right]$ meets both A_{i} and B_{i}. A 2-join $\left(X_{1}, X_{2}\right)$ in a graph G is said to be proper when it is connected and when for $i=1,2$, if
$\left|A_{i}\right|=\left|B_{i}\right|=1$, and if X_{i} induces a path of G joining the vertex of A_{i} and the vertex of B_{i}, then it has length at least 3 .

A 2-join is said to be a path 2-join if it has a split $\left(X_{1}, X_{2}, A_{1}, B_{1}, A_{2}, B_{2}\right)$ such that $G\left[X_{1}\right]$ is an outgoing path from A_{1} to B_{1}. Implicitly we will then denote by a_{1} the unique vertex in A_{1} and by b_{1} the unique vertex in B_{1}. We say that X_{1} is the path-side of the 2 -join. Note that when G is not a hole then this path-side is unique. A non-path 2-join is a 2-join that is not a path 2 -join.

The homogeneous pair was first definied by Chvátal and Sbihi [6]. The definition that we give here is a slight variation used in [4]. An homogeneous pair is a partition of $V(G)$ into six non-empty sets (A, B, C, D, E, F) such that:

- every vertex in A has a neighbor in B and a non-neighbor in B, and vice versa;
- the pairs $(C, A),(A, F),(F, B),(B, D)$ are complete;
- the pairs $(D, A),(A, E),(E, B),(B, C)$ are anticomplete.
G is path-cobipartite ${ }^{1}$ if it is a Berge graph obtained by subdivising an edge between the two cliques that partionned a cobipartite graph. More accurately, a graph is path-cobipartite if its vertex set can be partitionned into three sets A, B, P where A and B are non-empty cliques and P consist of vertices of degree 2 , each of which belongs to the interior of a unique path of odd length with one end a in A, the other one b in B. Moreover, a has neighbors only in $A \cup P$ and b has neighbors only in $B \cup P$. Note that a path-cobipartite graph such that P is empty is the complement of bipartite graph.

A cutset is a graph G is a set $C \subset V(G)$ such that $G \backslash C$ is disconnected $(G \backslash C$ means $G[V(G) \backslash C])$. A double star in a graph is a subset D of the vertices such that there is an edge $a b$ in $G[D]$ satisfaying: $D \subset N(a) \cup N(b)$.

Now we can state the known decomposition theorems of Berge graphs. The first decomposition theorem for Berge graph ever proved is the following:

Theorem 1.1 (Conforti, Cornuéjols and Vušković, 2001, [8]) Every graph with no odd hole is either basic or has a proper 2-join or has a double star cutset.

[^1]It could be thought that this theorem is useless to prove the Strong Perfect Graph Theorem since there are minimal imperfect graphs that have double star cutset: the odd antiholes of length at least 7. However, by the Strong Perfect Graph Theorem, we know that the following fact is true: for any minimal non-perfect graph G, one of G, \bar{G} has no double star cutset. A direct proof of this - of which we have no idea - would yield together with Theorem 1.1 a new proof of the Strong Perfect Graph Theorem.

The following theorem was first conjectured in a slighly different form by Conforti, Cornuéjols and Vušković, who proved it in the particular case of square-free graphs [7]. A corollary of it is the Strong Perfect Graph Theorem.

Theorem 1.2 (Chudnovsky, Robertson, Seymour and Thomas, 2002, [4])

Let G be a Berge graph. Then either G is basic or G has an homogeneous pair, of G has an even skew partition or one of G, \bar{G} has a proper 2-join.

The two theorems that we state now are due to Chudnovsky who proved them from scratch, that is without assuming Theorem 1.2. Her proof uses the notion of trigraph. The first theorem shows that homogeneous pairs are not necessary to decompose Berge graphs. Thus it is a result stronger than Theorem 1.2. The second one shows that path 2-joins are not necessary to decompose Berge graphs, but at the price of exending even skew partitions to general skew partitions and introducing a new basic class. Note that a third theorem can be obtained by viewing the second one in the complement of G.

Theorem 1.3 (Chudnovsky, 2003, [3, 2]) Let G be a Berge graph. Then either G is basic, or one of G, \bar{G} has a proper 2-join or G has an even skew partition.

Theorem 1.4 (Chudnovsky, 2003, [3, 2]) Let G be a Berge graph. Then either G is basic, or one of G, \bar{G} is path-bipartite, or G has a proper 2-join that is not a path 2-join, or \bar{G} has a proper 2-join or G has a skew partition.

Main results and Motivation

Our main result is Theorem 1.5, that easilly implies Theorems 1.2, 1.3 and 1.4. We expect algorithmic applications that will be given in a work in preparation. Note that our proof of Theorem 1.5 is not a new proof of the previously known decomposition theorems for Berge graphs, since it
uses at an essential step Theorem 1.3. Before going further we need more definitions.

We call flat path of a graph G any path whose interior vertices all have degree 2 in G and whose ends have no common neighbors outside of the path.

We call path-double split graph any graph obtained from a double split graph G by subdivising matching edges of G into paths of odd length. Note that a double split graph is a path-double split graph. More accurately, a path-double split graph is any graph G that may be constructed as follows. Let $m, n \geq 2$ be integers. Let $A=\left\{a_{1}, \ldots, a_{m}\right\}, B=\left\{b_{1}, \ldots, b_{m}\right\}$, $C=\left\{c_{1}, \ldots, c_{n}\right\}, D=\left\{d_{1}, \ldots, d_{n}\right\}$ be four disjoint sets. Let E be another possibly empty set. Let G have vertex set $A \cup B \cup C \cup D \cup E$ and edges in such a way that:

- for every vertex v in E, v has degree 2 and there exists $i \in\{1, \ldots m\}$ such that v lies on path of odd length from a_{i} to b_{i};
- for $1 \leq i \leq m$, there is a unique path of odd length (possibly 1) between a_{i} and b_{i} whose interior is in E. There are no edges between $\left\{a_{i}, b_{i}\right\}$ and $\left\{a_{i^{\prime}}, b_{i^{\prime}}\right\}$ for $1 \leq i<i^{\prime} \leq m ;$
- c_{j} is non-adjacent to d_{j} for $1 \leq j \leq m$. There are all four edges between $\left\{c_{j}, d_{j}\right\}$ and $\left\{c_{j^{\prime}}, b_{j^{\prime}}\right\}$ for $1 \leq j<j^{\prime} \leq n$;
- there are exactly two edges between $\left\{a_{i}, b_{i}\right\}$ and $\left\{c_{j}, d_{j}\right\}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$ and these two edges are disjoint.

An homogeneous 2-join is a partition of $V(G)$ into six non-empty sets ($A, B, C, D, E, F)$ such that:

- (A, B, C, D, E, F) is an homogeneous pair.
- Every vertex in E has degree 2 and belongs to a flat path of odd length with an end in C, an end in D and whose interior is in E.

Our main result is the following:
Theorem 1.5 Let G be a Berge graph. Then either G is basic, or one of G, \bar{G} is a path-cobipartite graph, or one of G, \bar{G} is a path-double split graph, or one of G, \bar{G} has an homogeneous 2-join, or one of G, \bar{G} has a non-path proper 2-join, or G has an even skew partition.

This theorem is stronger than Theorems $1.2,1.3$ and 1.4 because pathcobipartite graphs may be seen either as graphs having a proper path 2-join (Theorems 1.2 and 1.3) or as a new basic class (Theorem 1.4). Path-double split graphs may be seen as graphs having a proper path 2-join (Theorems 1.2 and 1.3) or as graphs having a non-even skew partition (Theorem 1.4). And graphs having an homogeneous 2-join may be seen as graph having an homogeneous pair (Theorems 1.4 and perhaps 1.2) or as graphs having a proper path 2-join (Theorems 1.3 and perhaps 1.2). Formally all these remarks are not always true: it may happen in special cases that path-cobipartite graphs and path-double split graphs have no proper 2-join. But such graphs are established in Lemma 2.3 to be basic or to have an even skew partition.

2 Lemmas

The following fact is clear and useful:
Lemma 2.1 If (A, B) is an even skew partition of a graph G then (B, A) is an even skew partition of \bar{G}. In particular, a graph G has an even skew partition if and only if \bar{G} has an even skew partition.

A star in a graph is a set of vertices B such that there is a vertex x in B, called a center of the star, seeing every vertices of $B \backslash x$. Note that a star cutset of size at least 2 is a skew cutset.

Lemma 2.2 Let G be a Berge graph. If G has a star cutset then either G has an even skew partition or G has no edges or G has size 3 or G is the complement of C_{4}.

PROOF - We may assume that G has size at least 4 and at least one edge. Let B be a star cutset of G. Let us suppose $|B|$ being maximum with that property. Let A_{1}, A_{2} being such that A_{1}, A_{2}, B are pairwise disjoint, there are no edges between A_{1}, A_{2}, and $A_{1} \cup A_{2} \cup B=V(G)$.

Suppose first that B has size 1 . Thus up to a symmetry $\left|A_{1}\right| \geq 2$ since G has at least 4 vertices. There is no edge between B and A_{1} for otherwise such an edge would be a cutset contradicting $|B|$ being maximum. There is no edge in A_{2} since such an edge would be a cutset of G. If there is no edge in A_{1}, any edge of G is a cutset of G. So, there is an edge e in A_{1}. So, $\left|A_{1}\right|=2$ and B is complete to A_{2} for otherwise, e is a cutset of G. So, $\left|A_{2}\right|=1$ for otherwise, any edge between B and A_{2} is a cutset edge of G. Now, we observe that G is the complement of C_{4}.

If B has size at least 2 then B is a skew cutset of G. Let x be a center of B. By maximality of B, every component of $G \backslash B$ has either size 1 or contains no neighbor of x. Thus, if P is a path that makes the skew cutset B non-even, then $P \cup x$ induces an odd hole of G. If Q is an antipath that makes the skew cutset B non-even, then $Q \cup x$ induces an odd antihole of G.

The following lemma is useful to establish formally that Theorem 1.5 really implies Theorems 1.2, 1.3 and 1.4. But we also need it at several places in the next section.

Lemma 2.3 Let G be a Berge graph. Then:

- If G has a flat path P of length at least 3 then either G is bipartite, or G has an even skew partition or P is the path-side of a proper path 2-join of G.
- If G is a path-cobipartite graph, a path-double split graph or has an homogeneous 2-join, then either G has a proper 2-join or G has an even skew partition or G is a bipartite graph, the complement of a bipartite graph, or a double-split graph.

Proof - Let us prove the first item. Let P be a flat path of G of length at least 3. So $(P, V(G) \backslash P)$ is a path 2-join of G. Let $\left(P, X_{2},\left\{a_{1}\right\},\left\{b_{1}\right\}, A_{2}, B_{2}\right)$ be a split of this 2-join. If $\left(P, X_{2}\right)$ is not proper, then either there is a component of X_{2} that does not meet one of A_{2}, B_{2}, or X_{2} induces a path of length 1 or 2 . In the last case, G is bipartite, and in the first one, we may assume that there is a component C of X_{2} that does not meet B_{2}. But then, $\left\{a_{1}\right\} \cup\left(A_{2} \backslash C\right)$ is a star cutset of G that separates C from B_{2}, and so by Lemma 2.2, G has an even skew partition.

The second item follows easilly: if G is a path-cobipartite graph, then we may assume that G is not the complement of a bipartite graph. If G is a path-double split graph then we may assume that G is not a double split graph. In both cases, G has a flat path of length at least 3 . If G has an homogeneous 2-join then it also has a flat path of length at least 3. In every cases, the conclusion follows from the first item.

Paths and antipaths overlapping 2-joins

Lemma 2.4 Let G be a Berge graph with a connected 2-join $\left(X_{1}, X_{2}\right)$. Then all the outgoing paths from A_{1} to B_{1} and all the outgoing paths from A_{2} to
B_{2} have same parity.
Proof - Note that since $\left(X_{1}, X_{2}\right)$ is connected there actually exists in $G\left[X_{1}\right]$ an outgoing path P_{1} from A_{1} to B_{1}. Similarly, there exists in $G\left[X_{2}\right]$ an outgoing path P_{2} from A_{2} to B_{2}. The paths P_{1}, P_{2} have same parity because $P_{1} \cup P_{2}$ induces a hole. Let P be an outgoing path from A_{1} to B_{1} (the proof is the same for an outgoing path from A_{2} to B_{2}). Let P^{*} be the interior of P. Then one of $P \cup P_{2}, P^{*} \cup P_{2}$ induces a hole. Hence, P, P_{1}, P_{2} have same parity.

Lemma 2.5 Let G be a Berge graph with a 2-join $\left(X_{1}, X_{2}\right)$. Let i be in $\{1,2\}$. Then every outgoing path from A_{i} to A_{i} (resp. from B_{i} to B_{i}) has even length. Every antipath of length at least 2 whose interior is in A_{i} (resp. B_{i}) and whose ends are outside A_{i} (resp. B_{i}) has even length.

Proof - Note that we do not suppose $\left(X_{1}, X_{2}\right)$ being connected, so Lemma 2.4 does not apply. Let P be an outgoing path from A_{1} to A_{1} (the other cases are similar). If P has a vertex in A_{2}, then P has length 2. Else, P must lie entirely in X_{1} except possibly for one vertex in B_{2}. If P lies entirely in X_{1}, then $P \cup\left\{a_{2}\right\}$ where a_{2} is any vertex in A_{2} induces a hole, so P has even length. If P has a vertex $b_{2} \in B_{2}$, then we must have $P=a-\cdots-b-b_{2}-b^{\prime}-\cdots-a^{\prime}$ where $a-P-b$ and $b^{\prime}-P-a^{\prime}$ are outgoing paths from A_{1} to B_{1}. Suppose that P has odd length. Let a_{2} be a vertex of A_{2}. Then $V(P) \cup\left\{a_{2}\right\}$ induces an odd cycle of G whose only chord is $a_{2} b_{2}$. So one of $V\left(a-P-b_{2}\right) \cup\left\{a_{2}\right\}, V\left(a^{\prime}-P-b_{2}\right) \cup\left\{a_{2}\right\}$ induces an odd hole of G, a contradiction.

Let Q be an antipath of length at least 2 whose interior is in A_{1} and whose ends are outside A_{1} (the other cases are similar). If Q has length at least 3 , then the ends of Q must have a neighbor in A_{1} and a non-neighbor in A_{1}. Hence these ends are in X_{1}. Thus, $Q \cup\{a\}$, where a is any vertex of A_{2} is an antihole of G. Thus, Q has even length.

Lemma 2.6 Let G be a graph with a 2-join $\left(X_{1}, X_{2}\right)$. Let P be a path of G whose end-vertices are in X_{2}. Then either:

1. There are vertices $a \in A_{1}, b \in B_{1}$ such that $V(P) \subseteq X_{2} \cup\{a, b\}$. Moreover, if a, b are both in $V(P)$, then they are non-adjacent.
2. $P=c-\cdots-a_{2}-a-\cdots-b-b_{2}-\cdots-c^{\prime}$ where: $a \in A_{1}, b \in B_{1}$, $a_{2} \in A_{2}, b_{2} \in B_{2}$. Moreover $V\left(c-P-a_{2}\right) \subset X_{2}, V\left(b_{2}-P-c^{\prime}\right) \subset X_{2}$, $V(a-P-b) \subset X_{1}$.

Proof - If P has no vertex in X_{1}, then for any $a \in A_{1}, b \in B_{1}$, the first outcome holds. Else let c, c^{\prime} be the end-vertices of P. Starting from c, we may assume that first vertex of P in X_{1} is $a \in A_{1}$. Note that a is the only vertex of P in A_{1}. If a has its two neighbors on P in X_{2}, then P has no other vertex in X_{1}, except possibly a single vertex $b \in B_{1}$ and the first outcome holds. If a has only one neighbor on P in X_{2}, then let a_{2} be this neighbor. Note that P must have a single vertex b in B_{1}. Let b_{2} be the neighbor of b in X_{2} along P. Vertices a_{2}, a, b_{1}, b_{2} show that the second outcome holds.

Lemma 2.7 Let G be a Berge graph with a 2-join $\left(X_{1}, X_{2}\right)$. Let P be a path of G whose end-vertices are in $A_{1} \cup X_{2}$ (resp. $B_{1} \cup X_{2}$) and whose interior vertices are not in A_{1} (resp. B_{1}). Then either:

1. P has even length.
2. There are vertices $a \in A_{1}, b \in B_{1}$ such that $V(P) \subseteq X_{2} \cup\{a, b\}$. Moreover, if a, b are both in $V(P)$, then they are non-adjacent.
3. $P=a-\cdots-b-b_{2}-\cdots-c$ where: $a \in A_{1}, b \in B_{1}, b_{2} \in B_{2}, c \in X_{2}$.

Moreover $V(a-P-b) \subset X_{1}$ and $V\left(b_{2}-P-c\right) \subset X_{2}$.
(resp. $P=b-\cdots-a-a_{2}-\cdots-c$ where: $b \in B_{1}, a \in A_{1}, a_{2} \in A_{2}$, $c \in X_{2}$.
Moreover $V(b-P-a) \subset X_{1}$ and $\left.V\left(b_{2}-P-c\right) \subset X_{2}.\right)$
Proof - Note that we do not suppose $\left(X_{1}, X_{2}\right)$ being proper. Suppose that the end-vertices of P are in $A_{1} \cup X_{2}$ (the case when the end-vertices of P are all in $B_{1} \cup X_{2}$ is similar).

If P has its two end-vertices in A_{1}, then by Lemma $2.5, P$ has even length and Output 1 of the lemma holds.

If P has exactly one end-vertex in A_{1}, let a be this vertex. Let $c \in X_{2}$ be the other end-vertex of P. Let a^{\prime} be the neighbor of a along P. If a^{\prime} is in A_{2}, then we may apply Lemma 2.6 to $a^{\prime}-P-c$: Outcome 2 is impossible and Outcome 1 yields Outcome 2 of the lemma we are proving now since P has exactly one vertex in A_{1}. If a^{\prime} is not in A_{2}, then let b be the last vertex of X_{1} along P and b_{2} the first vertex of X_{2} along P. Outcome 3 of the lemma holds.

If P has no end-vertex in A_{1} then Lemma 2.6 applies to P. The second outcome is impossible. The first outcome implies that there is a vertex $b \in B_{1}$ such that $V(P) \subseteq X_{2} \cup\{b\}$ since no interior vertex of P is in A_{1}. So, Outcome 2 of the lemma we are proving now holds.

Lemma 2.8 Let G be a graph with a 2-join $\left(X_{1}, X_{2}\right)$. Let Q be an antipath of G of length at least 4 whose interior vertices are all in X_{2}. Then there is a vertex a in $A_{1} \cup B_{1}$ such that $V(Q) \subseteq X_{2} \cup\{a\}$.

PROOF - Let c, c^{\prime} be the end-vertices of Q. Note that $N(c) \cap N\left(c^{\prime}\right) \cap X_{2}$ have to be non-empty and that $N(c) \cap X_{2}$ must be different of $N\left(c^{\prime}\right) \cap X_{2}$, because c, c^{\prime} are the end-vertices of an antipath of length at least 4. No pair of vertices in X_{1} satisfies these two properties, so at most one of c, c^{\prime} is in $V(Q) \cap X_{1}$. If none of c, c^{\prime} are in X_{1}, then let a be any vertex in A_{1}, else let a be the unique vertex in X_{1} among c, c^{\prime}. Since c, c^{\prime} must have a neighbor in $X_{2}, a \in A_{1} \cup B_{1}$ and clearly $V(Q) \subseteq X_{2} \cup\{a\}$.

Lemma 2.9 Let G be a Berge graph with a 2-join $\left(X_{1}, X_{2}\right)$. Let Q be an antipath of G of length at least 5 whose interior vertices are all in $A_{1} \cup X_{2}$ (resp. $B_{1} \cup X_{2}$) and whose end-vertices are not in A_{1} (resp. B_{1}). Then either:

1. Q has even length.
2. There is a vertex $a \in A_{1} \cup B_{1}$ such that $V(Q) \subseteq X_{2} \cup\{a\}$.

PROOF - We suppose that the interior vertices of Q are all in $A_{1} \cup X_{2}$. The case when the interior vertices of Q are all in $B_{1} \cup X_{2}$ is similar.

If Q has at least 2 vertices in A_{1}, then let $a \neq a^{\prime}$ be two of these vertices. Since the end-vertices of Q are not in A_{1}, a, a^{\prime} may be chosen in such a way that there are vertices $c, c^{\prime} \notin A_{1}$ such that $\overline{c-a-\bar{Q}-a^{\prime}-c^{\prime}}$ is an antipath of G. Since c must miss a while seeing a^{\prime}, c must be in $X_{1} \backslash A_{1}$, and so is c^{\prime}. But the interior vertices of Q cannot be in $X_{1} \backslash A_{1}$, so c, c^{\prime} are in fact the end-vertices of Q. Also, every interior vertex of Q must be adjacent to at least one of c, c^{\prime}. Hence, either all the interior vertices of Q are in A_{1} and by Lemma 2.5, Q has even length, or $c, c^{\prime} \in B_{1}$ and Q has interior vertices in B_{2}. But in this last case, the interior of Q is an antipath of length at least 3 with vertices in both A_{1}, B_{2}, which are anticomplete to one another, a contradiction.

If Q has exactly one vertex a in A_{1} then by assumption, a is an interior vertex of Q. Let c, c^{\prime} be the ends of Q. Suppose $c \in X_{1}$. Since Q has length at least $5, c$ must have a neighbor in the interior Q that is different of a, hence $c \in B_{1}$. Since Q has length at least $5, a$ and c must have a common neighbor, that must be c^{\prime} since it must be in X_{1}. Hence $c^{\prime} \in X_{1}$, implying $c^{\prime} \in B_{1}$. Now the non-neighbor of c^{\prime} along Q is not a, so it must be a vertex
of X_{2} while seeing c and missing c^{\prime}, a contradiction. We proved $c \in X_{2}$, and similarly $c^{\prime} \in X_{2}$. Hence $V(Q) \subset X_{2} \cup\{a\}$.

If Q has no vertex in A_{1} then Lemma 2.8 applies: there is a vertex $a \in A_{1} \cup B_{1}$ such that $V(Q) \subseteq X_{2} \cup\{a\}$.

Even skew partitions overlapping 2-joins

It is convenient to consider a degenerated kind of 2-join that implies the existence of an even skew partition. A 2 -join $\left(X_{1}, X_{2}\right)$ is said to be degenerate if either:

- there exists $i \in\{1,2\}$ and a vertex v in A_{i} that has no neighbor in $X_{i} \backslash\left(A_{i} \backslash\{v\}\right) ;$
- there exists $i \in\{1,2\}$ and a vertex v in B_{i} that has no neighbor in $X_{i} \backslash\left(B_{i} \backslash\{v\}\right) ;$
- one of $A_{1} \cup A_{2}, B_{1} \cup B_{2}$ is a skew cutset of G;
- there exists $i \in\{1,2\}$ and a vertex in A_{i} that is complete to B_{i} or a vertex in B_{i} that is complete to A_{i};
- there exists $i \in\{1,2\}$ and a vertex in C_{i} that is complete to $A_{i} \cup B_{i}$.

Lemma 2.10 Let G be a Berge graph and $\left(X_{1}, X_{2}\right)$ be a degenerate proper 2-join of G. Then G has an even skew partition.

Proof - Let us look at the possible reasons why $\left(X_{1}, X_{2}\right)$ is degenerate.
If there is a vertex v in A_{1} that has no neighbor in $X_{1} \backslash\left(A_{1} \backslash\{v\}\right)$, then note that $\left|A_{1}\right|>1$ since every component of X_{1} meets A_{1}. So $\left(A_{1} \backslash\{v\}\right) \cup A_{2}$ is a skew cutset separating v from the rest of the graph. Hence, in \bar{G} there is a star cutset of center v, and by Lemma 2.2 and 2.1, G has an even skew partition. The cases with A_{2}, B_{1}, B_{2} are similar.

If $A_{1} \cup A_{2}$ is a skew cutset of G then let us check that this skew cutset is even (the case when $B_{1} \cup B_{2}$ is a skew cutset is similar). Since A_{1} is complete to A_{2}, any outgoing path from $A_{1} \cup A_{2}$ to $A_{1} \cup A_{2}$ is either outgoing from A_{1} to A_{1} or outgoing from A_{2} to A_{2}. Thus, such a path has even length by Lemma 2.5. If there is an antipath Q of length at least 5 with its interior in $A_{1} \cup A_{2}$ and its ends in the rest of the graph, then it must lie entirely in X_{1} or X_{2}, say X_{1} up to symmetry. Thus, such an antipath has even length by Lemma 2.5. The case with $B_{1} \cup B_{2}$ is similar.

If there is a vertex $a \in A_{1}$ that is complete to B_{1} (the other cases are symmetric) then suppose first $\left|A_{1}\right|>1$. Consider $a^{\prime} \neq a$ in A_{1}. Hence $(\{a\} \cup N(a)) \backslash a^{\prime}$ is a star cutset of G separating a^{\prime} from B_{2}. So, by Lemma 2.2, we may assume $A_{1}=\{a\}$. If $\left|B_{1}\right|>1$, consider $b \neq b^{\prime}$ in B_{1}. Hence, $(\{b\} \cup N(b)) \backslash b^{\prime}$ is a star cutset of G separating b^{\prime} from A_{2}. So again we may assume $B_{1}=\{b\}$. Since $\left(X_{1}, X_{2}\right)$ is proper, $\left|X_{1}\right| \geq 3$, and there is a vertex c in $V(G) \backslash\left(A_{1} \cup B_{1}\right)$. Now, $\{a, b\}$ is a star cutset separating c from X_{2}.

If there is a vertex c complete to $A_{i} \cup B_{i}$ then we may assume $C_{i}=\{c\}$ for otherwise there is another vertex c^{\prime} in C_{i} and $\{c\} \cup A_{i} \cup B_{i}$ is a star cutset separating c^{\prime} from the rest of the graph. By the preceding paragraph, we may assume that there is a vertex $a \in A_{1}$ and a vertex $b \in B_{1}$ missing a. Then $a-c-b$ is an outgoing path of even length from A_{i} to B_{i}. Thus by Lemma 2.4, there is no edge between A_{i} and B_{i}. If there are two vertices $a \neq a^{\prime} \in A_{i}$ then $\{a\} \cup N(a) \backslash\left\{a^{\prime}\right\}$ is a star cutset of G separating a^{\prime} from B_{3-i}. Thus may assume $\left|A_{i}\right|=1$, and similarly $\left|B_{i}\right|=1$. Thus, X_{i} is an outgoing path of length 2 from A_{i} to B_{i} contradicting $\left(X_{1}, X_{2}\right)$ being proper.

Lemma 2.11 Let G be a graph with a non-degenerate connected 2-join $\left(X_{1}, X_{2}\right)$. Let i be in $\{1,2\}$. Then for every vertex $v \in X_{i}$ there is a path $P_{a}=a-\cdots-v$ and a path $P_{b}=b-\cdots-v$ such that:

- $a \in A_{i}, b \in B_{i}$;
- Every interior vertex of P_{a}, P_{b} is in $X_{i} \backslash\left(A_{i} \cup B_{i}\right)$.

Proof - Suppose first $v \in X_{i} \backslash\left(A_{i} \cup B_{i}\right)$. By the definition of the connected 2-join, every connected component of X_{i} must meet both A_{i} and B_{i}. So X_{v}, the connected component of v in $G\left[X_{i}\right]$, meets both A_{i}, B_{i} and there is at least one path from v to a vertex of B_{i} in $G\left[X_{i}\right]$. If every path of $G\left[X_{i}\right]$ from v to B_{i} goes through A_{i}, then A_{i} is a cutset of $G\left[X_{i}\right]$ that separates v from B_{i}. Thus $A_{1} \cup A_{2}$ is a skew cutset of G, so (X_{1}, X_{2}) is degenerate, a contradiction. So there is a path P_{b} as desired, and by the same way, P_{a} exists.

If $v \in A_{i}$, then P_{a} exists and have length $0:$ put $P_{a}=v$. The vertex v has a neighbor w in $X_{i} \backslash A_{i}$ otherwise $\left(X_{1}, X_{2}\right)$ is degenerate. By the preceding paragraph, there is a path Q from w to $b \in B_{i}$ whose interior vertices lie in $X_{i} \backslash\left(A_{i} \cup B_{i}\right)$. So P_{b} exists: consider a shortest path from v to b in $G[V(Q) \cup\{b\}]$.

Lemma 2.12 Let G be a Berge graph with a non-degenerate and connected 2-join $\left(X_{1}, X_{2}\right)$. Let F be an even skew cutset of G. Then for some $i \in\{1,2\}$ either:

- $F \subsetneq X_{i}$;
- $F \cap X_{i} \subsetneq X_{i}$ and one of $\left(F \cap X_{i}\right) \cup A_{3-i},\left(F \cap X_{i}\right) \cup B_{3-i}$ is an even skew cutset of G;

Proof - We consider three cases:
Case 1: $F \cap A_{1}, F \cap A_{2}, F \cap B_{1}, F \cap B_{2}$ are all non-empty.
If there is a vertex $a \in A_{1} \cap F$ non-adjacent to a vertex $b \in B_{1} \cap F$ then there is an antipath of length at most 3 between any vertex of F and a, contradicting $\bar{G}[F]$ being disconnected. Thus $A_{1} \cap F$ is complete to $B_{1} \cap F$, and similarly $A_{2} \cap F$ is complete to $B_{2} \cap F$. Similarly, we prove $F \cap C_{1}=F \cap C_{2}=\emptyset$. If $A_{1} \subset F$ then there is a vertex in B_{1} that is complete to A_{1}, contradicting (X_{1}, X_{2}) being non-degenerate. Thus $A_{1} \backslash F \neq \emptyset$, and similarly $A_{2} \backslash F \neq \emptyset, B_{1} \backslash F \neq \emptyset, B_{2} \backslash F \neq \emptyset$.

Let E_{1} be the component of $G \backslash F$ that contains $\left(A_{1} \backslash F\right) \cup\left(A_{2} \backslash F\right)$. Let E_{2} be another component of $G \backslash F$. Up to a symmetry we assume $E_{2} \cap X_{2} \neq \emptyset$. We claim that $F^{\prime}=\left(F \cap X_{2}\right) \cup A_{1}$ is a skew cutset of G that separates $E_{1} \cap X_{2}$ from $E_{2} \cap X_{2}$. For suppose not. This means that there is a path P of $G \backslash F^{\prime}$ with an end in $E_{1} \cap X_{2}$ and an end in $E_{2} \cap X_{2}$. If P has no vertex in X_{1} then $P \subset G \backslash F$ and P contradicts E_{1}, E_{2} being components of $G \backslash F$. If P has a vertex in X_{1} then this vertex b is unique and is in B_{1} because $A_{1} \subset F^{\prime}$. By replacing b by any vertex of $B_{1} \backslash F$, we obtain again a path that contradicts E_{1}, E_{2} being components of $G \backslash F$. Thus F^{\prime} is a skew cutset of G. Note that this skew cutset is included in $A_{1} \cup A_{2} \cup B_{2}$. Let us prove that this skew cutset is even.

Let P be an outgoing path from F^{\prime} to F^{\prime}. Let us apply Lemma 2.7 to P. If Outcome 1 of the lemma holds then P has even length. If Outcome 2 of the lemma holds then $V(P) \subset X_{2} \cup\{a, b\}$. Let a_{1} be a vertex of $A_{1} \cap F$ and b_{1} be a vertex of $B_{1} \backslash F$ such that a_{1} misses b_{1}. Note that b_{1} exists for otherwise $\left(X_{1}, X_{2}\right)$ is a degenerate 2-join of G. After possibly replacing a by a_{1} and b by b_{1}, we obtain an outgoing path from F to F that has same length than P. Thus, P has even length since F is an even skew cutset. If Outcome 3 of the lemma holds then P has one end in A_{1} and one end in B_{2} and P is an outgoing path from A_{1} to B_{1} plus one edge. Note that there is an edge between A_{2} and B_{2} so by Lemma 2.4 every outgoing path from A_{1} to B_{1} has odd length. Hence in every cases P has even length.

Let Q be an antipath with both ends in $G \backslash F^{\prime}$ and interior in F^{\prime}. If Q has length 3 then Q may be seen as an outgoing path from F^{\prime} to F^{\prime}, so we may assume that Q has length at least 5 . By Lemma 2.9 applied to Q, either Q has even length or $V(Q) \subset X_{2} \cup\{a\}$. If $a \in A_{1}$ let us replace a by a vertex of $F \cap A_{1}$ and if $a \in B_{1}$ let us replace a by a vertex of $B_{1} \backslash F$. We obtain an antipath that have same length than Q, that has both ends outside of F and interior in F. Thus Q has even length because F is an even skew cutset.
Case 2: one of $F \cap A_{1}, F \cap A_{2}, F \cap B_{1}, F \cap B_{2}$ is empty and $F \cap X_{1}, F \cap X_{2}$ are both non-empty.

We assume up to a symmetry that one of $B_{1} \cap F, B_{2} \cap F$ is empty. Since $F \cap X_{1}$ and $F \cap X_{2}$ are both non-empty, there is a least an edge between $F \cap X_{1}$ and $F \cap X_{2}$ because $\bar{G}[F]$ is disconnected. Thus we know that $F \cap A_{1}$ and $F \cap A_{2}$ are both non-empty. If $\left(F \cap X_{1}\right) \backslash A_{1}$ and $\left(F \cap X_{2}\right) \backslash A_{2}$ are both non-empty then there is a vertex of F in one of C_{1}, C_{2} since one of $B_{1} \cap F, B_{2} \cap F$ is empty. Up to a symmetry, suppose $C_{1} \cap F \neq \emptyset$. Then $\bar{G}[F]$ is connected since every vertex in it can be linked to a vertex of C_{1} by an antipath of length at most 2, a contradiction. Hence one of $\left(F \cap X_{1}\right) \backslash A_{1}$ and $\left(F \cap X_{2}\right) \backslash A_{2}$ is empty. Thus we may assume $F \subset X_{2} \cup A_{1}$. Suppose $B_{2} \subset F$. Then B_{2} and $F \cap A_{1}$ are in the same component of $\bar{G}[F]$, thus there must be a vertex v in F that is complete to $B_{2} \cup\left(F \cap A_{1}\right)$. So, v is in A_{2}, and v is complete to B_{2}, contradicting $\left(X_{1}, X_{2}\right)$ being non-degenerate. We proved that there is at least a vertex u in $B_{2} \backslash F$. In particular, $F \cap X_{2} \subsetneq X_{2}$. By Lemma 2.11 there is a path from every vertex of $X_{1} \backslash F$ to u, thus there is a component E_{1} of $G \backslash F$ that contains $X_{1} \backslash F$ and u. There is another component E_{2} included in X_{2}. Thus $\left(F \cap X_{2}\right) \cup A_{1}$ is a skew cutset of G that separates B_{1} from E_{2}. We still have to prove that the skew cutset $\left(F \cap X_{2}\right) \cup A_{1}$ is even.

Let P be an outgoing path from $\left(F \cap X_{2}\right) \cup A_{1}$ to $\left(F \cap X_{2}\right) \cup A_{1}$. Let us apply Lemma 2.7 to P. If Outcome 1 of the lemma holds then P has even length. If Outcome 2 of the lemma holds then $V(P) \subset X_{2} \cup\{a, b\}$. Let a_{1} be a vertex of $A_{1} \cap F$ and b_{1} be a vertex of B_{1} such that a_{1} misses b_{1}. Note that b_{1} exists for otherwise $\left(X_{1}, X_{2}\right)$ is a degenerate 2 -join of G. After possibly replacing a by a_{1} and b by b_{1} then we obtain an outgoing path from F to F that has the same length than P. Thus, P has even length since F is an even skew cutset. If Outcome 3 of the lemma holds then $P=a-\cdots-b-b_{2}-\cdots-c$. Let a_{1} be in $A_{1} \cap F$. By Lemma 2.11 there is a path P_{1} of $G\left[X_{1}\right]$ from a_{1} to a vertex $b_{1} \in B_{1}$. Moreover, P_{1} is outgoing from A_{1} to B_{1}. Note that by Lemma 2.4, P_{1} and $a-P-b$ have same partity. Thus $a_{1}-P_{1}-b_{1}-b_{2}-P-c$ is an outgoing path from F to F that has the same parity that P. Thus P
has even length.
If Q is an antipath with both ends in $G \backslash\left(\left(F \cap X_{2}\right) \cup A_{1}\right)$ and its interior in $\left(F \cap X_{2}\right) \cup A_{1}$, we prove that Q has even length like in Case 1 .
Case 3: One of $F \cap X_{1}, F \cap X_{2}$ is empty.
Since $F \subsetneq X_{2}$ is an output of the lemma, we may assume up to a symmetry $F=X_{2}$. If there is an outgoing path of odd length from A_{2} to B_{2}, then there is by Lemma 2.4 an outgoing path P from A_{1} to B_{1} of odd length. Hence A_{2} is complete to B_{2} because a pair of non-adjacent vertices yields together with P an outgoing path of odd length from F to F, contradicting F being an even skew cutset. In particular, there is a vertex of A_{2} that is complete to B_{2}, implying (X_{1}, X_{2}) being degenerate, a contradiction. If there is an outgoing path of even length from A_{2} to B_{2} then by Lemma 2.4 there are no edges between A_{2} and B_{2}. Since $X_{2}=F$ is not anticonnected, there is a vertex in C_{2} that is complete to $A_{2} \cup B_{2}$, implying again (X_{1}, X_{2}) being degenerate, a contradiction.

Now we turn our attention to types of 2-join whose contraction may create even skew partitions:

- A 2-join $\left(X_{1}, X_{2}\right)$ is said to be cutting of type 1 if it has a split $\left(X_{1}, X_{2}, A_{1}, B_{1}, A_{2}, B_{2}\right)$ such that:

1. $G\left[X_{1}\right]$ is an outgoing path from A_{1} to B_{1}.
2. $G\left[X_{2} \backslash A_{2}\right]$ is disconnected.

- A 2-join is said to be cutting of type 2 if it has a split ($X_{1}, X_{2}, A_{1}, B_{1}, A_{2}, B_{2}$) such that there exist sets A_{3}, B_{3} satisfaying:

1. $G\left[X_{1}\right]$ is an outgoing path from A_{1} to B_{1}.
2. $A_{3} \neq \emptyset, B_{3} \neq \emptyset, A_{3} \subset A_{2}, B_{3} \subset B_{2}$;
3. A_{3} is complete to B_{3};
4. every outgoing path from $B_{3} \cup\left\{a_{1}\right\}$ to $B_{3} \cup\left\{a_{1}\right\}$ (resp. from $A_{3} \cup\left\{b_{1}\right\}$ to $\left.A_{3} \cup\left\{b_{1}\right\}\right)$ has even length;
5. every antipath with its ends outside of $B_{3} \cup\left\{a_{1}\right\}$ (resp. $A_{3} \cup\left\{b_{1}\right\}$) and its interior in $B_{3} \cup\left\{a_{1}\right\}$ (resp. $A_{3} \cup\left\{b_{1}\right\}$) has even length.
6. $G \backslash\left(X_{1} \cup A_{3} \cup B_{3}\right)$ is disconnected;

- A 2-join is said to be cutting if it is either cutting of type 1 or cutting of type 2 .

Let G be a Berge graph and ($X_{1}, X_{2}, A_{1}, B_{1}, A_{2}, B_{2}$) be a split of a proper 2 -join of G. The pieces of G with respect to $\left(X_{1}, X_{2}, A_{1}, B_{1}, A_{2}, B_{2}\right)$ are the two graphs G_{1}, G_{2} that we describe now. We obtain G_{1} by replacing X_{2} by a flat path P_{2} from a vertex a_{2} complete to A_{1}, to a vertex b_{2} complete to B_{1}. This path has the same parity than an outgoing path from A_{1} to B_{1}. The length of P is decided as follow: if $\left(X_{1}, X_{2}\right)$ is a path 2-join then P has length 1 or 2 , else it has length 3 or 4 . The piece G_{2} is obtained similarly by replacing X_{1} by a flat path.

Lemma 2.13 Let G be a Berge graph and $\left(X_{1}, X_{2}\right)$ be a non-cutting, nondegenerate and proper 2-join of G. Then G has an even skew partition if and only if one of the pieces of G has an even skew partition.

Proof - Suppose first that G has an even skew partition (E, F). By Lemma 2.12 and up to a symmetry either $F \subsetneq X_{2}$, or $\left(F \cap X_{2}\right) \subsetneq X_{2}$ and $A_{1} \subset F$ (after possibly replacing F by $\left.\left(F \cap X_{2}\right) \cup A_{1}\right)$.

If $F \subsetneq X_{2}$ then we claim that F is an even skew cutset of G_{2}. Note that there is at least a component E of $G \backslash F$ that has some vertex in X_{2} but no vertex in $A_{2} \cup B_{2}$. Else every component of $G \backslash F$ has neighbors in A_{1} and B_{1} (because (X_{1}, X_{2}) is proper) or in $A_{2} \cup B_{2}$, implying $G \backslash F$ being connected, a contradiction. Thus, F is a skew cutset of G_{2} that separates E from $V\left(G_{2}\right) \backslash X_{2}$. Let P be an outgoing path of G_{2} from F to F. Let us apply Lemma 2.6 to P. If Outcome 1 of the Lemma holds then after possibly replacing a be a_{1} and b by b_{1}, P may be viewed as an outgoing of G from F to F, thus P has even length. If Outcome 2 of the lemma holds, then $P=c-\cdots-a_{2}-a_{1}-\cdots-b_{1}-b_{2}-\cdots-c^{\prime}$. Let P^{\prime} be any outgoing path from A_{1} to B_{1} whose interior is in X_{1}. Then $c-\cdots-a_{2}-P^{\prime}-b_{2}-\cdots-c^{\prime}$ is an outgoing path of G from F to F that has same parity than P by Lemma 2.4. Thus P has even length. Let Q be an antipath of G_{2} with its ends out of F and its interior in F. Let us apply Lemma 2.8 to $Q: V(Q) \subseteq X_{2} \cup\{a\}$. Thus, after possibly replacing a by a vertex in $A_{1} \cup B_{1}, Q$ may be seen as an antipath of G that has same length than Q. Thus Q has even length.

If $\left(F \cap X_{2}\right) \subsetneq X_{2}$ and $A_{1} \subset F$ then we put $F^{\prime}=\left(F \cap X_{2}\right) \cup\left\{a_{1}\right\}$. We claim that F^{\prime} is an even skew cutset of G_{2}. Exactly as above, we prove that F^{\prime} is a skew cutset of G_{2} that separates b_{1} from a component of $G \backslash F$ that has vertices in X_{2} but no vertex in B_{2}. Let P be an outgoing path from F^{\prime} to F^{\prime}. As above we prove that P has even length by Lemma 2.7. Let Q be an antipath of G_{2} with its ends out of F^{\prime} and its interior in F^{\prime}. As above, we prove that Q has even length by Lemma 2.9.

Let us suppose converly that one of G_{1}, G_{2} (say G_{2} up to a symmetry) has an even skew cutset F^{\prime}. We denote by $P_{1}=a_{1}-\ldots b_{1}$ the path induced by $V\left(G_{2}\right) \backslash X_{2}$. Note that G_{2} has an obvious connected path 2-join: $\left(P_{1}, X_{2}\right)$.
(1) Either:

- $F^{\prime} \subsetneq X_{2}$;
- $F^{\prime} \cap X_{2} \subsetneq X_{2}$ and one of $\left(F^{\prime} \cap X_{2}\right) \cup\left\{a_{1}\right\},\left(F \cap X_{2}\right) \cup\left\{b_{1}\right\}$ is an even skew cutset of G;

If P_{1} has length 3 or 4 , then $\left(P_{1}, X_{2}\right)$ is proper. It is non-degenerate because $\left(X_{1}, X_{2}\right)$ is non-degenerate. Let us apply Lemma 2.12. The conclusion $F^{\prime} \subsetneq X_{1}$, is impossible by Lemma 2.11. Also $\left(F^{\prime} \cap P_{1}\right) \cup A_{2}$ and $\left(F^{\prime} \cap P_{1}\right) \cup B_{2}$ cannot be skew cutsets of G_{2}, because a_{1}, b_{1} cannot be both in a skew cutset of G_{2} since they are non adjacent with no common neighbors. Hence, Lemma 2.11 proves that $\left(F^{\prime} \cap P_{1}\right) \cup A_{2}$ and $\left(F^{\prime} \cap P_{1}\right) \cup B_{2}$ are not cutsets of G_{2}. Thus (1) is simply the only possible conclusion of Lemma 2.12.

If P_{1} has length 2 then $P_{1}=a_{1}-c_{1}-b_{1}$. If a_{1}, b_{1} are both in F^{\prime}, then $F^{\prime}=\left\{a_{1}, c_{1}, b_{1}\right\}$ because c_{1} is the only common neighbor of a_{1}, b_{1} in G_{2}. This means that $G_{2}\left[X_{2}\right]=G\left[X_{2}\right]$ is disconnected, implying that $\left(X_{1}, X_{2}\right)$ is a cutting 2-join of type 1 , a contradiction. By Lemma 2.11 applied to $G_{2}\left[X_{2}\right]=G\left[X_{2}\right]$, none of a_{1}, b_{1} can be the center of a star cutset of G. Hence, $c_{1} \notin F^{\prime}$. Thus, $F \cap X_{2} \subsetneq X_{2}$ because any induced subgraph of P_{1} containing c_{1} is connected. We proved (1) when P_{1} has length 2.

We are left with the case when $P_{1}=a_{1}-b_{1}$. If a_{1}, b_{1} are both in F^{\prime} then $F^{\prime} \subset\left\{a_{1}, b_{1}\right\} \cup A_{2} \cup B_{2}$. If $F^{\prime} \cap A_{2} \neq \emptyset$ and $F^{\prime} \cap B_{2} \neq \emptyset$ then putting $A_{3}=F^{\prime} \cap A_{2}$ and $B_{3}=F^{\prime} \cap B_{2}$ then we see that $\left(X_{1}, X_{2}\right)$ is a cutting 2-join of type 2 of G. If at least one of $F^{\prime} \cap A_{2}$ and $F^{\prime} \cap B_{2}$ is empty then we see that $\left(X_{1}, X_{2}\right)$ is a cutting 2 -join of type 1 . Both cases contradict $\left(X_{1}, X_{2}\right)$ being non-cutting. Thus we know that at most one of a_{1}, b_{1} is in F. Also $F^{\prime} \cap X_{2} \subsetneq X_{2}$ because every induced subgraph of P_{1} is connected. This proves (1).

By (1), we may assume that not both a_{1}, b_{1} are in F^{\prime}. Up to a symmetry, we assume $b_{1} \notin F^{\prime}$. If $a_{1} \in F^{\prime}$, put $A_{1}^{\prime}=A_{1}$, else put $A_{1}^{\prime}=\emptyset$. Now $F=\left(F^{\prime} \cap X_{2}\right) \cup A_{1}^{\prime}$ is a skew cutset of G that separates a vertex of X_{2} from $X_{1} \backslash A_{1}^{\prime}$. The proof that F^{\prime} is an even skew cutset of G is entirely similar to the similar proofs above: we consider a an outgoing path of G from F^{\prime} to F^{\prime}. Lemma 2.6 or Lemma 2.7 shows that P has the same parity than an outgoing path of G_{2} from F^{\prime} to F^{\prime}. We consider an antipath Q of G of length at least 2 with all its interior vertices in N and with its end-vertices
outside of N. Lemma 2.8 or Lemma 2.9 shows that Q has the same parity than an outgoing path of G_{2} from F^{\prime} to F^{\prime}.

Even skew partitions overlapping homogeneous 2-joins

Lemma 2.14 Let G be a Berge graph with an homogeneous 2-join (A, B, C, D, E, F). Let $c \in C, d \in D$ be two vertices such that there is path whose interior is in E between them. Then $F \subset N(c) \cup N(d)$. Moreover, if c, d are not adjacent then $N(c) \cap N(d) \cap F=\emptyset$.

PROOF - Let P be a path whose interior is in E joinning c, d. If a vertex $f \in F$ misses both c, d, then consider a pair $a \in A, b \in B$ of non-adjacent vertices. Then $\{a, b, f\} \cup P$ induces an odd hole. Thus $F \subset N(c) \cup N(d)$. If c, d are not adjacent, suppose that a vertex $f \in F$ sees both c, d. Since there is at least an edge $a^{\prime} b^{\prime}$ with $a^{\prime} \in A, b^{\prime} \in B, P$ has odd length for otherwise $P \cup\left\{a^{\prime}, b^{\prime}\right\}$ induces an odd hole. But since there is a non-edge $a b$ with $a \in A$, $b \in B, P \cup\{a, b, f\}$ is an odd hole. Hence $N(c) \cap N(d) \cap F=\emptyset$.

An homogeneous 2-join (A, B, C, D, E, F) is said to be degenerate if either:

- there is a vertex $x \in C$ such that $N(x) \subset A \cup D \cup E$ or a vertex $y \in D$ such that $N(y) \subset B \cup C \cup E$;
- there is a vertex $x \in C$ with no neighbor in $E \cup D$ or a vertex $y \in D$ with no neighbor in $E \cup C$;

Lemma 2.15 Let G be a Berge graph with a degenerate homogeneous 2join. Then G has a proper non-path 2-join or G has an even skew partition.

PROOF - Supppose first that there exists $x \in C$ be such that $N(x) \subset$ $A \cup D \cup E$ (when there exists $y \in D$ such that $N(y) \subset B \cup C \cup E$, the proof is similar). Let N_{x} be the set containning x plus the vertices of E that lie on a path from x to a vertex of D. Note that by Lemma 2.14 , for every $d \in D$ that is the end of such a path, d is complete to F since x has no neighbor in F. Thus, for any $f \in F,\{f\} \cup N(F) \backslash B$ is a star cutset of G that separates N_{x} from B. Thus, by Lemma $2.2, G$ has an even skew partition.

Suppose now that there exists a vertex $x \in C$ with no neighbor in $E \cup D$. Then, $(A \cup C \cup F) \backslash\{x\}$ is a skew cutset that separates x from the rest of the graph. Thus, \bar{G} has a star cutset centered at x. By Lemma $2.2, \bar{G}$ has an even skew partition and by Lemma 2.1 so is G.

The following is needed twice in the next section:
Lemma 2.16 Let G be a Berge graph. Suppose that G has a vertex u of degree 3 whose neighborhood induces a stable set. Moreover, G has a stable set $\{x, y, z\}$ such that x, y, z all have degree at least 3 . Then G is not a pathcobipartite graph, not a path-double split graph and G has no non-degenerate homogeneous 2-join.

PROOF - In a path-cobipartite graph the vertices of degree at least 3 partition into 2 cliques. Since $\{x, y, z\}$ contradicts this property, G is not a path-cobipartite

In a path-double split graph, every vertex of degree exactly 3 must have an edge in his neighborhood. Since u contradicts this property, G is not a path-double split graph

If G has a non-degenerate homogeneous 2-join (A, B, C, D, E, F), then every vertex in F has degree at least 4. Every vertex in A, B has an edge in his neighborhood. Every vertex in C has a neighbor in C or F for otherwise, (A, B, C, D, E, F) is degenerated. Thus, every vertex in C, and by the same way every vertex in D, has an edge in his neighborhood. Every vertex in E has degree 2 . Hence, u is in none of A, B, C, D, E, F, a contradiction.

3 Proof of Theorem 1.5

For any graph G that is not a hole, let $f(G)$ be the number of maximal flat paths of G. Let us consider G, a counter-example to Theorem 1.5 such that $f(G)+f(\bar{G})$ is minimal.
Since G is a counter-example and since G is Berge, by Theorem 1.3 and up to a complementation of G, we may assume that:
a. G is not basic;
b. None of G, \bar{G} is a path-cobipartite graph;
c. None of G, \bar{G} is a path-double split graph;
d. G has no even skew partition;
e. None of G, \bar{G} has a non-path proper 2-join;
f. None of G, \bar{G} has an homogeneous 2-join;
g. G has a path proper 2-join.

Since G has a path proper 2-join, G has flat path of length at least 3, implying $f(G) \geq 1$. We choose such a flat path X_{1} inclusion-wise maximal. Note that by Lemma 2.3, $\left(X_{1}, V(G) \backslash X_{1}\right)$ is a proper 2-join of G since G is not basic and has no even skew partition. Let us consider ($X_{1}, X_{2}, A_{1}, B_{1}, A_{2}, B_{2}$) a split of this 2-join. Note that $G\left[X_{2}\right]$ is not a path since G is not bipartite. We denote by a_{1} the only vertex in A_{1} and by b_{1} the only vertex in B_{1}. We put $C_{1}=X_{1} \backslash\left\{a_{1}, b_{1}\right\}$, and $C_{2}=X_{2} \backslash\left(A_{2} \cup B_{2}\right)$. Since X_{1} is a maximal flat path we know:
h. a_{1}, b_{1} both have degree at least 3 in G.

If one of G, \bar{G} has a degenerate proper 2-join, a degenerate homogeneous 2 -join or a star cutset then one of G, \bar{G} has an even skew partition by Lemma 2.10, Lemma 2.15 or Lemma 2.2. So G has an even skew partition by Lemma 2.1. This contradicts G being a counter-example. Thus:
i. G and \bar{G} have no degenerate proper 2-join, no degenerate homogeneous 2-join and no star cutset.

Let us study the connectivity of G. If $G\left[X_{2}\right]$ is disconnected, then let X_{2}^{\prime} be any component of $G\left[X_{2}\right]$. Since $\left(X_{1}, X_{2}\right)$ is proper, the sets $A_{2} \cap X_{2}^{\prime}$ and $B_{2} \cap X_{2}^{\prime}$ are not empty. So $\left(V(G) \backslash X_{2}^{\prime}, X_{2}^{\prime}\right)$ is a 2-join of G. Let us suppose that X_{2}^{\prime} is not an outgoing path length 1 or 2 from A_{2} to B_{2}. This implies that $\left(V(G) \backslash X_{2}^{\prime}, X_{2}^{\prime}\right)$ is a proper 2-join. So since G is a counter example, we know that $\left(V(G) \backslash X_{2}^{\prime}, X_{2}^{\prime}\right)$ is a path 2-join of G. Since X_{1} is a maximal flat path of $G, V(G) \backslash X_{2}^{\prime}$ cannot be the path side of this 2-join. Thus $G\left[X_{2}^{\prime}\right]$ is the path side of this 2-join. Hence we know that every component of X_{2} is an outgoing path from A_{2} to B_{2}. This implies that G is bipartite contradicting G being a counter example. Hence:
j. $G\left[X_{2}\right]$ is connected.

Since by property i, $\left(X_{1}, X_{2}\right)$ is non-degenerate, the following is a direct consequence of Lemma 2.11:
k. In $G\left[X_{2}\right]$, there exists an outgoing path from A_{2} to B_{2}. Moreover, for every $A_{2}^{\prime} \subseteq A_{2}, B_{2}^{\prime} \subseteq B_{2}$ the graphs $G\left[A_{2}^{\prime} \cup C_{2} \cup B_{2} \cup\left\{b_{1}\right\}\right]$, $G\left[B_{2}^{\prime} \cup C_{2} \cup A_{2} \cup\left\{a_{1}\right\}\right]$ are connected.

The eleven properties listed above will be refered as the properties of G in the rest of proof. We denote by $\varepsilon \in\{0,1\}$ the parity of the length of
$G\left[X_{1}\right]$. We now consider three cases according to the properties of $\left(X_{1}, X_{2}\right)$. In every case, we will consider a graph G^{\prime} obtained from G by detroying the path 2-join $\left(X_{1}, X_{2}\right)$, and we will show that G^{\prime} is a counter-example that contradicts $f(G)+f(\bar{G})$ being minimal.
Case 1: $\left(X_{1}, X_{2}\right)$ is cutting of type 1.
Up to a symmetry we assume that $G\left[X_{2} \backslash A_{2}\right]$ is disconnected. Let X be a component of $G\left[X_{2} \backslash A_{2}\right]$. If X is disjoint from B_{2} then $\left\{a_{1}\right\} \cup A_{2}$ is a star cutset of G separating X from $X_{2} \backslash X$, contradicting the properties of G. Thus X intersects B_{2}, and by the same proof so is any component of $X_{2} \backslash X$. Hence, there are two non-empty sets $B_{3}=B_{2} \cap X$ and $B_{4}=B_{2} \backslash X$. Also we put $C_{3}=C_{2} \cap X, C_{4}=C_{2} \backslash X$. Possibly, C_{3}, C_{4} are empty. There are no edges between $B_{3} \cup C_{3}$ and $B_{4} \cup C_{4}$.

We consider the graph G^{\prime} obtained from G by deleting $X_{1} \backslash\left\{a_{1}, b_{1}\right\}$. Moreover, we add new vertices: $c_{1}, c_{2}, b_{3}, b_{4}$. Then we add every possible edge between b_{3} and B_{3}, between b_{4} and B_{4}. We also add edges $a_{1} c_{1}, c_{2} b_{3}$, $c_{2} b_{4}$. If $\varepsilon=0$, we consider for convenience $c_{1}=c_{2}$, so that c_{1} is always a vertex of G^{\prime}. Else we consider $c_{1} \neq c_{2}$ and we add an edge between c_{1} and c_{2}. Note that in G^{\prime}, b_{1} has neighbors only in B_{2}. Here are seven claims about the parity of various kinds of paths and antipaths in G^{\prime}.
(1) Every outgoing path of G^{\prime} from B_{2} to A_{2} has length of parity ε.

If such a path contains one of $a_{1}, b_{3}, b_{4}, c_{1}, c_{2}$ then it has length $4+\varepsilon$. Else such a path may be viewed as an outgoing path of G from B_{2} to A_{2}. By Lemma 2.4 it has parity ε. This proves (1).
(2) Every outgoing path of G^{\prime} from B_{2} to B_{2} has even length.

For suppose there is such a path $P=b-\cdots-b^{\prime}, b, b^{\prime} \in B_{2}$. If P goes through b_{1} then it has length 2. If P goes through b_{3} and b_{4} it has length 4. If P goes through only one of b_{3}, b_{4} then either P has length 2 or we may assume up to a symmetry that $P=b-b_{3}-c_{2}-c_{1}-a_{1}-a-\cdots-b^{\prime}$ where $a \in A_{2}$. So, $a-P-b^{\prime}$ is an outgoing path from A_{2} to B_{2} and by (1) it has parity ε. So, P has even length. If P goes through c_{2} or c_{1} then it must goes through at least one of b_{3}, b_{4}, and by the discussion above it must have even length. So we may assume that P goes through none of $c_{1}, c_{2}, b_{1}, b_{3}, b_{4}$. Hence P may be viewed as a path of G. Thus, P has even length by Lemma 2.5. In every cases, P has even length. This proves (2).
(3) Every outgoing path of G^{\prime} from A_{2} to A_{2} has even length.

For suppose there is such a path $P=a-\cdots-a^{\prime}$, where $a, a^{\prime} \in A_{2}$. If P
goes through a_{1} then it has length 2 . So we may assume that P does not go through a_{1}. Note that if $c_{1} \neq c_{2}$ then P does not go through c_{1}.

If P goes through c_{2} or through both b_{3}, b_{4} then we may assume $P=$ $a-\cdots-b-b_{3}-c_{2}-b_{4}-b^{\prime}-\cdots-a^{\prime}$ where $b \in B_{3}$ and $b^{\prime} \in B_{4}$. By (1) $b-P-a$ and $a^{\prime}-P-b^{\prime}$ have both parity ε. Thus, P has even length. If P goes through B_{3}, b_{1} and B_{4} then we prove that it has even length by the same way. So we may assume that P neither goes through c_{2} nor through both b_{3}, b_{4} nor through B_{3}, b_{1} and B_{4}.

If P goes through exactly one of b_{3}, b_{4}, say b_{3} up to a symmetry, then just like above $P=a-\cdots-b-b_{3}-b^{\prime}-\cdots-a^{\prime}$, where both $b-P-a$ and $a^{\prime}-P-b^{\prime}$ are outgoing paths from B_{2} to A_{2}. So by (1), they both have parity ε. Thus, P has even length. If P goes through b_{1} and exactly one of B_{3}, B_{4}, then we prove that it has even length by the same way. So we may assume that P goes though none of b_{1}, b_{3}, b_{4}.

Now P goes through none of $a_{1}, c_{1}, c_{2}, b_{1}, b_{3}, b_{4}$, so P may be viewed as an outgoing path of G from A_{2} to A_{2}. It has even length by Lemma 2.5.

In every cases, P has even length. This proves (3).
(4) Every outgoing path from B_{3} to B_{3} (resp. from B_{4} to B_{4}) has even length.
Suppose that there is an outgoing path $P=b-\cdots-b^{\prime}$ from B_{3} to B_{3} (the case with B_{4} is similar). Note that P may have interior vertices in B_{4}, so (2) does not apply to P. If P goes through b_{1} it has length 2 . So we may assume that P does not go through B_{1}. If P has no vertex in A_{2}, then P has no interior vertices in B_{4} since B_{3} and B_{4} are in distinct components of $G \backslash\left(B_{1} \cup A_{2}\right)$. So (2) applies and P has even length.

So we may assume that P has at least a vertex in A_{2}. Let us then call B-segment of P every subpath of P whose end vertices are in B_{2} and whose interior vertices are not in B_{2}. Note that P is edgewise partitioned into its B-segment. Similarly, let us call A-segment of P every subpath of P whose end-vertices are in A_{2} and whose interior vertices are not in A_{2}. By (3), every A-segment has even length or has length 1 . An A-segment of length 1 is called an A-edge. Suppose that P has odd length. Let $b, b^{\prime} \in B_{2}$ be the end-vertices of P. Along P from b to b^{\prime}, let us call a the first vertex in A_{2} after b, and a^{\prime} the last vertex in A_{2} before b^{\prime}. So $b-P-a$ and $a^{\prime}-P-b^{\prime}$ are both outgoing paths from B_{2} to A_{2}, and by (1) they have same parity. So $a-P-a^{\prime}$ is a path of odd length that is edgewise partitioned into its A-segment, and that contains all the A-segments of P. Thus P has an odd number of A-edges. Since P is edgewise partitioned into into its B-segments,
there is a B-segment P^{\prime} of P with an odd number of A-edges. Let β, β^{\prime} be the end-vertices of P^{\prime}. Along P^{\prime} from β to β^{\prime}, let us call α the first vertex in A_{2} after β, and α^{\prime} the last vertex in A_{2} before β^{\prime}. So $P^{\prime \prime}=\alpha-P^{\prime}-\alpha^{\prime}$ is a path that is edgewise partitioned into its A-segment with an odd number of A-edge. Thus $P^{\prime \prime}$ has odd length. Since $\beta-P-\alpha$ and $\alpha^{\prime}-P-\beta^{\prime}$ are both outgoing paths from B_{2} to A_{2}, they have same parity by (1). Finally, P^{\prime} is of odd length, outgoing from B_{2} to B_{2}, and contradicts (2). Thus P has even length. This proves (4).
(5) Every antipath of G^{\prime} with length at least 2, with its end vertices in $V\left(G^{\prime}\right) \backslash A_{2}$, and all its interior vertices in A_{2} has even length.

Let Q be such an antipath. We may assume that Q has length at least 3 . So each end-vertex of Q must have a neighbor in A_{2} and a non-neighbor in A_{2}. So none of $a_{1}, c_{1}, c_{2}, b_{1}, b_{3}, b_{4}$ can be an end-vertex of Q, and Q may be viewed as an antipath of G. So Q has even length by Lemma 2.5. This proves (5).
(6) Every antipath of G^{\prime} with length at least 2, with its end vertices in $V\left(G^{\prime}\right) \backslash B_{2}$, and all its interior vertices in B_{2} has even length.
Let Q be such an antipath. We may assume that Q has length at least 3 . So each end-vertex of Q must have a neighbor in B_{2} and a non-neighbor in B_{2}. So none of $a_{1}, b_{1}, c_{1}, c_{2}$ can be an end-vertex of Q. If b_{3} is an end-vertex of Q, then the other end-vertex must be adjacent to b_{3} while not being in $B_{2} \cup\left\{a_{1}, b_{1}, c_{1}, c_{2}\right\}$, a contradiction. So b_{3} is not an end-vertex of Q and by a similar proof, neither b_{4} is. So none of $a_{1}, c_{1}, c_{2}, b_{1}, b_{3}, b_{4}$ is in Q and Q may be viewed as an antipath of G. So Q has even length by Lemma 2.5. This proves (6).
(7) Every antipath of G^{\prime} with length at least 2, with its end vertices in $V\left(G^{\prime}\right) \backslash B_{3}$ (resp. $V\left(G^{\prime}\right) \backslash B_{4}$), and all its interior vertices in B_{3} (resp. B_{4}) has even length.
Let Q be such an antipath whose interior is in B_{3} (the case with B_{4} is similar). We may assume that Q has length at least 3 . So each end-vertex of Q must have a neighbor in B_{3}. So no vertex of B_{4} can be an end-vertex of Q. Thus (6) applies and Q has even length. This proves (7).
(8) Let Q be an antipath of G^{\prime} of length at least 4. Then Q does not go through c_{1}, c_{2}. Moreover Q goes through at most one of $a_{1}, b_{1}, b_{3}, b_{4}$.
In an antipath of length at least 4, each vertex either is in a square of the
antipath or in a triangle of the antipath. So, c_{1}, c_{2} are not in Q since they are not in any triangle or square of G^{\prime}. In an antipath of length at least 4, for any pair x, y of non-adjacent vertices, there must be a third vertex adjacent to both x, y. Thus, Q goes through at most one vertex among a_{1}, b_{3}, b_{4}. Suppose now that Q also goes through b_{1}. Then it does not go through a_{1} since a_{1}, b_{1} have no common neighbours. So, up to a symmetry we may assume that Q goes through b_{3} and b_{1}. There is no vertex in $G^{\prime} \backslash c_{2}$ seeing b_{3} and missing b_{1}. So b_{1} is an end of Q. Along Q, after b_{1} we meet b_{3}. The next vertex along Q must be in B_{4}. The next one, in B_{3}. The next one must see b_{3} and must have a neighbor in B_{4}, a contradiction. This proves (8).
(9) G^{\prime} is Berge.

Let H be a hole of G^{\prime}. Suppose first that H goes through a_{1}. If H does not go through c_{1}, then $H \backslash a_{1}$ is a path of even length by (3), so H has even length. If H goes through c_{1} then H goes though exactly one of b_{3}, b_{4}, say b_{3} up to symmetry, and $H \backslash\left\{a_{1}, c_{1}, c_{2}, b_{3}\right\}$ is a path P. If P does not go through b_{1} then it has parity ε by (1). If P goes through b_{1}, then $P=b-b_{1}-b^{\prime}-\ldots-a$ where $b^{\prime}-P-a$ is outgoing from B_{4} to A_{2}. So, again P has parity ε by (1). So H has even length and we may assume that H does not go through a_{1}. If $c_{1} \neq c_{2}$ then H does not go through c_{1}. If H goes through c_{2} then the path $H \backslash\left\{b_{3}, c_{2}, b_{4}\right\}$ has even length by (2), so H is even. If H goes through b_{1} then the path $H \backslash\left\{b_{1}\right\}$ has even length by (2), so H is even. So we may assume that H does not go through b_{1}, c_{2}. If H goes through both b_{3}, b_{4} then $H \backslash\left\{b_{3}, b_{4}\right\}$ is partitionned into two outgoing paths from B_{2} to B_{2} that both have even length by (2). Thus H has even length. If H goes through b_{3} and not through b_{4}, then $H \backslash b_{3}$ is an outgoing path from B_{3} to B_{3}. By (4) it has even length, so H is even. If H goes through b_{4} and not through b_{3} then H is even by a similar proof. So we may assume that H goes through none of b_{3}, b_{4}. Now, H goes through none of $a_{1}, c_{1}, c_{2}, b_{1}, b_{3}, b_{4}$. So H may be viewed as a hole of G, and so it is even. So every hole of G^{\prime} is even.

Let us now consider an antihole H of G^{\prime}. Since the antihole on 5 vertices is isomorphic to C_{5}, we may assume that H has at least 7 vertices. Let v be a vertex of H that is not in $\left\{a_{1}, c_{1}, c_{2}, b_{1}, b_{3}, b_{4}\right\}$. By (8) applied to $H \backslash\{x\}$, H does not go through c_{1}, c_{2} and goes through at most one vertex of $\left\{a_{1}, b_{1}, b_{3}, b_{4}\right\}$. If H goes through a_{1}, the antipath $H \backslash a_{1}$ has all its interior vertices in A_{2} and by (5), $H \backslash a_{1}$ has even length, thus H is even. If H goes through b_{1} then the antipath $H \backslash b_{1}$ has all its interior vertices in B_{2} and by (6), $H \backslash b_{1}$ has even length, thus H is even. If H goes through one of
b_{3}, b_{4}, say b_{3} up to a symmetry, the antipath $H \backslash b_{3}$ has all its interior vertices in B_{3} and by (7), $H \backslash b_{3}$ has even length, thus H is even. If H goes through none of $a_{1}, c_{1}, c_{2}, b_{1}, b_{3}, b_{4}$ then H may be viewed as an antihole of G. So every antihole of G^{\prime} has even length. This proves (9).
(10) G^{\prime} has no even skew partition.

Let $\left(F^{\prime}, E^{\prime}\right)$ be an even skew partition of G^{\prime} with a split $\left(E_{1}^{\prime}, E_{2}^{\prime}, F_{1}^{\prime}, F_{2}^{\prime}\right)$. Starting from F^{\prime}, we shall build an even skew cutset F of G which contradicts the properties of G.

Let us first suppose $c_{1} \neq c_{2}$ and $c_{1} \in F^{\prime}$. Then, F^{\prime} must contains at least a neighbor of c_{1}. If F^{\prime} contains a_{1} and not c_{2}, then F^{\prime} is a star cutset of G^{\prime} centered at a_{1}. But this contradicts the property k of G. If F^{\prime} contains c_{2} and not a_{1}, then F^{\prime} is a star cutset of G^{\prime} centered at c_{2}. But this again contradicts the property k of G. So, F^{\prime} must contain a_{1} and c_{2}. Since a_{1}, c_{2} have no common neighbors we have $F^{\prime}=\left\{a_{1}, c_{1}, c_{2}\right\}$. This is a contradiction since $G^{\prime} \backslash\left\{a_{1}, c_{1}, c_{2}\right\}$ is connected by the property k of G. So if $c_{1} \neq c_{2}$ then $c_{1} \notin F^{\prime}$.

Suppose $c_{2} \in F^{\prime}$. By the property k of G, no subset of $\left\{c_{2}, b_{3}, b_{4}\right\}$ can be a cutset of G. So, F^{\prime} must be a star cutset centered at one of b_{3}, b_{4}. This again contradicts the property k of G. So $c_{2} \notin F^{\prime}$. Not both b_{3}, b_{4} can be in F^{\prime} since they have no common neighbors in F^{\prime}. So we assume $b_{4} \notin F^{\prime}$

Up to a symmetry, we may assume $\left\{c_{1}, c_{2}, b_{4}\right\} \subset E_{1}^{\prime}$. Also, $\left\{a_{1}, b_{3}\right\} \cap E^{\prime} \subset$ E_{1}^{\prime}. We claim that $\left\{b_{1}\right\} \cap E^{\prime} \subset E_{1}^{\prime}$. Else, F^{\prime} separates b_{1} from c_{2}. Since F^{\prime} separates b_{1} from c_{2} we must have $B_{4} \subset F^{\prime}$. Now $b_{3} \in F^{\prime}$ is impossible since there is no vertex seeing b_{3} and having a neighbor in B_{4}. So, $B_{3} \subset F^{\prime}$. Since there is no edge between B_{3} and B_{4}, there must be a vertex in F^{\prime} that is complete to $B_{3} \cup B_{4}=B_{2}$. The only place to find such a vertex is in A_{2}. But this implyies (X_{1}, X_{2}) being degenerate, contradicting the properties of G.

We proved $\left\{c_{1}, c_{2}, b_{4}\right\} \subset E_{1}^{\prime}$ and $\left\{a_{1}, b_{1}, b_{3}\right\} \cap E^{\prime} \subset E_{1}^{\prime}$. Let v be any vertex of E_{2}^{\prime}. Since $\left\{a_{1}, c_{1}, c_{2}, b_{1}, b_{3}, b_{4}\right\} \cap E^{\prime} \subset E_{1}^{\prime}$, we have $v \in X_{2}$. If b_{3} is in F, put $B_{1}^{\prime}=\left\{b_{1}\right\}$, else put $B_{1}^{\prime}=\emptyset$. Now $F=\left(F^{\prime} \backslash\left\{b_{3}\right\}\right) \cup B_{1}^{\prime}$ is a skew cutset of G that separates v from the interior vertices of the path induced by X_{1}. Indeed, either $F=F^{\prime}$, or F^{\prime} is obtained by deleting b_{3} and adding b_{1}. Since $N\left(b_{3}\right) \cap X_{2} \subset N\left(b_{1}\right) \cap X_{2}, F$ is not anticonnected and is a cutset. It suffices now to prove that F is an even skew cutset of G.

Let P be an outgoing path of G from F to F. We shall prove that P has even length.

If $a_{1}, b_{1} \notin F$, then $F \subset X_{2}$ and the end-vertices of P are both in X_{2}. So

Lemma 2.6 applies to P. Suppose that the first outcome of Lemma 2.6 is satisfied: $V(P) \subseteq X_{2} \cup\left\{a_{1}, b_{1}\right\}$. Note that by the definition of $F, b_{1} \notin F$ implies $b_{1} \notin F^{\prime}$. Hence, P may be viewed as an outgoing path from F^{\prime} to F^{\prime}, so P has even length since F^{\prime} is an even skew cutset of G^{\prime}. Suppose now that the second outcome of Lemma 2.6 is satisfied: $P=c-\cdots-a_{2}-$ $a_{1}-X_{1}-b_{1}-b_{2}-\cdots-c^{\prime}$. Put $i=3$ if $b_{2} \in B_{3}$ and $i=4$ if $b_{2} \in B_{4}$. Put $P^{\prime}=c-P-a_{2}-a_{1}-c_{1}-c_{2}-b_{i}-b_{2}-P-c^{\prime}$. Note that by the definition of F, $b_{1} \notin F$ implies $b_{3} \notin F^{\prime}$. The paths P and P^{\prime} have same parity and P^{\prime} is an outgoing path of G^{\prime} from F^{\prime} to F^{\prime}. So P^{\prime} and P has even length since F^{\prime} is an even skew cutset of G^{\prime}.

If $a_{1} \in F$, note that $b_{1} \notin F$ since a_{1}, b_{1} are non-adjacent with no common neighbors (in both G, G^{\prime}). We have $F^{\prime}=F \subset X_{2} \cup\left\{a_{1}\right\}$, the end-vertices of P are both in $X_{2} \cup\left\{a_{1}\right\}$ and no interior vertex of P is in $\left\{a_{1}\right\}$ since $a_{1} \in F$. So Lemma 2.7 applies. If Outcome 1 of the lemma holds, then P has even length. If Outcome 2 of the lemma holds, then just like in the preceding paragraph, we can build a path P^{\prime} of G^{\prime} that is outgoing from F to F and that has a length with the same parity than P. So P has even length. If Outcome 3 of the lemma holds, the proof is again similar to the preceding paragraph.

If $b_{1} \in F$ then $a_{1} \notin F, F \subset X_{2} \cup\left\{b_{1}\right\}$, and Lemma 2.7 applies. If Outcome 1 of the lemma holds, then P has even length. If Outcome 2 of the lemma holds, we may assume that b_{1} that is in $F \backslash F^{\prime}$ and that b_{1} is an end of P, for otherwise the proof works like in the paragraph above. Then we build a path P^{\prime} of G^{\prime} that is outgoing from F^{\prime} to F^{\prime} and that has a length with same parity than P, by replacing $\left\{b_{1}\right\}$ by $\left\{b_{3}\right\}$ (if P goes through B_{3}) or by $\left\{b_{3}, c_{2}, b_{4}\right\}$ (if P goes through b_{4}). So P has even length. If Outcome 3 of the lemma holds then $P=b_{1}-X_{1}-a_{1}-a_{2}-\cdots-c$ where $a_{2} \in A_{2}, c \in X_{2}$. Note that one of b_{1}, b_{3} is in F^{\prime}. If $b_{3} \in F^{\prime}$, then we put $P^{\prime}=b_{3}-c_{2}-c_{1}-a_{1}-a_{2}-P-c$. If $b_{3} \notin F^{\prime}$ then up to a symmetry, we assume $V(a-P-c) \subset A_{2} \cup C_{3}$. Note that $b_{1} \in F^{\prime}$. We put $P^{\prime}=b_{1}-b-b_{4}-c_{2}-c_{1}-a_{1}-a_{2}-P-c$ where b is any vertex in B_{4}. It may happen that P^{\prime} is not a path of G^{\prime} because of the chord $a_{2} b$. But then we put $P^{\prime}=b_{1}-b-a_{2}-P-c$. In every cases, P^{\prime} is outgoing from F^{\prime} to F^{\prime}, and has same parity than P. Hence, P has even length.

Now, let Q be an antipath of G of length at least 2 with all its interior vertices in F and with its end-vertices outside of F. We shall prove that Q has even length. Note that we may assume that Q has length at least 5 , because if Q has length 3, it may be viewed as an outgoing path from F to F, that have even length by the discussion above on paths.

If both $a_{1}, b_{1} \notin F$, then $F \subset X_{2}$ and the interior vertices of Q are all in X_{2}. So Lemma 2.8 applies: $V(Q) \subseteq X_{2} \cup\{a\}$ where $a \in\left\{a_{1}, b_{1}\right\}$. So Q may
be viewed as an antipath of G^{\prime} that has even length because F^{\prime} is an even skew cutset of G^{\prime}.

If $a_{1} \in F$, let us remind that $b_{1} \notin F$. We have $F \subset X_{2} \cup\left\{a_{1}\right\}$, the interior vertices of Q are in $X_{2} \cup\left\{a_{1}\right\}$ and the end-vertices of Q are not in $\left\{a_{1}\right\}$ since $a_{1} \in F$. So Lemma 2.9 applies. We may assume that Outcome 2 holds. Once again, Q may be viewed as an outgoing path of G^{\prime} that has even length because F^{\prime} is even.

If $b_{1} \in F$, we have to consider the case when $b_{1} \notin F^{\prime}$ (else the proof is like in the paragraph above). Since $b_{1} \notin F^{\prime}$, we have $b_{3} \in F^{\prime}$. Note that $B_{4} \cap F^{\prime}=B_{4} \cap F=\emptyset$ since there are no edges between b_{3}, B_{4} and no vertex seeing b_{3} while having a neighbor in B_{4}. So, if Q is an antipath whose interior is in F, then Q does not go through B_{4}. Hence, if we replace b_{1} by b_{3}, we obtain an antipath Q^{\prime} whose interior is in F^{\prime} and whose ends are not. Hence, Q has even length.

In every cases, Q has even length. This proves (10).
(11) G^{\prime} and $\overline{G^{\prime}}$ have no degenerate proper 2-join, no degenerate homogeneous 2-join and no star cutset.
If one of $G^{\prime}, \overline{G^{\prime}}$ has a degenerate proper 2-join, a degenerate homogeneous 2 -join or a star cutset then one of $G^{\prime}, \overline{G^{\prime}}$ has an even skew partition by Lemma 2.10, 2.15 or 2.2. This contradicts (10). This proves (11).
(12) G^{\prime} is not basic, not a path-cobipartite graph, not a path-double split graph and has no homogeneous 2-join.
If G^{\prime} is bipartite then all the vertices of A_{2} are of the same color because of a_{1}. Because of b_{1} all the vertices of B_{2} have the same color. By the property k of G, there is an outgoing path from A_{2} to B_{2} that has partity ε by (1). So, the number of colors in $A_{2} \cup B_{2}$ is equal to $1+\varepsilon$, implying that G is bipartite and contradicting the properties of G. Hence G^{\prime} is not bipartite.

One of the graphs $G^{\prime}\left[c_{2}, c_{1}, b_{3}, b_{4}\right], G^{\prime}\left[a_{1}, c_{1}, b_{3}, b_{4}\right]$ is a claw, so G^{\prime} is not the line-graph of a bipartite graph.

Let us choose $b \in B_{3}, b^{\prime} \in B_{4}$. The graph $\overline{G^{\prime}}\left[a_{1}, c_{1}, b, b^{\prime}\right]$ is a diamond, so $\overline{G^{\prime}}$ is not the line-graph of a bipartite graph. Note that b, b^{\prime} both have degree at least 3 in G^{\prime} because since $\left(X_{1}, X_{2}\right)$ is not degenerate, b, b^{\prime} have neighbors in $A_{2} \cup C_{2}$. Also a_{1} has degree at least 3 in G^{\prime} by the property h of G. So, there exist in G^{\prime} a stable set of size 3 containning vertices of degree at least $3\left(\left\{a_{1}, b, b^{\prime}\right\}\right)$, and a vertex of degree 3 whose neighborhood induces a stable set $\left(c_{1}\right)$. Hence, by Lemma 2.16, G^{\prime} is not a path-cobipartite graph (and in particular, it is not the complement of a bipartite graph), not a
path-double split graph (and in particular, it is not a double split graph) and G^{\prime} has no non-degenerate homogeneous 2-join. Hence by (11), G^{\prime} has no homogeneous 2-join. This proves (12).
(13) There exist no sets $Y_{1}, Z_{1}, Y_{2}, Z_{2}$ such that:

- $Y_{1}, Z_{1}, Y_{2}, Z_{2}$ are pairwise disjoint and $Y_{1} \cup Z_{1} \cup Y_{2} \cup Z_{2}=X_{2}$;
- There are every possible edges between Y_{1} and Y_{2}, and these edges are the only edges between $Y_{1} \cup Z_{1}$ and $Y_{2} \cup Z_{2}$;
- $A_{2} \subset Y_{1} \cup Z_{1}$ and $B_{2} \subset Y_{2} \cup Z_{2}$.

Suppose such sets exist. Note that $Y_{1} \neq \emptyset$ and $Y_{2} \neq \emptyset$ since by the property j of $G, G\left[X_{2}\right]$ is connected. Note that Z_{1}, Z_{2} can be empty. Suppose $Y_{2} \cap B_{2} \neq$ \emptyset and pick a vertex $b \in Y_{2} \cap B_{2}$. Up to a symmetry we assume $b \in B_{3}$ and we pick a vertex $b^{\prime} \in B_{4}$. Since $B_{2} \subset Y_{2} \cup Z_{2}$ we have $b^{\prime} \in Y_{2} \cup Z_{2}$. Now $\{b\} \cup N(b)$ is a star cutset of G that separates a_{1} from b^{\prime}, contradicting the properties of G. Thus $Y_{2} \cap B_{2}=\emptyset$. Hence $\left(Y_{2} \cup Z_{2}, V(G) \backslash\left(Y_{2} \cup Z_{2}\right)\right)$ is a 2-join of G. This 2-join is proper (the check of connectivity relies on the fact that $\left(X_{1}, X_{2}\right)$ is connected and on Lemma 2.11). By the properties of G, this 2-join has to be a path 2-join. Since X_{1} is a maximal flat path of G, $Y_{2} \cup Z_{2}$ is the path-side of the 2-join. This is impossible because $\left|B_{2}\right| \geq 2$. This proves (13).

We now give four claims describing the proper 2-joins of G^{\prime}. Implicitly, when $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ is a 2 -join, we consider a split ($X_{1}^{\prime}, X_{2}^{\prime}, A_{1}^{\prime}, B_{1}^{\prime}, A_{2}^{\prime}, B_{2}^{\prime}$). We also put $C_{1}^{\prime}=X_{1}^{\prime} \backslash\left(A_{1}^{\prime} \cup B_{1}^{\prime}\right)$ and $C_{2}^{\prime}=X_{2}^{\prime} \backslash\left(A_{2}^{\prime} \cup B_{2}^{\prime}\right)$.
(14) If G^{\prime} has a proper 2-join $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ then either $\left\{c_{1}, c_{2}\right\} \subset X_{1}^{\prime}$ or $\left\{c_{1}, c_{2}\right\} \subset X_{2}^{\prime}$.
Suppose not. We may assume that there is a 2 -join ($X_{1}^{\prime}, X_{2}^{\prime}$) such that $c_{1} \in X_{2}^{\prime}$ and $c_{2} \in X_{1}^{\prime}$. In particular, $c_{1} \neq c_{2}$. Up to a symmetry, we assume $c_{1} \in A_{2}^{\prime}$ and $c_{2} \in A_{1}^{\prime}$. Then, $a_{1} \in X_{2}^{\prime}$ for otherwise c_{1} is isolated in X_{2}^{\prime}, contradicting ($X_{1}^{\prime}, X_{2}^{\prime}$) being proper. Also one of b_{3}, b_{4} must be in X_{1}^{\prime} for otherwise c_{2} is isolated in X_{1}^{\prime}. Up to a symmetry we assume $b_{3} \in X_{1}^{\prime}$.

By the property k of G there is an outgoing path $P=h_{1}-\cdots-h_{k}$ from A_{2} to B_{3} with $h_{1} \in A_{2}, h_{k} \in B_{3}$. We denote by H the hole induced by $V(P) \cup\left\{a_{1}, c_{1}, c_{2}, b_{3}\right\}$. Note that H has an edge whose ends are both in X_{1}^{\prime} (it is $c_{2} b_{3}$) and an edge whose ends are both in X_{2}^{\prime} (it is $a_{1} c_{1}$). So H is vertex-wise partitionned into an outgoing path from A_{1}^{\prime} to B_{1}^{\prime} whose interior is in X_{1}^{\prime} and outgoing path from B_{2}^{\prime} to A_{2}^{\prime} whose interior is in X_{2}^{\prime}. Hence,
starting from c_{1}, then going to a_{1} and continuing along H, one will first stay in X_{2}^{\prime}, will meet a vertex in B_{2}^{\prime}, immediatley after that, a vertex in B_{1}^{\prime}, and after that will stay in X_{1}^{\prime} and reach c_{2}. We now discuss several cases according to the unique vertex x in $H \cap B_{2}^{\prime}$.

If $x=a_{1}$ then $a_{1} \in B_{2}^{\prime}$. So $b_{3} \in C_{1}^{\prime}$. This implies step by step $B_{3} \subset X_{1}^{\prime}$, $B_{3} \subset C_{1}^{\prime}, b_{1} \in X_{1}^{\prime}, b_{1} \in C_{1}^{\prime}, B_{4} \subset X_{1}^{\prime}, B_{4} \subset C_{1}^{\prime}, b_{4} \in X_{1}^{\prime}$. Let v a vertex in C_{2} (if any). Then by the property k of G there is a path Q from v to B_{2} with no vertex in A_{2}. If $v \in X_{2}^{\prime}$, then Q must contain a vertex in $A_{1}^{\prime} \cup B_{1}^{\prime}$. This is impossible since no vertex in $C_{2} \cup B_{2}$ sees a_{1} or c_{1}. So, $C_{2} \subset C_{1}^{\prime}$. Let v be a vertex in A_{2}. Note that by the property k of G, v must have a neighbor in $C_{2} \cup B_{2}$. So, $v \in X_{1}^{\prime}$ since $C_{2} \cup B_{2} \subset C_{1}^{\prime}$. Finally, we proved $X_{2}^{\prime}=\left\{a_{1}, c_{1}\right\}$. This is impossible since ($X_{1}^{\prime}, X_{2}^{\prime}$) is proper.

If $x=h_{i}$ with $1 \leq i<k$, then $h_{i} \in B_{2}^{\prime} \cap\left(A_{2} \cup C_{2}\right)$ and $h_{i+1} \in B_{1}^{\prime}$. Note that $b_{3} \in C_{1}^{\prime}$ since b_{3} misses c_{1} and h_{1}. So, $B_{3} \subset X_{1}^{\prime}$. By the definition of x, we know that $a_{1} \in C_{2}^{\prime}$. So, $A_{2} \subset X_{2}^{\prime}$. We consider now two cases.

First case: $b_{4} \in X_{1}^{\prime}$. Since there are no edges between $\left\{b_{3}, b_{4}\right\}$ and $\left\{c_{1}, h_{1}\right\}$ we know that $\left\{b_{3}, b_{4}\right\} \subset C_{1}^{\prime}$. This implies $B_{3} \cup B_{4} \subset X_{1}^{\prime}$. Also, $b_{1} \in X_{1}^{\prime}$ for otherwise b_{1} is isolated in X_{2}^{\prime}. Now, $A_{1}^{\prime} \cup B_{1}^{\prime} \subset\left(B_{2} \cup C_{2}\right)$. Let us put: $Y_{1}=B_{2}^{\prime}, Z_{1}=\left(X_{2}^{\prime} \cap X_{2}\right) \backslash Y_{1}, Y_{2}=B_{1}^{\prime}, Z_{2}=\left(X_{1}^{\prime} \cap X_{2}\right) \backslash Y_{2}$. These four sets yield a contradiction to (13).

Second case: $b_{4} \in X_{2}^{\prime}$. Then $b_{4} \in A_{2}^{\prime}$ and $A_{1}^{\prime}=\left\{c_{2}\right\}$. If there is a vertex v of X_{1}^{\prime} in B_{4} then $v \in A_{1}^{\prime}$. This is impossible since v misses $c_{1} \in A_{2}^{\prime}$. So, $B_{4} \subset X_{2}^{\prime}$. Hence, if $b_{1} \in X_{1}^{\prime}$ then $b_{1} \in A_{1}^{\prime} \cup B_{1}^{\prime}$. But this is impossible since b_{1} misses c_{1} and h_{1}. So, $b_{1} \in X_{2}^{\prime}$. Since $B_{3} \subset X_{1}^{\prime}$, we know $B_{3}=B_{1}^{\prime}$ and $b_{1} \in B_{2}^{\prime}$. So b_{3} is a vertex of C_{1}^{\prime} complete to $A_{1}^{\prime} \cup B_{1}^{\prime}$, implying $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ being degenerate, a contradiction.

If $x=h_{k}$ then $a_{1} \in C_{2}^{\prime}$ and $A_{2} \subset X_{2}^{\prime}$. Let v be a vertex of $C_{2} \cup B_{3} \cup$ $B_{4} \cup\left\{b_{1}, b_{4}\right\}$. By the property k of G there is a path Q from v to A_{2} with no interior vertex in $B_{3} \cup A_{2}$. If $v \in X_{1}^{\prime}$, then Q must have a vertex $u \neq v$ in $A_{2}^{\prime} \cup B_{2}^{\prime}$. Note $u \notin B_{3}$. This is impossible because u misses c_{2} and b_{3}. So, $v \in X_{2}^{\prime}$. Hence, $X_{1}^{\prime}=\left\{c_{2}, b_{3}\right\}$ contradicting $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ being proper. This proves (14).
(15) If G^{\prime} has a 2-join $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ then either $\left\{c_{1}, c_{2}, b_{3}, b_{4}\right\} \subset X_{1}^{\prime}$ or $\left\{c_{1}, c_{2}, b_{3}, b_{4}\right\} \subset X_{2}^{\prime}$.
Suppose not. By (14), we may assume that there is a 2-join ($X_{1}^{\prime}, X_{2}^{\prime}$) such that $c_{1}, c_{2} \in X_{1}^{\prime}$ and $b_{3} \in X_{2}^{\prime}$. Up to a symmetry, we assume $c_{2} \in A_{1}^{\prime}$ and $b_{3} \in A_{2}^{\prime}$. At least one vertex of B_{3} is in X_{2}^{\prime} for otherwise b_{3} is isolated in X_{2}^{\prime}. So let b be a vertex of $X_{2}^{\prime} \cap B_{3}$. We claim that there is a hole H that goes
through $b_{3}, c_{2}, c_{1}, a_{1}, h_{1} \in A_{2}, \ldots h_{k}=b$, with at least an edge in X_{1}^{\prime} and at least an edge in X_{2}^{\prime}. If $c_{1} \neq c_{2}$ then our claim hold trivially: $c_{1} c_{2} \in X_{1}^{\prime}$ and $b_{3} b \in X_{2}^{\prime}$. If $c_{1}=c_{2}$, suppose that our claim fails. Then $a_{1} \in X_{2}^{\prime}$, implying $A_{1}^{\prime}=\left\{c_{2}\right\}$ and $a_{1} \in A_{2}^{\prime}$. We have $b_{4} \in X_{1}^{\prime}$ for othewise c_{2} is isolated in X_{1}^{\prime}. If $b_{4} \in B_{1}^{\prime}$ then $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ is degenerate since b_{4} is complete to A_{1}^{\prime}. So, $b_{4} \in C_{1}^{\prime}$ implying $B_{4} \subset X_{1}^{\prime}$. If $b_{1} \in X_{2}^{\prime}$ then $b \in B_{1}^{\prime}$ since $b \in X_{2}^{\prime}$. So $B_{2}^{\prime} \subset B_{3}$ and b_{3} is a vertex of A_{2}^{\prime} that is complete to B_{2}^{\prime}, implying ($X_{1}^{\prime}, X_{2}^{\prime}$) being degenerate, a contradiction. So $b_{1} \in X_{2}^{\prime}$. Hence $B_{1}^{\prime}=B_{4}$ because no vertex of B_{1}^{\prime} can be in B_{3} since $b_{3} \in A_{2}^{\prime}$. So $b_{4} \in C_{1}^{\prime}$ is complete to $A_{1}^{\prime} \cup B_{1}^{\prime}$, implying ($X_{1}^{\prime}, X_{2}^{\prime}$) being degenerate, a contradiction. Thus our claim holds: H has an edge in X_{1}^{\prime} and an edge in X_{2}^{\prime}. So there is a unique vertex x in $H \cap B_{2}^{\prime}$. We now discuss according to the place of x.

If $x=a_{1}$ then by the discussion above $c_{1} \neq c_{2}$. Also, $a_{1} \in B_{2}^{\prime}$ and $c_{1} \in B_{1}^{\prime}$. Suppose that $X_{1}^{\prime} \cap X_{2}$ and $X_{2}^{\prime} \cap X_{2}$ are both non-empty. The vertices of $A_{2}^{\prime} \cup B_{2}^{\prime}$ are not in X_{2} because they have to see either c_{1} or c_{2}. So there are no edges between $X_{1}^{\prime} \cap X_{2}$ and $X_{2}^{\prime} \cap X_{2}$. Hence, $G^{\prime}\left[X_{2}\right]$ is not connected, contradicting the property j of G. So either $X_{2} \subset X_{1}^{\prime}$ or $X_{2} \subset X_{2}^{\prime}$. If $X_{2} \subset X_{1}^{\prime}$ then $X_{2}^{\prime} \subset\left\{a_{1}, b_{1}, b_{3}, b_{4}\right\}$, so X_{2}^{\prime} is a stable set, contradicting ($X_{1}^{\prime}, X_{2}^{\prime}$) being proper. If $X_{2} \subset X_{2}^{\prime}$ then b_{1} is in X_{2}^{\prime} for otherwise it is isolated in X_{1}^{\prime}. So, $X_{1}^{\prime} \subset\left\{c_{1}, c_{2}, b_{4}\right\}$. This is a contradiction since by checking every cases, we see that no subset of $\left\{c_{1}, c_{2}, b_{4}\right\}$ can be a side of a proper 2-join of G^{\prime}.

If $x=h_{1}$ then $h_{1} \in B_{2}^{\prime}$ and $a_{1} \in B_{1}^{\prime}$. If $b_{4} \in X_{1}^{\prime}$ then $b_{4} \in C_{1}^{\prime}$ because of b_{3} and h_{1}. So, $B_{4} \subset X_{1}^{\prime}$. But in fact, by the same way, $B_{4} \subset C_{1}^{\prime}$, and $b_{1} \in C_{1}^{\prime}$. So, $B_{3} \subset X_{1}^{\prime}$, contradicting $h_{k} \in X_{2}^{\prime}$. We proved $b_{4} \in X_{2}^{\prime}$ implying $A_{1}^{\prime}=\left\{c_{2}\right\}$. If a vertex v of $X_{2} \cup\left\{b_{1}\right\}$ is in X_{1}^{\prime}, then by Lemma 2.11 applied to $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ there is a path of X_{1}^{\prime} from v to $A_{1}^{\prime}=\left\{c_{2}\right\}$ with no interior vertex in B_{1}^{\prime}, a contradiction. So $X_{2} \cup\left\{b_{1}\right\} \subset X_{2}^{\prime}$. We proved $X_{1}^{\prime}=\left\{a_{1}, c_{1}, c_{2}\right\}$ contradicting ($X_{1}^{\prime}, X_{2}^{\prime}$) being proper.

If $x=h_{i}, 2 \leq i \leq k$ then $h_{i} \in B_{2}^{\prime}, h_{i-1} \in B_{1}^{\prime}$. Since $a_{1} \in C_{1}^{\prime}$ we have $A_{2} \subset X_{1}^{\prime}$. If $b_{4} \in X_{1}^{\prime}$ then $b_{4} \in C_{1}^{\prime}$ implying $B_{4} \subset X_{1}^{\prime}$. If $b_{1} \in X_{2}^{\prime}$ then b_{1} must be in $A_{2}^{\prime} \cup B_{2}^{\prime}$, a contradiction since b_{1} misses c_{2} and h_{i-1}. So, $b_{1} \in X_{1}^{\prime}$. Since $h_{k} \in X_{2}^{\prime}$, we know $b_{1} \in B_{1}^{\prime}$. Thus $B_{2}^{\prime} \subset B_{3}$. Hence b_{3} is a vertex of A_{2}^{\prime} that is complete to B_{2}^{\prime}, implying ($X_{1}^{\prime}, X_{2}^{\prime}$) being degenerate, a contradiction. We proved $b_{4} \in X_{2}^{\prime}$. Now $A_{2}^{\prime}=\left\{b_{3}, b_{4}\right\}$. Suppose that there is a vertex v of X_{1}^{\prime} in $B_{3} \cup B_{4}$. Then v must be in A_{1}^{\prime} since v sees one of b_{3}, b_{4}. But this is a contradiction since v misses one of b_{3}, b_{4}. We proved $B_{3} \cup B_{4} \subset X_{2}^{\prime}$. Also, $b_{1} \in X_{2}^{\prime}$ for otherwise, b_{1} is isolated in X_{1}^{\prime}. Let us put: $Y_{1}=B_{1}^{\prime}, Z_{1}=\left(X_{1}^{\prime} \cap X_{2}\right) \backslash Y_{1}, Y_{2}=B_{2}^{\prime}, Z_{2}=\left(X_{2}^{\prime} \cap X_{2}\right) \backslash Y_{2}$. These four sets yield a contradiction to (13). This proves (15).
(16) If G^{\prime} has a proper 2-join $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ then either $\left\{c_{1}, c_{2}, b_{1}, b_{3}, b_{4}\right\} \subset X_{1}^{\prime}$ or $\left\{c_{1}, c_{2}, b_{1}, b_{3}, b_{4}\right\} \subset X_{2}^{\prime}$.
Suppose not. By (15), we may assume that there is a 2-join $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ of G^{\prime} such that $c_{1}, c_{2}, b_{3}, b_{4} \in X_{1}^{\prime}$ and $b_{1} \in X_{2}^{\prime}$. If $\left\{b_{3}, b_{4}\right\} \cap\left(A_{1}^{\prime} \cup B_{1}^{\prime}\right)=\emptyset$ then $\left\{b_{3}, b_{4}\right\} \subset C_{1}^{\prime}$, so $B_{3} \cup B_{4} \subset X_{1}^{\prime}$. Hence b_{1} is isolated in X_{2}^{\prime}, a contradiction.

If $\left|\left\{b_{3}, b_{4}\right\} \cap\left(A_{1}^{\prime} \cup B_{1}^{\prime}\right)\right|=1$, then up to a symmetry we may assume $b_{3} \in A_{1}^{\prime}$ and $b_{4} \in C_{1}^{\prime}$. Thus $B_{4} \subset X_{1}^{\prime}$. Since $b_{2} \in X_{2}^{\prime}$, we have $B_{4} \subset A_{1}^{\prime} \cup B_{1}^{\prime}$. But no vertex x of B_{4} can be in A_{1}^{\prime} because x and b_{3} have no common neighbors, so $B_{4} \subset B_{1}^{\prime}$. Thus $b_{1} \in B_{2}^{\prime}$. Because of $b_{3}, A_{2}^{\prime} \subset B_{3}$. So b_{1} is a vertex of B_{2}^{\prime} that is complete to A_{2}^{\prime}, implying $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ being degenerate, a contradiction. We proved $\left\{b_{3}, b_{4}\right\} \subset\left(A_{1}^{\prime} \cup B_{1}^{\prime}\right)$.

Since b_{3}, b_{4} have no common neighbors in X_{2}^{\prime}, we may assume up to a symmetry that $b_{3} \in A_{1}^{\prime}$ and $b_{4} \in B_{1}^{\prime}$. So b_{2} have non-neighbors in both $A_{1}^{\prime}, B_{1}^{\prime}$. This implies $b_{2} \in C_{2}^{\prime}$, and $B_{3} \cup B_{4} \subset X_{2}^{\prime}$. Hence $A_{2}^{\prime}=B_{3}$ and $B_{2}^{\prime}=B_{4}$. Now, $b_{1} \in C_{2}^{\prime}$ is complete to $A_{2}^{\prime} \cup B_{2}^{\prime}$, implying $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ being degenerate, a contradiction. This proves (16).
(17) G^{\prime} has no proper non-path 2-join.

Let $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ be a proper 2 -join of G^{\prime}. By (16), we may assume $\left\{c_{1}, c_{2}, b_{1}, b_{3}, b_{4}\right\} \subset X_{2}^{\prime}$. If $b_{3} \notin C_{2}^{\prime}$ and $b_{4} \notin C_{2}^{\prime}$ then up to a symmetry we may assume $b_{3} \in A_{2}^{\prime}, b_{4} \in B_{2}^{\prime}$ since b_{3}, b_{4} have no common neighbors in X_{1}^{\prime}. So, there is a vertex of A_{1}^{\prime} in B_{3} and a vertex of B_{1}^{\prime} in B_{4} implying $b_{1} \in A_{2}^{\prime} \cap B_{2}^{\prime}$, a contradiction. We proved $b_{3} \in C_{2}^{\prime}$ or $b_{4} \in C_{2}^{\prime}$. Up to a symmetry we assume $b_{3} \in C_{2}^{\prime}$, implying $B_{3} \subset X_{2}^{\prime}$. Note that X_{1}^{\prime} is a subset of $V(G)$. If $A_{1}^{\prime} \cap B_{4}, B_{1}^{\prime} \cap B_{4}$ are both non-empty then b_{1} must be in $A_{2}^{\prime} \cap B_{2}^{\prime}$, a contradiction. Thus we may assume $A_{1}^{\prime} \cap B_{4}=\emptyset$. If $a_{1} \in X_{1}^{\prime}$ and $B_{1}^{\prime} \cap B_{4} \neq \emptyset$ then $a_{1} \notin B_{1}^{\prime}$ since a_{1} misses b_{1}. Thus we may assume $B_{1}^{\prime} \cap\left\{a_{1}\right\}=\emptyset$.

Let us now put: $X_{1}^{\prime \prime}=X_{1}^{\prime}, X_{2}^{\prime \prime}=V(G) \backslash X_{1}^{\prime \prime}, A_{1}^{\prime \prime}=A_{1}^{\prime}, B_{1}^{\prime \prime}=B_{1}^{\prime}$, $B_{2}^{\prime \prime}=B_{2}^{\prime} \backslash\left\{b_{4}\right\}$. If $a_{1} \in A_{1}^{\prime}$ then $A_{2}^{\prime \prime}=\left(A_{2}^{\prime} \cap X_{2}\right) \cup\left(N_{G}\left(a_{1}\right) \cap X_{1}\right)$ else $A_{2}^{\prime \prime}=A_{2}^{\prime}$. Note that $A_{2}^{\prime \prime} \cap B_{2}^{\prime \prime}=\emptyset$. Also, if $b_{4} \in B_{2}^{\prime}$ then $b_{1} \in B_{2}^{\prime}$ and $b_{1} \in B_{2}^{\prime \prime}$. From the definitions it follows that $\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)$ is a partition of $V(G)$, that $A_{1}^{\prime \prime}, B_{1}^{\prime \prime} \subset X_{1}^{\prime \prime}, A_{2}^{\prime \prime}, B_{2}^{\prime \prime} \subset X_{2}^{\prime \prime}$, that $A_{1}^{\prime \prime}$ is complete to $A_{2}^{\prime \prime}$, that $B_{1}^{\prime \prime}$ is complete to $B_{2}^{\prime \prime}$ and that there are no other edges between $X_{1}^{\prime \prime}$ and $X_{2}^{\prime \prime}$. So, $\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)$ is a 2 -join of G.

Let us put $D=B_{3} \cup X_{1} \backslash\left\{a_{1}\right\}$. By the properties above, $D \subset X_{2}^{\prime \prime} \subset V(G)$. Since b_{1} is complete to $B_{3}, G[D]$ is connected. We claim that $\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)$ is a proper 2-join of G. Every component of $X_{1}^{\prime \prime}$ meets $A_{1}^{\prime \prime}, B_{1}^{\prime \prime}$: this follows from $A_{1}^{\prime \prime}=A_{1}^{\prime}, B_{1}^{\prime \prime}=B_{1}^{\prime}$ and from the fact that $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ is a proper 2 -join of G^{\prime}.

Let E be a connected component of $X_{2}^{\prime \prime}$. If $E \cap D=\emptyset$ then E is a component of $G\left[\left(X_{2} \cup\left\{a_{1}\right\}\right) \cap X_{2}^{\prime \prime}\right]=G^{\prime}\left[\left(X_{2} \cup\left\{a_{1}\right\}\right) \cap X_{2}^{\prime \prime}\right]$, so E meets $A_{2}^{\prime \prime} \cap A_{2}^{\prime}$ and $B_{2}^{\prime \prime} \cap B_{2}^{\prime}$ because ($X_{1}^{\prime}, X_{2}^{\prime}$) is a proper 2-join of G^{\prime}. If $E \cap D \neq \emptyset$ then $D \subset E$ since $G[D]$ is connected. We put $E^{\prime}=(E \backslash D) \cup\left\{c_{1}, c_{2}, b_{1}, b_{3}, b_{4}\right\} \cup B_{3}$. Since E^{\prime} is a component of X_{2}^{\prime} it meets $A_{2}^{\prime}, B_{2}^{\prime}$ because ($X_{1}^{\prime}, X_{2}^{\prime}$) is proper. This implies that E meets $A_{2}^{\prime \prime}$ and $B_{2}^{\prime \prime}$. Note that $G\left[X_{1}^{\prime \prime}\right]$ is not an outgoing path of length 2 or 3 from $A_{1}^{\prime \prime}$ to $B_{1}^{\prime \prime}$, because ($X_{1}^{\prime}, X_{2}^{\prime}$) is a proper 2-join of G^{\prime}. Also $G\left[X_{2}^{\prime \prime}\right]$ is not an outgoing path from $A_{2}^{\prime \prime}$ to $B_{2}^{\prime \prime}$ because b_{1} has at least 2 neighbors in $X_{2}^{\prime \prime}$ (one in X_{1}, one in B_{3}) while having degree at least 3 because of B_{4}. This proves our claim.

Since ($X_{1}^{\prime \prime}, X_{2}^{\prime \prime}$) is proper, we know by the properties of G that ($X_{1}^{\prime \prime}, X_{2}^{\prime \prime}$) is a path 2-join of G. If $X_{2}^{\prime \prime}$ is the path-side of ($X_{1}^{\prime \prime}, X_{2}^{\prime \prime}$) then b_{1} is an interior vertex of this path while having degree at least 3 by the properties of G, a contradiction. Hence, $X_{1}^{\prime \prime}$ is the path-side of $\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)$. Since $X_{1}^{\prime \prime}=X_{1}^{\prime}$, $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ is a path 2-join of G^{\prime}. This proves (17).
(18) $\overline{G^{\prime}}$ has no proper 2-join.

In the proof of (18), the word "neighbor" refers to the neighborhood in $\overline{G^{\prime}}$.
Suppose $c_{1} \neq c_{2}$. In $\overline{G^{\prime}}, c_{1}$ has degree $n-3$, so up to a symmetry we may assume $c_{1} \in A_{1}^{\prime}$. In B_{2}^{\prime} there must be a non-neighbor of c_{1}. Also, since ($X_{1}^{\prime}, X_{2}^{\prime}$) cannot be a degenerate 2 -join of $\overline{G^{\prime}}$, vertex c_{1} must have a non-neighbor in B_{1}^{\prime}. So we have two cases to consider. Case 1: $a_{1} \in B_{1}^{\prime}$, $c_{2} \in B_{2}^{\prime}$. Then c_{2} must have a non-neighbor in B_{2}^{\prime} for otherwise ($X_{1}^{\prime}, X_{2}^{\prime}$) is degenerate. This non-neighbor must be one of b_{3}, b_{4}. But this is imposible since b_{3}, b_{4} both see a_{1} in $\overline{G^{\prime}}$. Case 2: $a_{1} \in B_{2}^{\prime}, c_{2} \in B_{1}^{\prime}$. Then $A_{2}^{\prime} \subset\left\{b_{3}, b_{4}\right\}$. So, $a_{1} \in B_{2}^{\prime}$ is complete to A_{2}^{\prime}. Again, $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ is degenerate.

Suppose $c_{1}=c_{2}$. Up to a symmetry we assume $c_{1} \in X_{1}^{\prime}$. If $c_{1} \in$ C_{1}^{\prime} then the only possible vertices in X_{2}^{\prime} are a_{1}, b_{3}, b_{4}, so $\overline{G^{\prime}}\left[X_{2}^{\prime}\right]$ induces a triangle. So, any vertex of A_{2}^{\prime} is complete to B_{2}^{\prime} and ($X_{1}^{\prime}, X_{2}^{\prime}$) is degenerate, a contradiction. So, $c_{1} \notin C_{1}^{\prime}$. Up to a symmetry, we assume $c_{1} \in A_{1}^{\prime}$. So, $B_{2}^{\prime} \subset\left\{a_{1}, b_{3}, b_{4}\right\}$. Thus, at least one of a_{1}, b_{3}, b_{4} (say x) must be in B_{2}^{\prime}. Since ($X_{1}^{\prime}, X_{2}^{\prime}$) is not degenerate, c_{1} must have a non-neighbor in B_{1}^{\prime}. So, one of a_{1}, b_{3}, b_{4} (say y) must be in B_{1}^{\prime}. Since ($X_{1}^{\prime}, X_{2}^{\prime}$) is not degenerate, x must have a non-neighbor z in A_{2}^{\prime}. But z must also be a non-neighbor of y. This is imposible because in $G^{\prime} \backslash c_{1}, N\left(a_{1}\right), N\left(b_{3}\right), N\left(b_{4}\right)$ are disjoint. This proves (18).
(19) $\overline{G^{\prime}}$ is not path-cobipartite, not a path-double split graph, has no homogeneous 2-join and has no flat path of length at least 3.

Else, by Lemma 2.3 there is a contradiction with one of (12), (10) or (18). This proves (19).
(20) $f\left(G^{\prime}\right)+f\left(\overline{G^{\prime}}\right)<f(G)+f(\bar{G})$.

Every vertex in $\left\{a_{1}\right\} \cup B_{3} \cup B_{4}$ has degree at least 3 in G^{\prime}. For a_{1}, this is a property of G and for vertices in $B_{3} \cup B_{4}$, this is because $\left(X_{1}, X_{2}\right)$ is not degenerate. Hence no vertex in $\left\{a_{1}\right\} \cup B_{3} \cup B_{4}$ can be an interior vertex of a flat path of G^{\prime}, and no vertex in $\left\{c_{1}, c_{2}, b_{3}, b_{4}, b_{1}\right\}$ can be in a maximal flat path of G^{\prime} of length at least 3. Hence, every maximal flat path of G^{\prime} of length at least 3 is a maximal flat path of G, implying $f\left(G^{\prime}\right) \leq f(G)$. But in fact $f\left(G^{\prime}\right)<f(G)$ because X_{1} is a flat path of G that is no more a flat path in G^{\prime}. By (19) we know $0=f\left(\overline{G^{\prime}}\right) \leq f(\bar{G})$. We add these two inequalities. This proves (20).

Let us now finish the case. By (9), G^{\prime} is Berge. By (12), G^{\prime} is not basic, not path-cobipartite, not a path-double split graph, and has no homogeneous 2 -join. By (10), G^{\prime} has no even skew partition. By (17), G^{\prime} has no proper non-path 2-join. By (18) $\overline{G^{\prime}}$ has no proper 2-join. By (19), $\overline{G^{\prime}}$ is not a path-cobipartite graph, a path-double split graph and has no homogeneous 2-join. So, G^{\prime} is a counter-example to the theorem we are proving now. Hence there is a contradiction between the initial choice of G and (20). This completes the proof in Case 1.

Case 2: There are sets A_{3}, B_{3} satisfaying the items $1-5$ of the definition of cutting 2-joins of type 2 .

The frame of the proof is very much like in Case 1, but the details differ. We consider the graph G^{\prime} obtained from G by deleting $X_{1} \backslash\left\{a_{1}, b_{1}\right\}$. Moreover, we add new vertices: $c_{1}, c_{2}, a_{3}, b_{3}$. Then we add every possible edge between a_{3} and A_{3}, between b_{3} and B_{3}. We also add edges $a_{1} c_{1}, c_{1} c_{2}$, $c_{2} b_{1}, a_{3} b_{3}, c_{1} a_{3}, c_{2} b_{3}$. Here are two claims about the connectivity of G and G^{\prime}.

Here are six claims about the parity of various kinds of paths and antipaths in G^{\prime}.
(21) Every outgoing path of G^{\prime} from B_{2} to A_{2} has odd length.

If such a path contains one of $a_{1}, b_{1}, a_{3}, b_{3}, c_{1}, c_{2}$ then it has length 3 or 5 . Else such a path may be viewed as an outgoing path of G from B_{2} to A_{2}. By Lemma 2.4 it has odd length. This proves (21).
(22) Every outgoing path of G^{\prime} from A_{2} to A_{2} (resp. from B_{2} to B_{2}) has even length.

For suppose there is such a path P from A_{2} to A_{2} (the case with B_{2} is similar). If P goes through a_{1} then it has length 2. If P goes through at least one of $c_{1}, c_{2}, a_{3}, b_{3}, b_{1}$ then P is the union of two edge-wise-disjoint outgoing paths from A_{2} to B_{2}. Thus P has even length by (21). Else, P may be viewed as an outgoing path of G from A_{2} to A_{2}, that has even length by Lemma 2.5. In every cases, P has even length. This proves (22).
(23) Every outgoing path of G^{\prime} from A_{3} to A_{3} (resp. from B_{3} to B_{3}) has even length.
For suppose there is such a path P from A_{3} to A_{3} (the case with B_{3} is similar). If P goes through a_{1} or a_{3} then it has length 2. Also, P cannot go through c_{1}. From now on, we assume that P goes through none of a_{1}, a_{3}, c_{1}.

If P goes through c_{2} then $P=a-b-b_{3}-c_{2}-b_{1}-b^{\prime}-\cdots a^{\prime}$ where $a, a^{\prime} \in A_{3}$, $b \in B_{3}$ and $b^{\prime} \in B_{2} \backslash B_{3}$. Also, $b_{1}-P-a^{\prime}$ may be viewed as an outgoing path of G from $A_{3} \cup\left\{b_{1}\right\}$ to $A_{3} \cup\left\{b_{1}\right\}$. By the definition of cutting 2-joins of type 2 , this path has even length, thus P has length. From now on we assume that P does not go through c_{2}.

If P goes through b_{3} it has length 4. If P goes through b_{1} then P is the edge-wise-disjoint union of two outgoing paths of G from $A_{3} \cup\left\{b_{1}\right\}$ to $A_{3} \cup\left\{b_{1}\right\}$. Thus P has even length by the definition of cutting 2 -joins of type 2 . Thus we may assume that P goes through none of b_{3}, b_{1}.

Now P may be viewed as an outgoing path of G from A_{3} to A_{3}, that does not go through b_{1}. Thus P is outgoing from $A_{3} \cup\left\{b_{1}\right\}$ to $A_{3} \cup\left\{b_{1}\right\}$, it has even length by the definition of cutting 2 -joins of type 2 . This proves (23).
(24) Every antipath of G^{\prime} with length at least 2, with its end vertices in $V\left(G^{\prime}\right) \backslash A_{2}$ (resp. $V\left(G^{\prime}\right) \backslash B_{2}$), and all its interior vertices in A_{2} (resp. B_{2}) has even length.

Let Q be such an antipath whose interior is in A_{2} (the case with B_{2} is similar). We may assume that Q has length at least 3 . So each end-vertex of Q must have a neighbor in A_{2} and a non-neighbor in A_{2}. So none of $a_{1}, c_{1}, c_{2}, b_{1}, b_{3}$ can be an end-vertex of Q. If a_{3} is an end of Q then the other end of Q must be a neighbor of a_{3}, a contradicition. Thus Q may be viewed as an antipath of G. By Lemma 2.5. So Q has even length. This proves (24).
(25) Every antipath of G^{\prime} with length at least 2, with its end vertices in $V\left(G^{\prime}\right) \backslash A_{3}$ (resp. $V\left(G^{\prime}\right) \backslash B_{3}$), and all its interior vertices in A_{3} (resp. B_{3}) has even length.

Let Q be such an antipath whose interior is in A_{3} (the case with B_{3} is similar). We may assume that Q has length at least 3 . So each end-vertex of Q must have a neighbor in A_{3} and a non-neighbor in A_{3}. So none of $a_{1}, a_{3}, c_{1}, c_{2}, b_{1}, b_{3}$ can be an end-vertex of Q. Thus Q may be viewed as an antipath of G. It has even length by the definition of cutting 2 -joins of type 2. This proves (25).
(26) Let Q be an antipath of G^{\prime} of length at least 5. Then Q does not go through c_{1}, c_{2}. Moreover one of $V(Q) \cap\left\{a_{1}, a_{3}\right\}, V(Q) \cap\left\{b_{1}, b_{3}\right\}$ is empty.
Let Q be such an antipath. In an antipath of length at least 5 , each vertex is in a triangle of the antipath. So, c_{1}, c_{2} are not in Q since they are not in any triangle of G^{\prime}.

Suppose $V(Q) \cap\left\{a_{1}, a_{3}\right\}, V(Q) \cap\left\{b_{1}, b_{3}\right\}$ are both non-empty. In an antipath of length at least 6 , for every pair u, v of vertices, there is a vertex x seing both u, v. Thus Q has length 5 because no vertex of G^{\prime} have neighbors in both $\left\{a_{1}, a_{3}\right\},\left\{b_{1}, b_{3}\right\}$. Let q_{1}, \ldots, q_{6} be the vertices of Q in there natural order. Since $V(Q) \cap\left\{a_{1}, a_{3}\right\}, V(Q) \cap\left\{b_{1}, b_{3}\right\}$ are both non-empty there are two vertices of Q that have no common neighbors in G^{\prime}. These vertices must be q_{2} and q_{5}, and up to a symmetry we must have $q_{2}=a_{3}, q_{5}=b_{3}$. Thus q_{3} must be a vertex of B_{3} and q_{4} must be a vertex of A_{3}. There is a contradiction since by the definition of cutting 2-joins of type $2, A_{3}$ is complete to B_{3}. This proves (26).
(27) G^{\prime} is Berge.

Let H be a hole of G^{\prime}.
If H goes through both c_{1}, c_{2} then H has length 4 or it must contains one of $\left\{a_{1}, b_{1}\right\},\left\{a_{1}, b_{3}\right\},\left\{b_{1}, a_{3}\right\}$. In the first case, H is edge-wise partitionned into two paths outgoing from A_{2} to B_{2}. Thus H has even length by (21). In the second case H is edge-wise partitionned into two paths outgoing from $B_{3} \cup\left\{a_{1}\right\}$ to $B_{3} \cup\left\{a_{1}\right\}$, one of them of length 4 , the other one included in $V(G)$. Thus H has even length by the definition of cutting 2-joins of type 2 . The third case is similar. From now on, we assume that H goes through none of c_{1}, c_{2}.

If H goes through both a_{1}, a_{3} then it has length 4. If H goes through a_{2} and not through a_{3} then H has even length by (22). If H goes through a_{3} and not through a_{2} then H has even length by (23). Thus, we may assume that H goes through none of a_{1}, a_{3}. Similarly, we may assume that H goes through none of b_{1}, b_{3}.

Now H may be viewed as a hole of G. In every case, H has even length.

Let us now consider an antihole H of G^{\prime}. We may assume that H has length at least 7 . Let v be a vertex of $V(H) \backslash\left\{a_{1}, b_{1}, c_{1}, c_{2}, a_{3}, b_{3}\right\}$. By (26) the antipath $V(H) \backslash v$ does not go through c_{1}, c_{2} and we may assume up to a symmetry that $V(Q) \cap\left\{b_{1}, b_{3}\right\}$ is empty. If H goes through both a_{1}, a_{3} then H must contains a vertex that sees a_{3} and misses a_{1}, a contradiction. If H goes through a_{1} and not through a_{3} then H has even length by (24). If H goes through a_{3} and not through a_{1} then H has even length by (25). If H goes through none of a_{1}, a_{3} then H may be viewed as an antihole of G. In every case, H has even length. This proves (27).
(28) G^{\prime} has no even skew partition.

Suppose that G^{\prime} has an even skew partition $\left(E^{\prime}, F^{\prime}\right)$ with a split $\left(E_{1}^{\prime}, E_{2}^{\prime}, F_{1}^{\prime}, F_{2}^{\prime}\right)$. Starting from F^{\prime}, we shall build an even skew cutset F of G which contradicts the properties of G.

By the property k of G, F^{\prime} cannot be a star cutset centered at one of $a_{1}, b_{1}, c_{1}, c_{2}, a_{3}, b_{3}$. For the same reason, F^{\prime} cannot be a subset of one of $\left\{c_{1}, c_{2}, a_{3}, b_{3}\right\},\left\{a_{1}, c_{1}, a_{3}\right\} \cup A_{3},\left\{b_{1}, c_{2}, b_{3}\right\} \cup B_{3}$. Thus, $c_{1} \notin F^{\prime}$ and $c_{2} \notin F^{\prime}$. Since a_{1}, b_{1} are non-adjacent with no common neighbors, they are not both in F^{\prime}. Similarly a_{1}, b_{3} are not both in F^{\prime} and a_{3}, b_{1} are not both in F^{\prime}. From now on we assume $b_{1} \notin F^{\prime}$. Up to symmetry we may assume $\left\{c_{1}, c_{2}, b_{1}\right\} \subset E_{1}^{\prime}$, implying $\left\{a_{1}, a_{3}, c_{1}, c_{2}, b_{1}, b_{3}\right\} \cap E^{\prime} \subset E_{1}^{\prime}$.

Let v be any vertex of E_{2}^{\prime}. Since $\left\{a_{1}, a_{3}, c_{1}, c_{2}, b_{1}, b_{3}\right\} \cap E^{\prime} \subset E_{1}^{\prime}$, we have $v \in X_{2}$. If one of a_{1}, a_{3} is in F, put $A_{1}^{\prime}=\left\{a_{1}\right\}$, else put $A_{1}^{\prime}=\emptyset$. Now $F=A_{1}^{\prime} \cup F^{\prime} \backslash\left\{a_{3}, b_{3}\right\}$ is a skew cutset of G that separates v from the interior vertices of the path induced by X_{1}. It suffices now to prove that F is an even skew cutset of G.

Let P be an outgoing path of G from F to F. We shall prove that P has even length.

If $a_{1}, \notin F$, then $F \subset X_{2}$ and the end-vertices of P are both in X_{2}. So Lemma 2.6 applies to P. Suppose that the first outcome of Lemma 2.6 is satisfied: $V(P) \subseteq X_{2} \cup\left\{a_{1}, b_{1}\right\}$. Hence, P may be viewed as an outgoing path from F^{\prime} to F^{\prime}, so P has even length since F^{\prime} is an even skew cutset of G^{\prime}. Suppose now that the second outcome of Lemma 2.6 is satisfied: $P=c-\cdots-a_{2}-a_{1}-X_{1}-b_{1}-b_{2}-\cdots-c^{\prime}$. Put $P^{\prime}=c-P-a_{2}-a_{1}-c_{1}-c_{2}-b_{1}-b_{2}-P-c^{\prime}$. The paths P and P^{\prime} have same parity and P^{\prime} is an outgoing path of G^{\prime} from F^{\prime} to F^{\prime}. So P^{\prime} and P has even length since F^{\prime} is an even skew cutset of G^{\prime}.

If $a_{1} \in F$ then $F \subset X_{2} \cup\left\{a_{1}\right\}$ and Lemma 2.7 applies. If Outcome 1 of the lemma holds, then P has even length. If Outcome 2 of the lemma holds then we may assume $a_{1} \in F \backslash F^{\prime}$ and a_{1} is an end of P, since otherwise the
proof works like in the paragraph above. This implies $a_{3} \in F^{\prime}$. We build a path P^{\prime} of G^{\prime} that is outgoing from F^{\prime} to F^{\prime} with same parity than P, by replacing $\left\{a_{1}\right\}$ by $\left\{a_{3}, c_{1}, a_{1}\right\}$. So P has even length. If Outcome 3 of the lemma holds then $P=a_{1}-X_{1}-b_{1}-b_{2}-\cdots-c$ where $b_{2} \in B_{2}, c \in X_{2}$. Note that one of a_{1}, a_{3} is in F^{\prime}. If $a_{3} \in F^{\prime}$, then we put $P^{\prime}=a_{3}-c_{1}-c_{2}-b_{1}-b_{2}-P-c$. If $a_{3} \notin F^{\prime}$ then $a_{1} \in F^{\prime}$ and we put $P^{\prime}=a_{1}-c_{1}-c_{2}-b_{1}-b_{2}-P-c$. In every cases P has even length.

Now, let Q be an antipath of G of length at least 5 with all its interior vertices in F and with its end-vertices outside of F. We shall prove that Q has even length.

If $a_{1} \notin F$, then $F \subset X_{2}$ and the interior vertices of Q are all in X_{2}. So Lemma 2.8 applies: $V(Q) \subseteq X_{2} \cup\{a\}$ where $a \in\left\{a_{1}, b_{1}\right\}$. So Q may be viewed as an antipath of G^{\prime} that has even length because F^{\prime} is an even skew cutset of G^{\prime}.

If $a_{1} \in F$, we assume $a_{1} \notin F^{\prime}$ (else the proof is like in the paragraph above). Since $a_{1} \notin F^{\prime}$, we have $a_{3} \in F^{\prime}$. Note that $\left(A_{2} \backslash A_{3}\right) \cap F^{\prime}=$ $\left(A_{2} \backslash A_{3}\right) \cap F=\emptyset$. For otherwise consider a vertex a in $\left(A_{2} \backslash A_{3}\right) \cap F^{\prime}$. Then $a-a_{1}-c_{1}-a_{3}$ is an outgoing path from F^{\prime} to F^{\prime} of odd length, contradicting F^{\prime} being an even skew cutset. So, if Q is an antipath whose interior is in F, then Q does not go through $A_{2} \backslash A_{3}$. Hence, if we replace a_{1} by a_{3}, we obtain an antipath Q^{\prime} whose interior is in F^{\prime} and whose ends are not. Hence, Q has even length.

In every cases, Q has even length. This proves (28).
(29) G^{\prime} and $\overline{G^{\prime}}$ have no degenerate 2-join, no degenerate homogeneous 2-join and no star cutset.
If one of $G^{\prime}, \overline{G^{\prime}}$ has a degenerate proper 2-join, a degenerate homogeneous 2join or a star cutset, then G^{\prime} has an even skew partition by Lemma 2.10, 2.15 or 2.2. This contradicts (28). This proves (29).
(30) G^{\prime} is not basic, not a path-cobipartite graph, not a path-double split graph and has no homogeneous 2-join.

If G^{\prime} is bipartite then all the vertices of A_{2} are of the same color because of a_{1}. Because of b_{1} all the vertices of B_{2} have the same color. By the property k of G, there is an outgoing path from A_{2} to B_{2} that has odd length by (21). Thus G is bipartite, contradicting the properties of G. Hence G^{\prime} is not bipartite.

The graph $G^{\prime}\left[c_{2}, c_{1}, a_{1}, a_{3}\right]$ is a claw, so G^{\prime} is not the line-graph of a bipartite graph. $\overline{G^{\prime}}\left[a_{1}, b_{1}, a_{3}, b_{3}\right]$ is a diamond, so $\overline{G^{\prime}}$ is not the line-graph of
a bipartite graph.
Note that b_{1} has degree at least 3 in G^{\prime} by the property hof G. So, there exist in G^{\prime} a stable set of size 3 containning vertices of degree at least $3\left(\left\{b_{1}, b_{3}, c_{1}\right\}\right)$, and a vertex of degree 3 whose neighborhood induces a stable set $\left(c_{1}\right)$. Hence, by Lemma $2.16, G^{\prime}$ is not a path-cobipartite graph (and in particular, it is not the complement of a bipartite graph), not a path-double split graph (and in particular, it is not a double split graph) and G^{\prime} has no non-degenerate homogeneous 2-join. Hence by (29), G^{\prime} has no homogeneous 2-join. This proves (30).
(31) If G^{\prime} has a proper 2-join $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ then either $\left\{c_{1}, c_{2}, a_{3}, b_{3}\right\} \subset X_{1}^{\prime}$ or $\left\{c_{1}, c_{2}, a_{3}, b_{3}\right\} \subset X_{2}^{\prime}$.
Suppose not. Up to a symmetry, we have five cases to consider according to $X_{1}^{\prime} \cap\left\{c_{1}, c_{2}, a_{3}, b_{3}\right\}$. Each of them leads to a contradiction:

- $\left\{c_{1}\right\} \subset X_{1}^{\prime}$ and $\left\{c_{2}, a_{3}, b_{3}\right\} \subset X_{2}^{\prime}$

Up to a symmetry, we assume $c_{1} \in A_{1}^{\prime}$ and $c_{2}, a_{3} \in A_{2}^{\prime}$. Note that $A_{1}^{\prime}=\left\{c_{1}\right\}$ because c_{1} is the only vertex in X_{1}^{\prime} that sees both c_{2}, a_{3}. Note that a_{1} is in X_{1}^{\prime} for otherwise c_{1} is isolated in X_{1}^{\prime}. Also if a vertex x of A_{3} is in X_{1}^{\prime} then x must be in A_{1}^{\prime} since it sees a_{3}. This is impossible since x misses c_{2}. Thus $x \in X_{2}^{\prime}$. Since x sees $a_{1} \in X_{1}^{\prime}, x$ must be in B_{2}^{\prime} and a_{1} must be in B_{1}^{\prime}. So, a_{1} is a vertex of B_{1}^{\prime} that is complete to A_{1}^{\prime}, implying $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ being degenerate, contradicting (29).

- $\left\{a_{3}\right\} \subset X_{1}^{\prime}$ and $\left\{c_{1}, c_{2}, b_{3}\right\} \subset X_{2}^{\prime}$

This case is like the previous one, we just sketch it. We assume $a_{3} \in$ A_{1}^{\prime}, implying $c_{1}, b_{3} \in A_{2}^{\prime}$. Thus $A_{1}^{\prime}=\left\{a_{3}\right\}$. There is a x vertex of X_{1}^{\prime} in A_{3}. Also, $a_{1} \in X_{2}^{\prime}$ for otherwise $a_{1} \in A_{1}^{\prime}$ while missing b_{3}, a contradiction. Thus $x \in B_{1}^{\prime}$, and x is a vertex of B_{1}^{\prime} that is complete to B_{1}^{\prime}, a contradiction.

- $\left\{c_{1}, c_{2}\right\} \subset X_{1}^{\prime}$ and $\left\{a_{3}, b_{3}\right\} \subset X_{2}^{\prime}$

Up to a symmetry, we assume $c_{1} \in A_{1}^{\prime}, a_{3} \in A_{2}^{\prime}, c_{2} \in B_{1}^{\prime}, b_{3} \in B_{2}^{\prime}$. Since by (29) ($X_{1}^{\prime}, X_{2}^{\prime}$) is not degenerate, a_{3} must have a non-neighbor x in B_{2}^{\prime}. Since x must see c_{2} we have $x=b_{1}$ and $b_{1} \in B_{2}^{\prime}$. Similarly, b_{3} must have a non-neighbor in A_{2}^{\prime}, implying $a_{1} \in A_{2}^{\prime}$. Now put $Y_{1}=X_{2} \cap X_{1}^{\prime}$ and $Y_{2}=X_{2} \cap X_{2}^{\prime}$. Note that $Y_{1} \neq \emptyset$ for otherwise $X_{1}^{\prime}=\left\{c_{1}, c_{2}\right\}$ and $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ is not proper. Also $Y_{2} \neq \emptyset$ for otherwise, a_{1} is isolated in X_{2}^{\prime}. If there is an edge of G^{\prime} with an end in Y_{1} and an end y in Y_{2}, then y_{2} must be in one of $A_{2}^{\prime}, B_{2}^{\prime}$. This is a contradiction
since y misses both c_{1}, c_{2}. Thus there is no edge with an end in Y_{1} and an end Y_{2}. This contradicts the property j of G.

- $\left\{c_{1}, a_{3}\right\} \subset X_{1}^{\prime}$ and $\left\{c_{2}, b_{3}\right\} \subset X_{2}^{\prime}$

Up to a symmetry, we assume $c_{1} \in A_{1}^{\prime}, a_{3} \in B_{1}^{\prime}, c_{2} \in A_{2}^{\prime}, b_{3} \in B_{2}^{\prime}$. Since by (29) ($X_{1}^{\prime}, X_{2}^{\prime}$) is not degenerate, a_{3} must have a non-neighbor x in A_{1}^{\prime}. Since x must see c_{2} we have $x=b_{1}$ and $b_{1} \in A_{1}^{\prime}$. Similarly, b_{3} must have a non-neighbor in A_{2}^{\prime}, implying $a_{1} \in A_{2}^{\prime}$. So, $b_{1} \in A_{1}^{\prime}$, $a_{1} \in A_{2}^{\prime}$ and $a_{1} b_{1} \notin E\left(G^{\prime}\right)$, a contradiction.

- $\left\{c_{1}, b_{3}\right\} \subset X_{1}^{\prime}$ and $\left\{c_{2}, a_{3}\right\} \subset X_{2}^{\prime}$

Up to a symmetry, we assume $c_{1} \in A_{1}^{\prime}, a_{3} \in A_{2}^{\prime}, c_{2} \in A_{2}^{\prime}, b_{3} \in A_{1}^{\prime}$. There is a vertex x of X_{1}^{\prime} in B_{3} for otherwise b_{3} is isolated in X_{1}^{\prime}. Also, $b_{1} \in X_{2}^{\prime}$ for otherwise c_{2} is isolated in X_{2}^{\prime}. But b sees x. Since $b_{1} \in A_{2}^{\prime}$ is impossible because b_{1} misses c_{1} we have $b_{1} \in B_{2}^{\prime}$. Similarly, we prove $a_{1} \in B_{1}^{\prime}$. So, $b_{1} \in B_{2}^{\prime}, a_{1} \in B_{1}^{\prime}$ and $a_{1} b_{1} \notin E\left(G^{\prime}\right)$, a contradiction.

This proves (31).
(32) G^{\prime} has no non-path proper 2-join.

By (31), we may assume $\left\{c_{1}, c_{2}, a_{3}, b_{3}\right\} \subset X_{2}^{\prime}$. We claim that at most one of $c_{1}, c_{2}, a_{3}, b_{3}$ is in $A_{2}^{\prime} \cup B_{2}^{\prime}$. For otherwise, up to a symmetry there are three cases. First case, $a_{3} \in A_{2}^{\prime}, b_{3} \in B_{2}^{\prime}$, implying $A_{1}^{\prime} \subset A_{3}$ and $B_{1}^{\prime} \subset B_{3}$, implying ($X_{1}^{\prime}, X_{2}^{\prime}$) being degenerate because any vertex of A_{1}^{\prime} is complete to B_{1}^{\prime}, contradicting (29). Second case, $a_{3} \in A_{2}^{\prime}, c_{1} \in B_{2}^{\prime}$ implying $A_{1}^{\prime} \subset A_{3}$, $a_{1} \in B_{1}^{\prime}$, implying ($X_{1}^{\prime}, X_{2}^{\prime}$) being degenerate because $a_{1} \in B_{1}^{\prime}$ is to complete to A_{1}^{\prime}, contradicting (29). Third case, $a_{3} \in A_{2}^{\prime}, c_{2} \in B_{2}^{\prime}$ implying $b_{1} \in B_{1}^{\prime}$. Also $b_{3} \in C_{2}^{\prime}$ because b_{3}, c_{2} (resp. b_{3}, a_{3}) have no common neighbors in X_{1}^{\prime}. So $B_{3} \subset X_{2}^{\prime}$ and because of $b_{1}, B_{3} \subset B_{2}^{\prime}$. Because of a_{3} there is a vertex a of A_{1}^{\prime} in A_{3}. Hence a is a vertex of A_{1}^{\prime} that has a neighbor in B_{2}^{\prime}, a contradiction. The three cases yield a contradiction, so our claim is proved. Thus up to a symmetry we assume that we are in one of the three cases that we describe below:

- $a_{3} \in A_{2}^{\prime}$. Moreover, $a_{1} \in X_{2}^{\prime}$ because $c_{1} \in C_{2}^{\prime}$. Because of a_{3} there is a vertex of X_{1}^{\prime} in A_{3}, implying $a_{1} \in A_{2}^{\prime}$ and $B_{3} \subset A_{2}^{\prime}$.
- $c_{1} \in A_{2}^{\prime}$. This implies $a_{1} \in A_{1}^{\prime}$. Since $a_{3} \in C_{2}^{\prime}$, we have $A_{3} \subset X_{2}^{\prime}$ and $A_{3} \subset A_{2}^{\prime}$ because of a_{1}. Note that $A_{1}^{\prime}=\left\{a_{1}\right\}$ because a_{1} is the only neighbor of c_{1} in X_{1}^{\prime}.
- $a_{2} \notin A_{2}^{\prime}$ and $c_{1} \notin A_{2}^{\prime}$. Moreover, $a_{1} \in X_{2}^{\prime}$ and $A_{3} \subset X_{2}^{\prime}$.

In either cases, $c_{2}, b_{3} \in C_{2}^{\prime}$, implying $\left\{b_{1}\right\} \cup B_{3} \subset X_{2}^{\prime}$. Note that $X_{1}^{\prime} \subset$ $V(G)$. Let us now put: $X_{1}^{\prime \prime}=X_{1}^{\prime}, X_{2}^{\prime \prime}=V(G) \backslash X_{1}^{\prime \prime}, A_{1}^{\prime \prime}=A_{1}^{\prime}, B_{1}^{\prime \prime}=B_{1}^{\prime}$, $B_{2}^{\prime \prime}=B_{2}^{\prime}$. If $c_{1} \in A_{2}^{\prime}$ then put $A_{2}^{\prime \prime}=\left(A_{2}^{\prime} \cap X_{2}\right) \cup\left(N_{G}\left(a_{1}\right) \cap X_{1}\right)$. If $c_{1} \notin A_{2}^{\prime}$ then put $A_{2}^{\prime \prime}=A_{2}^{\prime} \backslash\left\{a_{3}\right\}$. From the definitions it follows that $\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)$ is a partition of $V(G)$, that $A_{1}^{\prime \prime}, B_{1}^{\prime \prime} \subset X_{1}^{\prime \prime}, A_{2}^{\prime \prime}, B_{2}^{\prime \prime} \subset X_{2}^{\prime \prime}$, that $A_{1}^{\prime \prime}$ is complete to $A_{2}^{\prime \prime}$, that $B_{1}^{\prime \prime}$ is complete to $B_{2}^{\prime \prime}$ and that there are no other edges between $X_{1}^{\prime \prime}$ and $X_{2}^{\prime \prime}$. So, $\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)=\left(X_{1}^{\prime}, V(G) \backslash X_{1}^{\prime}\right)$ is a 2 -join of G.

Let us put $D=B_{3} \cup X_{1} \cup\left\{a_{1}\right\}$. By the properties above, $D \subset X_{2}^{\prime \prime} \subset$ $V(G)$ and $G[D]$ is connected. We claim that $\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)$ is a proper 2-join of G. Every component of $X_{1}^{\prime \prime}$ meets $A_{1}^{\prime \prime}, B_{1}^{\prime \prime}$: this follows from $A_{1}^{\prime \prime}=A_{1}^{\prime}$, $B_{1}^{\prime \prime}=B_{1}^{\prime}$ and from the fact that $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ is a proper 2-join of G^{\prime}. Let E be a connected component of $X_{2}^{\prime \prime}$. If $E \cap D=\emptyset$ then E is a component of $G\left[\left(X_{2} \cup\left\{a_{1}\right\}\right) \cap X_{2}^{\prime \prime}\right]=G^{\prime}\left[\left(X_{2} \cup\left\{a_{1}\right\}\right) \cap X_{2}^{\prime \prime}\right]$, so E meets $A_{2}^{\prime \prime} \cap A_{2}^{\prime}$ and $B_{2}^{\prime \prime} \cap B_{2}^{\prime}$ because ($X_{1}^{\prime}, X_{2}^{\prime}$) is a proper 2-join of G^{\prime}. If $E \cap D \neq \emptyset$ then $D \subset E$ since $G[D]$ is connected. We put $E^{\prime}=(E \backslash D) \cup\left\{c_{1}, c_{2}, a_{3}, b_{3}, b_{1}\right\} \cup B_{3}$. Since E^{\prime} is a component of X_{2}^{\prime} it meets $A_{2}^{\prime}, B_{2}^{\prime}$ because $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ is proper. This implies that E meets $A_{2}^{\prime \prime}$ and $B_{2}^{\prime \prime}$. Note that $G\left[X_{1}^{\prime \prime}\right]$ is not an outgoing path of length 2 or 3 from $A_{1}^{\prime \prime}$ to $B_{1}^{\prime \prime}$, because $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ is a proper 2-join of G^{\prime}. Also $G\left[X_{2}^{\prime \prime}\right]$ is not an outgoing path from $A_{2}^{\prime \prime}$ to $B_{2}^{\prime \prime}$ because b_{1} has at least 2 neighbors in $X_{2}^{\prime \prime}\left(c_{2}\right.$ and one in $\left.B_{3}\right)$ while having degree at least 3 by the property h of G. This proves our claim.

Since $\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)$ is proper, we know by the properties of G that $\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)$ is a path 2-join of G. If $X_{2}^{\prime \prime}$ is the path-side of $\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)$ then b_{1} is an interior vertex of this path while having degree at least 3 , a contradiction. Hence, $X_{1}^{\prime \prime}$ is the path-side of $\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)$. Thus $\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)$ is a path 2-join of G because $X_{1}^{\prime \prime}=X_{1}^{\prime} . \quad$ This proves (32).
(33) $\overline{G^{\prime}}$ has no proper 2-join.

In the proof of (33), the word "neighbor" refers to the neighborhood in $\overline{G^{\prime}}$. Let $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ be a proper 2 -join of $\overline{G^{\prime}}$.

If $c_{1} \in C_{1}^{\prime}$ then $X_{2}^{\prime} \subset\left\{a_{1}, a_{3}, c_{2}\right\}$ implying $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ being degenerate or non-proper, contradicting (29). Thus, we may assume $c_{1} \in A_{1}^{\prime}$. Similarly c_{2} must be in one of $A_{1}^{\prime}, A_{2}^{\prime}, B_{1}^{\prime}, B_{2}^{\prime}$. But $c_{2} \in A_{2}^{\prime}$ is impossible because c_{2} is not a neighbor of c_{1}. Also $c_{1} \in A_{1}^{\prime}$ is impossible because otherwise $B_{2}^{\prime}=\emptyset$ since no vertex of $\overline{G^{\prime}}$ can be a non-neighbor of both c_{1}, c_{2}. Thus c_{2} is in one of $B_{1}^{\prime}, B_{2}^{\prime}$.

If $c_{2} \in B_{1}^{\prime}$ then $A_{2}^{\prime} \subset\left\{b_{1}, b_{3}\right\}$ because of c_{2} and $B_{2}^{\prime} \subset\left\{a_{1}, a_{3}\right\}$ because of c_{1}. But b_{1} must be in A_{2}^{\prime} because it is a common neighbor of c_{1}, a_{1}, a_{3}.

Thus b_{1} is a vertex of A_{2}^{\prime} that is complete to B_{2}^{\prime}, implying $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ being degenerate, contradicting (29).

If $c_{2} \in B_{2}^{\prime}$ then there is a non-neighbor of c_{2} in A_{2}^{\prime} for otherwise $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ is degenerate. Thus at least one of b_{1}, b_{3} is in A_{2}^{\prime}. Similarly, because of c_{1}, at least one of a_{1}, a_{3} must be in B_{1}^{\prime}. But since there is no edge of $\overline{G^{\prime}}$ between $B_{1}^{\prime}, A_{2}^{\prime}$, we have $a_{3} \in B_{1}^{\prime}, b_{3} \in A_{2}^{\prime}$. Since a_{3}, b_{3}, c_{2} are neighbors of a_{1}, we know $a_{1} \in B_{2}^{\prime}$. Now b_{1} is a neighbor of $c_{1} \in A_{1}^{\prime}, a_{3} \in B_{1}^{\prime}, a_{1} \in B_{2}^{\prime}, b_{3} \in A_{2}^{\prime}$, a contradiction. This proves (33).
(34) $\overline{G^{\prime}}$ is not path-cobipartite, not a path-double split graph, has no homogeneous 2-join and has no flat path of length at least 3.

Else, by Lemma 2.3 there is a contradiction with one of $(30),(28)$ or (33). This proves (34).
(35) $f\left(G^{\prime}\right)+f\left(\overline{G^{\prime}}\right)<f(G)+f(\bar{G})$.

Every vertex in $\left\{a_{1}, b_{1}\right\} \cup A_{3} \cup B_{3}$ has degree at least 3 in G^{\prime}. For a_{1}, this is a property of G and for vertices in $A_{3} \cup B_{3}$, this is clear. Hence no vertex in $\left\{a_{1}, b_{1}\right\} \cup A_{3} \cup B_{3}$ can be an interior vertex of a flat path of G^{\prime}, and no vertex in $\left\{c_{1}, c_{2}, a_{3}, b_{3}\right\}$ can be in a maximal flat path of G^{\prime} of length at least 3 . Hence, every maximal flat path of G^{\prime} of length at least 3 is a maximal flat path of G, implying $f\left(G^{\prime}\right) \leq f(G)$. But in fact $f\left(G^{\prime}\right)<f(G)$ because X_{1} is a flat path of G that is no more a flat path in G^{\prime}. By (34) we know $0=f\left(\overline{G^{\prime}}\right) \leq f(\bar{G})$. We add these two inequalities. This proves (35).

Let us now finish the case. By (27), G^{\prime} is Berge. By (30), G^{\prime} is not basic, not path-cobipartite, not a path-double split graph, and has no homogeneous 2 -join. By $(28), G^{\prime}$ has no even skew partition. By (32), G^{\prime} has no proper non-path 2-join. By (33) $\overline{G^{\prime}}$ has no proper 2-join. By $(34), \overline{G^{\prime}}$ is not a path-cobipartite graph, a path-double split graph and has no homogeneous 2-join. So, G^{\prime} is a counter-example to the theorem we are proving now. Hence there is a contradiction between the initial choice of G and (35). This completes the proof in Case 2.

Case 3: We are neither in Case 1 nor in Case 2. In particular, $\left(X_{1}, X_{2}\right)$ is not a cutting 2-join.

We consider the graph G^{\prime} obtained from G by replacing X_{1} by a path of length $2-\varepsilon$ from a_{1} to b_{1}. Possibly, this path has length 2. In this case we denote by c_{1} its unique interior vertex. Else, this path has length 1 , and for convinience we put $c_{1}=a_{1}$ (thus c_{1} is a vertex of G^{\prime} whatever ε). Note that $\left(V\left(G^{\prime}\right) \backslash X_{2}, X_{2}\right)$ is not a proper 2-join of G since $V\left(G^{\prime}\right) \backslash X_{2}$ is a path of length 1 or 2 from a_{1} to b_{1}. Note that $a_{1}-c_{1}-b_{1}$ a flat path of G^{\prime} (possibly
of length 1 when $a_{1}=c_{1}$) because if there is a common neighbor c of a_{1}, b_{1}, or if $c_{1} \neq a_{1}$ has degree at least 3 , then $\left(X_{1}, X_{2}\right)$ is not a 2-join of G. Note that G^{\prime} is what we call in section 2 the piece G_{2} of G with respect to the 2-join $\left(X_{1}, X_{2}\right)$.
(36) G^{\prime} has no even skew partition, and none of $G, \overline{G^{\prime}}$ has a star cutset, a degenerate proper 2-join or a degenerate homogeneous 2-join.
Since G^{\prime} is a piece of G, and since (X_{1}, X_{2}) is not cutting, by Lemma 2.13, if G^{\prime} has an even skew partition then so is G, contradicting the properties of G. By Lemma 2.2, 2.10 and 2.15, G, \bar{G} have no star cutset, no degenerate 2 -join and no degenerate homogeneous 2-join. This proves (36).
(37) G^{\prime} is Berge.

Any hole H^{\prime} of G^{\prime} yield a hole of G of the same parity after possibly subdivising the flat path $a_{1}-c_{1}-b_{1}$. Also, a_{1}, b_{1} cannot both be in an antihole of G^{\prime} because in an antihole of length at least 7 , any pair of vertex have a common neighbor. Also, if $c_{1} \neq a_{1}$ then c_{1} does not lie in an antihole of G^{\prime} of length at least 7 because c_{1} has degree 2. Thus, any antihole of G^{\prime} may be viewed as an antihole of G. Thus, every holes and every antiholes in G^{\prime} are even. This proves (37).
(38) G^{\prime} has no proper non-path 2-join.

Let ($X_{1}^{\prime}, X_{2}^{\prime}, A_{1}^{\prime}, B_{1}^{\prime}, A_{2}^{\prime}, B_{2}^{\prime}$) be a split of a proper non-path 2-join of G^{\prime}. If $a_{1} \in X_{1}^{\prime}, b_{1} \in X_{1}^{\prime}$ then $c_{1} \in X_{1}^{\prime}$ since otherwise c_{1} is isolated in X_{2}^{\prime}. If $c_{1} \neq a_{1}$ then $c_{1} \in C_{1}^{\prime}$ because c_{1} has degree 2 . So, by subdivising $a_{1}-c_{1}-b_{1}$ we obtain a non-path proper 2-join of G, contradicting the properties of G. Thus, since $a_{1}-c_{1}-b_{1}$ is a flat path of G^{\prime}, up to a symmetry, we may assume $c_{1} \in B_{1}^{\prime}, b_{1} \in B_{2}^{\prime}$.

Suppose $\left|B_{2}^{\prime}\right|=1$. Then no vertex of A_{2}^{\prime} has a neighbor in B_{2}^{\prime} for otherwise, $\left(X_{1}, X_{2}\right)$ is degenerate. Thus, $\left(X_{1}^{\prime} \cup B_{2}^{\prime}, X_{2}^{\prime} \backslash B_{2}^{\prime}\right)$ is a non-path proper 2-join of G^{\prime}, and by subvising $a_{1} b_{1}$, we obtain a non-path proper 2join of G, contradicting the properties of G. Thus, $\left|B_{2}^{\prime}\right| \geq 2$. In particular, $c_{1}=a_{1}$, and similarly $\left|B_{1}^{\prime}\right| \geq 2$.

In G, a_{1} is complete to $B_{2}^{\prime} \backslash\left\{b_{1}\right\}$, and b_{1} is complete to $B_{1}^{\prime} \backslash\left\{a_{1}\right\}$. We put $A_{3}=B_{2}^{\prime} \backslash\left\{b_{1}\right\}, B_{3}=B_{1}^{\prime} \backslash\left\{a_{1}\right\}$. In G, X_{1} is a path from a_{1} to $b_{1}, A_{3} \subset A_{2}$ and $B_{3}=\subset B_{2}$ and A_{3} is complete to B_{3}. We claim that every path of G outgoing from $A_{3} \cup\left\{b_{1}\right\}$ to $A_{3} \cup\left\{b_{1}\right\}$ has even length. Note that after possibly deleting c_{1}, c_{2}, such a path may be view as a path P^{\prime} of G^{\prime} that has same parity than P. In G^{\prime}, P^{\prime} is an outgoing path from B_{1}^{\prime} to B_{1}^{\prime} and by Lemma 2.5, P has even length as claimed. We claim that every outgoing
antipath of G whose interior is in $A_{3} \cup\left\{b_{1}\right\}$ and whose ends are outside of $A_{3} \cup\left\{b_{1}\right\}$ has even length. Let Q be such an antipath of length at least 5 . Note that c_{1}, c_{2} are not in Q since every vertex in Q have degree at least 3 . Thus Q is an outgoing path of G^{\prime} whose interior is in B_{1}^{\prime} and whose ends are not in B_{1}^{\prime} and by Lemma 2.5, P has even length as claimed. The same properties hold with $B_{3} \cup\left\{a_{1}\right\}$. Now, A_{3}, B_{3} show that (X_{1}, X_{2}) satisfies the items $1-5$ of the definition of cutting 2 -joins of type 2 , contradicting that we are not in Case 2 of the proof of our theorem. This proves (38).
(39) $\overline{G^{\prime}}$ has no proper 2-join.

Let us consider a proper 2 -join of $\overline{G^{\prime}}$ with a split ($X_{1}^{\prime}, X_{2}^{\prime}, A_{1}^{\prime}, B_{1}^{\prime}, A_{2}^{\prime}, B_{2}^{\prime}$). If $c_{1} \neq a_{1}$ then c_{1} has degree $n-2$ in $\overline{G^{\prime}}$. Thus, up to a symmetry, we may assume $c_{1} \in B_{1}^{\prime}$. Since ($X_{1}^{\prime}, X_{2}^{\prime}$) is not degenerate, c_{1} must have a nonneighbor in A_{1}^{\prime}. Thus, up to a symmetry, we may assume $a_{1} \in A_{1}^{\prime}, b_{1} \in A_{2}^{\prime}$. Now, since $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ is not degenerate, there exists a vertex of B_{2}^{\prime} that is a common neighbor of a_{1}, b_{1} in G, contradicting $a_{1}-c_{1}-b_{1}$ being a flat path of G. We proved $a_{1}=c_{1}$.

Since a_{1}, b_{1} form a flat edge of G^{\prime}, they must be non-adjacent in $\overline{G^{\prime}}$ with no common non-neighbor. Thus, up to a symmetry we have to deal with three cases:

- $a_{1} \in C_{1}^{\prime}, b_{1} \in X_{2}^{\prime}$.

Since in $G^{\prime} a_{1} b_{1}$ is flat, in $\overline{G^{\prime}} a_{1}$ is complete to $A_{1}^{\prime} \cup B_{1}^{\prime}$ or up to a symmetry $b_{1} \in A_{2}^{\prime}$ while being complete to B_{2}^{\prime}. Thus, $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ is a degenerate 2 -join, a contradiction.

- $a_{1} \in A_{1}^{\prime}, b_{1} \in B_{2}^{\prime}$.

Since in $G^{\prime}, a_{1} b_{1}$ is flat, in $\overline{G^{\prime}}, a_{1}$ must be complete to $\left(A_{1}^{\prime} \cup C_{1}^{\prime}\right) \backslash\left\{a_{1}\right\}$.
Suppose first $C_{1}^{\prime} \neq \emptyset$. There is at least a vertex of C_{1}^{\prime} that has a neighbor in B_{1}^{\prime} for otherwise $A_{1}^{\prime} \cup A_{2}^{\prime}$ is a skew cutset of $\overline{G^{\prime}}$, implying ($X_{1}^{\prime}, X_{2}^{\prime}$) being degenerate. If a_{1} has a neighbor in B_{1} then by Lemma 2.4 every outgoing path from A_{1}^{\prime} to B_{1}^{\prime} has odd length. Thus, a_{1} must see every vertex of B_{1}^{\prime} that has a neighbor in C_{1}^{\prime}. This implies that $A_{1}^{\prime} \cup\left(N\left(a_{1}\right) \cap B_{1}^{\prime}\right)$ is a star cutset of G^{\prime}, centered at a_{1} and separating C_{1}^{\prime} and separarting from X_{2}^{\prime}. Thus, a_{1} has no neighbor in B_{1}. Hence, there is at least an outgoing path of even length from A_{1}^{\prime} to B_{1}^{\prime}, implying that no vertex in A_{1}^{\prime} has a neighbor in B_{1}^{\prime}. If $\left|A_{1}^{\prime}\right| \geq 2$ then $\left\{a_{1}\right\} \cup C_{1}^{\prime} \cup B_{2}^{\prime}$ is a star cutset centered at a_{1} that separates $A_{1}^{\prime} \backslash\left\{a_{1}\right\}$ from B_{2}^{\prime}. Thus, $\left|A_{1}\right|=1$. Since, every outgoing path from A_{1}^{\prime} to B_{1}^{\prime}
has even length, we know that every outgoing path from A_{2}^{\prime} to B_{2}^{\prime} has even length. Thus, $C_{2}^{\prime} \neq \emptyset$. By the same proof than above, this implies $B_{2}^{\prime}=\left\{b_{1}\right\}$. Note that every vertex in C_{1}^{\prime} has a neighbor in B_{1}^{\prime} because a vertex of C_{1}^{\prime} with no neighbor in B_{1}^{\prime} can be separated from the rest of the graph by a star cutset centered at a_{1}. Every vertex in C_{1}^{\prime} has a non-neighbor in B_{1}^{\prime} because a vertex of C_{1}^{\prime} complete to B_{1}^{\prime} would imply ($X_{1}^{\prime}, X_{2}^{\prime}$) being degenerate. Note also that every vertex in B_{1}^{\prime} has a neighbor in C_{1}^{\prime} for otherwise $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ is degenerate. Every vertex in B_{1}^{\prime} has a non-neighbor in C_{1}^{\prime} because if there is a vertex $b \in B_{1}^{\prime}$ complete to C_{1}^{\prime} then $\left|B_{1}^{\prime}\right| \geq 2$ implyies that $\{b\} \cup C_{1}^{\prime} \cup B_{2}^{\prime}$ is a star cutset separating $B_{1}^{\prime} \backslash\{b\}$ from A_{2}^{\prime}, and $\left|B_{1}^{\prime}\right|=1$ implies that every vertex in C_{1}^{\prime} is complete to $A_{1}^{\prime} \cup B_{1}^{\prime}$, a case already treated. Let us come back to G : in G, X_{1} is a path from a_{1} to b_{1}. Let us denote by E its interior. We observe that $\left(C_{1}^{\prime}, B_{1}^{\prime},\left\{b_{1}\right\},\left\{a_{1}\right\}, E, A_{2}^{\prime} \cup C_{2}^{\prime}\right)$ is an homogeneous 2-join of G, contradicting the properties of G.
We proved $C_{1}^{\prime}=\emptyset$. By the same way, $C_{2}^{\prime}=\emptyset$. Thus, $\left(A_{1}^{\prime} \cup B_{2}^{\prime}, A_{2}^{\prime} \cup B_{1}^{\prime}\right)$ is a non-path proper 2-join of G^{\prime}, contradicting (38).

- $a_{1} \in A_{1}^{\prime}, b_{1} \in B_{1}^{\prime}$.

Since $a_{1}-b_{1}$ is a flat edge of $G^{\prime}, C_{2}^{\prime}=\emptyset$. If $C_{1}^{\prime}=\emptyset$, then just like above ($A_{1}^{\prime} \cup B_{2}^{\prime}, A_{2}^{\prime} \cup B_{1}^{\prime}$) is a non-path proper 2-join of G^{\prime}, contradicting (38). So, $C_{1}^{\prime} \neq \emptyset$. Hence, $\left(A_{2}^{\prime}, B_{2}^{\prime}, B_{1}^{\prime}, A_{1}^{\prime}, X_{1} \backslash\left\{a_{1}, b_{1}\right\}, C_{1}^{\prime}\right)$ is an homogeneous 2-join of G, contradicting the properties of G.

This proves (39).
(40) G^{\prime} is neither a bipartite graph nor the line-graph of a bipartite graph.

Subdivising flat paths of a line-graph of a bipartite graph (resp. of a bipartite graph) into a path of the same parity yields a line-graph of a bipartite graph (resp. a bipartite graph). Thus, if G^{\prime} is the line-graph of a bipartite graph or a bipartite graph, then so is G, contradicting the properties of G. This proves (40).
(41) $\overline{G^{\prime}}$ is not the line-graph of a bipartite graph.

Suppose that $\overline{G^{\prime}}$ is the line-graph of bipartite graph. If $c_{1} \neq a_{1}$ then by the properties of G there exists an outgoing path of even length from A_{2} to B_{2} whose interior is in C_{2}. Thus, there is a vertex $c \in C_{2}$. Since $\left(X_{1}, X_{2}\right)$ is not degenerate, c_{2} has at least a non-neighbor b in one of A_{2}, B_{2}, say B_{2} up to symmetry. Now $\left\{a_{1}, c_{1}, c, b\right\}$ induces a diamond of $\overline{G^{\prime}}$, a contradiction. We prove $a_{1}=c_{1}$.

Let B be a bipartite graph such that $G=\overline{L(B)}$. Let (X, Y) be a bipartition of B. So, a_{1}, b_{1} may be seen as edges of B. Let us suppose $a_{1}=a_{X} a_{Y}$ and $b_{1}=b_{X} b_{Y}$ where $a_{X}, b_{X} \in X$ and $a_{Y}, b_{Y} \in Y$. Note that these four vertices of B are pairwise distinct since in $L(B)=\overline{G^{\prime}}, a_{1}$ misses b_{1}. Since $a_{1} b_{1}$ is flat in G^{\prime}, every edge of B is either adjacent to a_{X}, a_{Y}, b_{X} or b_{Y}. Thus, the vertices of $L(B)=\overline{G^{\prime}}$ different of a_{1}, b_{1} partition into six sets:

- A_{X}, the sets of the edges of B seing a_{X} and missing b_{Y};
- A_{Y}, the sets of the edges of B seing a_{Y} and missing b_{X};
- B_{X}, the sets of the edges of B seing b_{X} and missing a_{Y};
- B_{Y}, the sets of the edges of B seing b_{Y} and missing a_{X};
- possibly a single vertex c representing the edge $a_{X} b_{Y}$;
- possibly a single vertex d representing the edge $a_{Y} b_{X}$.

Suppose $\left|A_{X}\right| \geq 2$. Then, $\left|B_{X}\right| \geq 1$ for otherwise one of $\left\{a_{1}\right\},\left\{a_{1}, c\right\}$ is a star cutset of $\overline{G^{\prime}}$ separating A_{X} from b_{1}. We observe that ($A_{X} \cup B_{X}, V\left(G^{\prime}\right) \backslash$ $\left.\left(A_{X} \cup B_{X}\right)\right)$ is a 2-join of $\overline{G^{\prime}}$. By (39), this 2-join is not proper. Since $\left|A_{X}\right| \geq 2$, since $V\left(G^{\prime}\right) \backslash\left(A_{X} \cup B_{X}\right)$ does not induce a path of $\overline{G^{\prime}}$ of length at most 2, there is either a component of $A_{X} \cup B_{X}$ that does not meet A_{X} and B_{X} or a component of $V\left(G^{\prime}\right) \backslash\left(A_{X} \cup B_{X}\right)$ that does not meet a_{1} and b_{1}. In both cases, there is a star cutset of $\overline{G^{\prime}}$ centered at one of a_{1}, b_{1}, a contradiction. Thus, $\left|A_{X}\right| \leq 1$, and similarly $\left|B_{X}\right| \leq 1,\left|A_{X}\right| \leq 1$, $\left|B_{Y}\right| \leq 1$. In the case when $\left|A_{X}\right|=\left|B_{X}\right|=\left|A_{Y}\right|=\left|B_{Y}\right|=1$ and when c, d are both vertices of G^{\prime}, we observe that $\overline{G^{\prime}}$ is the self-complementary graph $L\left(K_{3,3} \backslash e\right)$. Hence, G^{\prime} is an induced subgraph of the line-graph of a bipartite graph, and G^{\prime} is the line-graph of a bipartite graph, contradicting (40). This proves (41).
(42) G^{\prime} is not a path-cobipartite graph.

If G^{\prime} is a path-cobipartite graph then it is partionned into two cliques A and B and a path P joinning, like in the definition, a vertex a of A to a vertex b of B. Suppose first $P=\emptyset$. If $a_{1} \in A, b_{1} \in A$, then since $a_{1} b_{1}$ is a flat edge of G^{\prime} we have $|A|=2$. If a vertex c of B sees none of a_{1}, b_{1} then $B \backslash c$ is a star-cutset of G^{\prime} separating c from $a_{1} b_{1}$. Thus $\left\{a_{1}\right\} \cup N\left(a_{1}\right)$ and $\left\{b_{1}\right\} \cup N\left(b_{1}\right)$ are two cliques of G^{\prime} that partition $V\left(G^{\prime}\right)$. Thus, we may always assume that $a_{1} \in A, b_{1} \in B$. So, G is obtained by subdivising $a_{1} b_{1}$
implying G being a path-cobipartite graph, contradicting the properties of G.

Thus $P \neq \emptyset$. Note that $(P \cup\{a, b\}, A \backslash\{a\} \cup B \backslash\{b\})$ is a 2 -join of G^{\prime}. Also, $G^{\prime}[A \backslash\{a\} \cup B \backslash\{b\}]$ is connected because otherwise, any vertex of P is a star cutset of G^{\prime}, contradicting. Also, $G^{\prime}[A \backslash\{a\} \cup B \backslash\{b\}]$ is not a single edge, for otherwise G^{\prime} is bipartite, a case already treated. Thus this 2-join is proper, and so it is not degenerate. In particular, every vertex in $A \backslash\{a\}$ has a neighbor and a non-neighbor in $B \backslash\{b\}$, implying $|A| \geq 3,|B| \geq 3$. If at least one a_{1}, b_{1} is on P then the graph G obtained by subdivising $a_{1} b_{1}$ is again a path-cobipartite graph, contradicting the properties of G. Thus since $a_{1} b_{1}$ is a flat edge of G^{\prime}, we may assume $a_{1} \in A \backslash\{a\}, b_{1} \in$ $B \backslash\{b\}$. The graph G is obtained by subdivising $a_{1} b_{1}$ into a path Q. Now $\left(P \cup Q \cup\{a, b\}, V\left(G^{\prime}\right) \backslash(P \cup Q \cup\{a, b\})\right.$ is a 2-join of G. By the properties of G this 2-join must be either a path 2-join or a non-proper 2-join, meaning that $V\left(G^{\prime}\right) \backslash(P \cup Q \cup\{a, b\})$ is a single edge. Now we observe that G is the line-graph of a bipartite graph (it is in fact a graph called prism in [4]), contradicting the properties if G. This proves (42).
(43) G^{\prime} is not a path-double split graph.

Suppose that G^{\prime} is a path-double split graph. Let $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right\}, B^{\prime}=$ $\left\{b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right\}, C^{\prime}=\left\{c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right\}, D^{\prime}=\left\{d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right\}$ and E^{\prime} be sets of vertices of G^{\prime} that are like in the definition. If $a_{1} \in A^{\prime} \cup E^{\prime}$ and $b_{1} \in B^{\prime} \cup E^{\prime}$, then G is obtained from G^{\prime} by subdivising the flat path $a_{1}-c_{1}-b_{1}$. If this yields a path of even length between a vertex a_{i}^{\prime} and b_{i}^{\prime}, then this path together with a neighbor of a_{i}^{\prime} in $C^{\prime} \cup D^{\prime}$ and a neighbor of b_{i}^{\prime} in $C^{\prime} \cup D^{\prime}$ that are adjacent, yields an odd hole of G. Thus every path with an end in A^{\prime}, and end in B^{\prime} and interior in E has odd length, and G is a path-double split graph contradicting the properties of G. The case when $a_{1} \in B^{\prime} \cup E, b_{1} \in A^{\prime} \cup E$ is symmetric. Since $a_{1}-c_{1}-b_{1}$ is a flat path of G^{\prime}, there is only one case left up to a symmetry: $a_{1}=c_{1},\left|C^{\prime}\right|=\left|D^{\prime}\right|=2, a_{1}=c_{1}^{\prime}, b_{1}=c_{2}^{\prime}$ and for every $i \in\{1, \ldots, m\}, a_{i}^{\prime}$ sees $c_{1}^{\prime}, d_{2}^{\prime}$ and b_{i}^{\prime} sees $d_{1}^{\prime}, c_{2}^{\prime}$. So, G is obtained by subdivising $c_{1}^{\prime} c_{2}^{\prime}$ into a path P. We see that $\left(P \cup\left\{d_{1}^{\prime}, d_{2}^{\prime}\right\}, A^{\prime} \cup B^{\prime}\right)$ is a proper non-path 2-join of G, contradicting the properties of G. This proves (43).
(44) G^{\prime} has no homogeneous 2-join.

Suppose that G^{\prime} has an homogeneous 2-join (A, B, C, D, E, F). If $c_{1} \neq a_{1}$ then since c_{1} has degree $2, c_{1}$ must be in E. Thus, by subdivising $a_{1}-c_{1}-b_{1}$ we obtain a graph G with an homogeneous 2 -join. If $c_{1}=a_{1}$ then $a_{1} b_{1}$ is a flat edge of G^{\prime}, thus, up to a symmetry, either $a_{1} \in C, b_{1} \in E \cup D$
or $a_{1} \in C, b_{1} \in A$. But the last case is impossible since $a_{1} b_{1}$ being flat implies $N\left(a_{1}\right) \subset A \cup D \cup E$, implying ($\left.A, B, C, D, E, F\right)$ being degenerate, contradicting (36). Hence, $a_{1} \in C$ and $b_{1} \in D \cup E$. So, by subdivising $a_{1} b_{1}$ we obtain a graph G that has an homogeneous 2-join. This proves (44).
(45) $\overline{G^{\prime}}$ is not a path-cobipartite graph, not a path-double split graph, has no homogeneous 2-join and no flat path of length at least 3.
Else, by Lemma 2.3 either $\overline{G^{\prime}}$ has a proper 2-join, contradicting (39) or $\overline{G^{\prime}}$ has an even skew partition contradicting (36), or $\overline{G^{\prime}}$ is bipartite contradicting (42), or G^{\prime} is bipartite contradicting (40), or $\overline{G^{\prime}}$ is a double split graph and so is G^{\prime}, contradicting (43). This proves (45).
(46) $f\left(G^{\prime}\right)+f\left(\overline{G^{\prime}}\right)<f(G)+f(\bar{G})$.

Every flat path of G^{\prime} is a flat path of G thus $f\left(G^{\prime}\right) \leq f(G)$. But in fact $f\left(G^{\prime}\right)<f(G)$ since X_{1} is a flat path of G and not of G^{\prime}. By (45) $0=$ $f\left(\overline{G^{\prime}}\right) \leq f(\bar{G})$. We add these two inequalities. This proves (46).

Let us now finish the proof. By (37), G^{\prime} is Berge. By (36), G^{\prime} has no even skew partition. By (38), G^{\prime} has no proper non-path 2-join. By (39) $\overline{G^{\prime}}$ has no proper 2 -join. By $(40,41)$, none of $G^{\prime}, \overline{G^{\prime}}$ is the line-graph of a bipartite graph and G^{\prime} is not bipartite. By (42) G^{\prime} is not a path-cobipartite graph. By (43) G^{\prime} is not a path-double split graph. By (44) G^{\prime} has no homogeneous 2-join. By (45), $\overline{G^{\prime}}$ is not a path-cobipartite graph, not a path-double split graph and has no homogeneous 2 -join. So, G^{\prime} is a counter-example to the theorem we are proving now. Hence there is a contradiction between the initial choice of G and (46). This completes the proof.

References

[1] C. Berge. Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind (Zusammenfassung). Technical report, Wiss. Z. Martin Luther Univ. Math.-Natur. Reihe (Halle-Wittenberg), 1961.
[2] M. Chudnovsky. Berge trigraphs and their applications. PhD thesis, Princeton University, 2003.
[3] M. Chudnovsky. Berge trigraphs. To appear in J. of Graph Theory, 2004.
[4] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem. Annals of Math. To appear.
[5] V. Chvátal. Star-cutsets and perfect graphs. J. Combin. Ser. B, 39:189199, 1985.
[6] V. Chvátal and N. Sbihi. Bull-free Berge graphs are perfect. Graphs and Combinatorics, 3:127-139, 1987.
[7] M. Conforti, G. Cornuéjols, and K. Vušković. Square-free perfect graphs. Jour. Comb. Th. Ser. B, 90:257-307, 2004.
[8] M. Conforti, G. Cornuéjols, and K. Vušković. Decomposition of odd-holefree graphs by double star cutsets and 2-joins. Discete Applied Math., 141:41-91, 2004.
[9] G. Cornuéjols and W. H. Cunningham. Composition for perfect graphs. Disc. Math., 55:245-254, 1985.

[^0]: *Université Paris I Panthéon-Sorbonne, CERMSEM, 106-112 boulevard de l'Hôpital, 75647 Paris cedex 13, France nicolas.trotignon@univ-paris1.fr
 This work has been partially supported by ADONET network, a Marie Curie training network of the European Community.

[^1]: ${ }^{1}$ Our path-cobipartite graphs are simply the complement of the path-bipartite graphs definied by Chudnovsky in [2]. For convinience, we prefer to think about them in the complement as we do.

