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Dependence modelling of the joint extremes

in a portfolio using Archimedean copulas:

application to MSCI indices

Dominique Guégan Sophie A. Ladoucette

Abstract: Using Archimedean copulas, we investigate the dependence struc-
ture existing between several series of financial assets log-returns that come
from different markets. These series are considered as components of a port-
folio and they are investigated on a long period including high shocks. To
perform such a study, we model the tail of their joint distribution function
using a dependence measure (Kendall’s tau) and its relationship with the
class of Archimedean copulas. Then, we define two different diagnostics to
decide which copula best fits the tail of the empirical joint distribution. This
approach permits us to understand the evolution of the interdependence of
more than two markets in the tails, that is when extremal events correspond-
ing to shocks induce some turmoil in the evolution of these markets.

JEL Classification: C14, G15.

Keywords: Archimedean copulas; Estimation theory; Kendall’s tau; Mul-
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1 Introduction

In the financial framework, the concept of tail modelling can be used to
understand the dependence between series that come from several markets
when extremal events or high frequency log-returns (which correspond to
shocks) occur and induce some turmoil in the evolution of the markets. In
this paper, we are interested to model the tail of the distribution of n com-
ponents of a portfolio through Archimedean copulas, that is to model the
dependence structure of the distribution of joint extremes.

Consider a general random vector X = (X1, · · · , Xn)
′

which may represent n
components of a portfolio measured at the same time. Assume that X has a
n-dimensional joint distribution F (x1, · · · , xn) = P[X1 ≤ x1, · · · , Xn ≤ xn].
Assume further that for all i ∈ {1, · · · , n}, the random variable Xi has a
continuous marginal distribution Fi with Fi(x) = P[Xi ≤ x]. Under such
assumptions, it has been shown by Sklar (1959) that the joint distribution
F with marginals F1, · · · , Fn can be written as:

F (x1, · · · , xn) = C
(

F1(x1), · · · , Fn(xn)
)

, (x1, · · · , xn) ∈ R
n (1)

for an unique function C called the copula of F or X. Then, a copula C is a
multivariate distribution with uniform marginals on [0, 1], and it provides a
natural link between F and F1, · · · , Fn. From (1), we see that the univari-
ate marginals and the dependence structure can be separated, and it makes
sense to interpret C as the dependence structure of the random vector X.

From a practical point of view, to model the tail of the joint distribution F
of a multivariate random vector X with continuous marginal distributions,
we need to choose the copula which best takes into account the dependence
structure of X.

The data sets used in the empirical study of this paper consist of some Mor-
gan Stanley Capital International (MSCI) daily closing prices for the Amer-
ican, French and Japanese markets. These data have been collected from
Data Stream from January 1, 1985 to December 31, 2001, which provides a
total of 4435 observations for each of the three markets. In the following,
we consider the log-returns of these MSCI series that are denoted X1 for
the American market, X2 for the French market and X3 for the Japanese
market. For these series, we aim at finding copulas that best model the tails
of the empirical joint distributions for X = (X1, X2)

′

, X = (X1, X3)
′

and
X = (X2, X3)

′

(bivariate case, n = 2), and for X = (X1, X2, X3)
′

(trivariate
case, n = 3).

The particular copulas that we use in the sequel are chosen among the class
of Archimedean copulas (e.g., Genest and MacKay, 1986a and 1986b). In-
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deed, these particular copulas are useful for empirical studies since they are
easily built through Kendall’s tau on the one hand, and they allow to extend
the modelling of bivariate series to n-variate series with n ≥ 3 on the other
hand. Kendall’s tau is a dependence parameter which takes into account the
existence of non-linear features inside data sets (e.g., Kendall and Stuart,
1979) and it is easily computable from real data.

In its spirit, this work is close for instance to the paper of Embrechts et
al. (2001b) concerning the problem of Integrated Risk Management. Here,
we adopt a statistical point of view and we show how Archimedean copulas
can be used to adjust the best multivariate distribution to the n compo-
nents of a given portfolio. There are numerous alternative applications of
copulas techniques to Integrated Risk Management and our paper is a con-
tribution among others. We can cite for instance the applications developed
in Embrechts et al. (1997) on Danish fire data, the work of Rockinger and
Jondeau (2001) in the 2-dimensional setting with Plackett’s copula or the
work of Blum et al. (2002) on Alternative Risk Transfer problem. Other
references can be found in Embrechts (2000), Scaillet (2000) and Embrechts
et al. (2001a).

The paper is organized as follows. In Section 2, we present the class of
Archimedean copulas which are of interest, and we specify the link existing
between Kendall’s tau and these particular copulas. Section 3 is devoted
to the empirical study. We begin by providing a statistical presentation of
the data sets. Using the Peak Over Threshold method, we estimate the
tails of the marginal univariate distributions Fi of Xi, i ∈ {1, 2, 3}, with
Generalized Pareto Distributions. Then, using Archimedean copulas, we
model the tails of the bivariate joint distributions (Paragraph 3.2) and, under
some assumptions, of the trivariate joint distribution (Paragraph 3.3) of the
various series of MSCI log-returns. Finally, we propose two diagnostics (one
using a numerical criterion and one graphical with a QQ-plot method) which
permit to retain the best copula within those proposed. We apply these
diagnostics to our data sets. In Section 4, we formulate some conclusions.

2 Measuring dependence through Archimedean cop-

ulas

For the purpose of this paper, we concentrate on an important class of copu-
las called Archimedean copulas (e.g., Genest and MacKay, 1986a and 1986b).
This class of copulas is worth studying. In particular, they allow for a great
variety of different dependent structures and, in contrast to the family of el-
liptical copulas, they have closed form expressions and they are not derived
from multivariate distributions using Sklar’s Theorem (e.g., Cambanis et al.,
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1981 and Hult and Lindskog, 2001). Nevertheless, a disadvantage of this last
feature is that extensions of bivariate Archimedean copulas to multivariate
ones need some technical assumptions on their parameters. This point will
be considered in Paragraph 3.3.

A (bivariate) Archimedean copula Cα has the property to be generated by a
convex function ϕα that is continuous and strictly decreasing from [0, 1] to
[0,∞[ with ϕ(0) = ∞ and ϕ(1) = 0, and which depends on a dependence
parameter α so that, it has the following form:

Cα(u, v) = ϕ−1
α (ϕα(u) + ϕα(v)), (u, v) ∈ [0, 1]2.

An important characteristic of Archimedean copulas, which will be used in
the sequel, is that there exists a formula linking the dependence parameter
α of the generator ϕα and a measure of dependence called Kendall’s tau. We
refer to Kendall and Stuart (1979) for details about this coefficient.

The general definition of Kendall’s tau τ for two random variables X1 and
X2 is the probability of concordance minus the probability of discordance:

τ(X1, X2) = P[(X1 − X̃1)(X2 − X̃2) > 0] − P[(X1 − X̃1)(X2 − X̃2) < 0]

where (X̃1, X̃2)
′ is an independent copy of the vector (X1, X2)

′

. For a general
copula C, Kendall’s tau can be expressed as a double integral of C (e.g.,
Nelsen, 1999). However, for an Archimedean copula Cα, Genest and MacKay
(1986) have shown that it depends on the generator ϕα and its derivative in
the simple following form:

τ = 1 + 4

∫ 1

0

ϕα(t)

ϕ′

α(t)
dt. (2)

For our empirical study, the class of Archimedean copulas is of fundamental
interest. Indeed, from real data we estimate Kendall’s tau which permits
to compute the dependence parameter of various generators ϕα through (2)
and then to construct the corresponding copulas Cα.

The four Archimedean copulas that we use in this paper are the following:

• Gumbel copula, see Gumbel (1958):

GG
α (u, v) = exp

(

−
(

| log u|α + | log v|α
)1/α

)

, α ∈ [1,∞[.

• Cook and Johnson copula, see Cook and Johnson (1981):

CCJ
α (u, v) =

(

u−α + v−α − 1
)

−1/α
, α ∈ ]0,∞[.
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• Ali-Mikhail-Haq copula, see Ali et al. (1978):

CAMH
α (u, v) =

uv

1 − α(1 − u)(1 − v)
, α ∈ [−1, 1].

We remark that when α = 1, we get as particular case the Cook and
Johnson copula.

• Frank copula, see Frank (1979):

CF
α (u, v) = logα

(

1 +
(αu − 1)(αv − 1)

α − 1

)

, α ∈ ]0,∞[\{1}.

We refer to Avouyi-Dovi et al. (2002) for the analytical expression of the
generator ϕα and for the exact relationship between α and τ , for each of
these four copulas.

3 Empirical study

Now, we propose an empirical study which aims at modelling the tail of
the joint distribution of n components of a portfolio through Archimedean
copulas. For this study, we use the series of MSCI daily log-returns that
come from the American, French and Japanese markets.

3.1 Statistical presentation of the data sets

We briefly present the basic statistics of the log-return series of the MSCI
daily indices before investigating the distribution of their joint extremes. The
log-returns are of interest rather that the prices in order to achieve station-
arity. We recall that the log-return series are denoted X1 for the American
market, X2 for the French market and X3 for the Japanese market.

Figure 1 displays the trajectories and the empirical distributions of the three
series on the sample period from 01/01/1985 to 31/12/2001 with a total of
N = 4434 points.

Series Mean Standard deviation Skewness Kurtosis

X1 4.34 10−4 1.04 10−2 -2.67 59.93

X2 5.27 10−4 1.23 10−2 -0.37 7.03

X3 1.94 10−4 1.47 10−2 -0.10 12.69

Table 1: Statistics for the series X1, X2 and X3 on the period 01/01/1985-
31/12/2001.

In Table 1, we summarize the computations of the first four empirical mo-
ments of the series. We remark that the empirical skewness are far from
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Figure 1: Trajectories and histograms of the series X1, X2, X3 on the period
01/01/1985-31/12/2001.

zero and that the series exhibit excess kurtosis relative to the Gaussian
distribution. We confirm that the series are non Gaussian since they fol-
low logLaplace distributions that have been adjusted using a Kolmogorov-
Smirnov test with 95% level, see Avouyi-Dovi et al. (2002).

3.2 Bivariate case

In order to adjust the best copula on the tail of the empirical joint distribu-
tion of (Xi, Xj)

′

, i 6= j ∈ {1, 2, 3}, we proceed in five steps. First of all, using
the Peak Over Threshold method, we estimate the tail distribution of each
series (e.g. Embrechts et al., 1997). Then, we compute empirical Kendall’s
tau in the tails for each pair of series. Using these values, we deduce the em-
pirical dependence parameter α for the four Archimedean copulas CG

α , CCJ
α ,
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CAMH
α and CF

α . Thus, applying Sklar’s Theorem, we model the bivariate
distribution of each pair with these different copulas. Finally, we build two
diagnostics to decide the copula that best models the tail of each bivariate
series.

First step. To model the tails of the univariate distributions F̂1, F̂2 and F̂3

of the three series X1, X2 and X3, we use the Peak Over Threshold (POT)
method whose we briefly recall the principle. If a random variable X follows
a distribution function F , we define the associated distribution of excesses
over a high threshold u as:

Fu(y) = P [X − u ≤ y|X > u] =
F (y + u) − F (u)

1 − F (u)
(3)

for 0 ≤ y < x+ − u, where x+ ≤ ∞ is the upper endpoint of F . For a
large class of distributions F (including all the common continuous distribu-
tions), the excess function Fu converges to a Generalized Pareto Distribution
(GPD), denoted Gξ,β, as the threshold u is raised. By the way, we can assume
that the GPD models can approximate the unknown excess distribution Fu,
i.e. for a certain threshold u and for some ξ and β (to be estimated), we
have:

Fu(y) = Gξ,β(y). (4)

By setting x = u + y and combining expressions (3) and (4), we get:

F (x) = (1 − F (u))Gξ,β(x − u) + F (u), x > u (5)

which permits us to get an approximation of the tail of the distribution F .

From an empirical point of view, if we deal with a time series with unknown
underlying distribution F , we build an estimate for F (u) using 1 − Nu/N ,
where Nu is the number of data exceeding the fixed threshold u, and if we
estimate the parameters ξ and β of the GPD, we get the following estimator
for the tail distribution:

F̂ (x) = 1 −
Nu

N

(

1 + ξ̂
x − u

β̂

)

−1/ξ̂
(6)

which is only valid for x > u.

Now, we consider the log-return series Xi, i ∈ {1, 2, 3}, from the three mar-
kets. For each series, we choose a threshold u that corresponds to the 95th
sample percentile: on the one hand, the threshold has to be chosen suffi-
ciently high so that the approximation (4) can be applied, and on the other
hand it has to be considered sufficiently low to have sufficient data for the
estimation procedure. This means that we define the tails of the empirical
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distributions of the three series in considering the upper 5% of the total
number of observations (given the N = 4434 data, this implies Nu = 222
threshold exceedances). Then, we fit the GPD to the Nu excesses using
Maximum Likelihood Estimation (MLE) of the parameters ξ and β and we
compute the confidence intervals at the 95% level for the parameters’ esti-
mates using a bootstrap procedure. The results have been summarized in
Table 2.

Series Threshold and GPD estimates

X1 u1 = 1.4182, β̂1 = 0.6129 [0.5891,0.6714],
ξ̂1 = 0.1033 [0.0454,0.1306]

X2 u2 = 1.5071, β̂2 = 0.5688 [0.5396,0.6143],
ξ̂2 = 0.0818 [0.0205,0.1185]

X3 u3 = 1.6037, β̂3 = 0.5996 [0.5564,0.6442],
ξ̂3 = 0.1704 [0.0844,0.2064]

Table 2: Estimates (with confidence intervals in brackets) for the parameters
of the GPD adjusted on the tails of the series X1, X2, X3 and values of the
threshold that corresponds to the 95th percentile.

For each of the three markets, the parameter ξ being significantly non null
and positive, the distribution Fi of the whole series Xi belongs to the domain
of attraction of the Fréchet distribution.

Now, using the tail estimator (6) with the estimated values of ξ̂ and β̂ given
in Table 2, we can compute the tail of the empirical marginal distribution
F̂i of Xi for xi > ui, i ∈ {1, 2, 3}.

Second step. We compute the empirical values τ̂ of Kendall’s tau between
the different pairs of series (X1,X2), (X1,X3) and (X2,X3) considered in
their tails. The tails are defined by the points on which we have adjusted
the GPD in the first step presented before. We report the values in Table 3.

Pair τ̂

(X1,X2) 0.0688

(X1,X3) 0.0136

(X2,X3) 0.0239

Table 3: Empirical Kendall’s tau for each pair of series considered in the
tails defined by the 95th sample percentile.

The values τ̂ show that the bivariate series are almost uncorrelated for high-
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probability events whereas they assume high values jointly.

Third step. We compute the parameters α of the Archimedean copulas
that we fit to the tail of the joint distribution of the pairs (X1,X2), (X1,X3)
and (X2,X3).

Using the formula (2) and the values of τ̂ given in Table 3, we easily com-
pute the dependence parameter α̂ of the different Archimedean copulas as
follows: α̂ = 1

1−τ̂ for the Gumbel copula and α̂ = 2τ̂
1−τ̂ for the Cook and

Johnson copula. For the Ali-Mikhail-Haq copula and for the Frank copula,
we need numerical resolutions since such easy expression between α and τ is
not available. The values of α̂ that we get for the different pairs are reported
in Table 4.

Fourth step. Using the tail of the empirical distribution F̂i of Xi for xi > ui,
i ∈ {1, 2, 3}, that we have computed in the first step and applying Sklar’s
Theorem, we get the following relationship for each pair (Xi,Xj):

F̂ (xi, xj) = Cα̂

(

F̂i(xi), F̂j(xj)
)

, xi > ui, xj > uj (7)

where Cα̂ denotes one of the four Archimedean copulas with parameter α̂
computed in the third step.

Fifth step. We propose two different diagnostics: a numerical method
and a graphical method. These diagnostics permit us to decide, among the
range of the Archimedean copulas CG

α , CCJ
α , CAMH

α and CF
α , the copula that

best models the tail of the empirical joint distribution of the pairs (X1,X2),
(X1,X3) and (X2,X3).

The first method needs a numerical criterion that we denote D
(2)
C and that

corresponds to:

D
(2)
C =

∑

x1,x2

∣

∣

∣
Cα̂

(

F̂1(x1), F̂2(x2)
)

− F̂ (x1, x2)
∣

∣

∣

2
.

Then, the copula Cα̂ for which we get the lowest D
(2)
C will be chosen as the

best copula. For the various copulas and for each pair of series, the D
(2)
C

values that we have computed are given in Table 4.

According to the criterion D
(2)
C , we get the following results. For the pair

(X1,X2), we get the best model using the Cook and Johnson copula. For
the pair (X1,X3), the fit based on the Ali-Mikhail-Haq copula has the lowest

D
(2)
C value, so should be chosen. For the pair (X2,X3), we get the best model

using the Ali-Mikhail-Haq copula.
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Pair CG
α CCJ

α CAMH
α CF

α

(X1,X2) α̂ 1.0739 0.1478 0.2863 0.4982

D
(2)
C 0.3034 0.0743 0.0794 0.0838

(X1,X3) α̂ 1.0138 0.0276 0.0603 0.6862

D
(2)
C 0.0551 0.0530 0.0526 0.0567

(X2,X3) α̂ 1.0245 0.0490 0.1047 0.6571

D
(2)
C 0.2289 0.0455 0.0425 0.0533

Table 4: Values of α̂ and D
(2)
C for the different pairs with respect to the

various Archimedean copulas.

The second method is graphical. From the definition of a copula C, we know
that if U and V are two uniform random variables on [0, 1] then the random
variables:

C(V |U) =
∂C

∂U
(U, V )

and

C(U |V ) =
∂C

∂V
(U, V )

are also uniformly distributed on [0, 1]. Using the quantile transforma-
tion of Xi, we know that the distribution of F̂i(Xi) is uniform on [0, 1],
i ∈ {1, 2, 3}. For a fixed pair (Xi, Xj), the copula Cα̂ for which the distribu-
tions of Cα̂(F̂j(Xj)|F̂i(Xi)) and Cα̂(F̂i(Xi)|F̂j(Xj)) are uniformly distributed
on [0, 1] would be the copula that best models the tail of the empirical joint
distribution. This checking can be carried out by the way of the classical
QQ-plot method.

As an example, we present our results for the pair (X1, X2). For each
copula, we represent in Figure 2 the QQ-plot of the empirical distribution
Cα̂(F̂2(X2)|F̂1(X1)) against the uniform distribution on [0, 1], and the more
straight the line is, the best the fit of the tail of the empirical joint distribu-
tion of (X1, X2)

′

by the copula Cα̂ is. The QQ-plots for Cα̂(F̂1(X1)|F̂2(X2))
are not presented since they are close to the QQ-plots for Cα̂(F̂2(X2)|F̂1(X1)).
The Cook and Johnson copula provides the straightest line and then best
models the dependence structure of (X1, X2)

′

, as we have concluded using

the numerical criterion D
(2)
C . The same study has been derived for (X1, X3)

′

and (X2, X3)
′

, and similar results have been obtained using either the graph-
ical method or the numerical method.

On the basis of our analysis, we summarize the models that we would choose
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Figure 2: QQ-plots of the empirical partial derivatives against the uniform
distribution for (X1, X2)

′

with respect to the various Archimedean copulas.

for the tails of the empirical joint distributions of the various pairs of series:

(X1, X2) : F̂ (x1, x2) = CCJ
0.1478

(

F̂1(x1), F̂2(x2)
)

, x1 > u1, x2 > u2

(X1, X3) : F̂ (x1, x3) = CAMH
0.0603

(

F̂1(x1), F̂3(x3)
)

, x1 > u1, x3 > u3

(X2, X3) : F̂ (x2, x3) = CAMH
0.1047

(

F̂2(x2), F̂3(x3)
)

, x2 > u2, x3 > u3.

Now, we formulate an important remark. The concept of upper tail depen-
dence relates to the amount of dependence in the upper-right-quadrant tail
of the bivariate distribution. For an overview of this concept, we refer to

Joe (1997). According to the D
(2)
C criterion or the QQ-plot method, we have

shown that the Gumbel copula performs worst for all the pairs (X1, X2),
(X1, X3) and (X2, X3). This means that these series are not dependent in
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the upper-right-quadrant tail of their bivariate distribution since the Gum-
bel copula has upper tail dependence. In contrast, the Cook and Johnson,
Ali-Mikhail-Haq and Frank copulas have no upper tail dependence, and we
recall that our results were good enough with these copulas. Thus, the choice
of the copula to reconstruct the tail of the joint distribution is fundamental,
and we can introduce a misspecification if we do not take care about this
concept.

3.3 Extension to the multivariate case

A bivariate family of Archimedean copula can be extended in a natural way
to a n-variate family of Archimedean copula, n ≥ 3, under some constraints
(e.g., Joe, 1997). First of all, to get this extension, we need that all bivariate
marginal copulas of the multivariate copula belong to the given bivariate
family. Secondly, we need that all multivariate marginal copulas of order 3
to n − 1 have the same multivariate form. In the following, we consider the
trivariate case. We specify the constraints that permit such an extension
and that deal with the dependence parameters.

Consider n = 3 and assume that the (i, j) bivariate marginal (i 6= j ∈
{1, 2, 3}) has dependence parameter αi,j . If α1 ≤ α2 with α1 = α1,3 = α2,3

and α2 = α1,2, then trivariate Archimedean copulas have the following form:

Cα1,α2
(u1, u2, u3) = ϕ−1

α1

(

ϕα1
o ϕ−1

α2

(

ϕα2
(u1) + ϕα2

(u2)
)

+ ϕα1
(u3)

)

(8)

with (u1, u2, u3) ∈ [0, 1]3.

In the sequel, for two random variables X1 and X2, we denote by α(X1, X2)
the dependence parameter deduced from Kendall’s tau, denoted by τ(X1, X2),
by means of the formula (2). For a random vector X = (X1, X2, X3)

′

with
joint distribution F and continuous marginal distributions F1, F2 and F3,
the expression (1), using (8), becomes for all (x1, x2, x3) ∈ R

3:

F (x1, x2, x3) = Cα1,α2

(

F1(x1), F2(x2), F3(x3)
)

= Cα1

(

Cα2

(

F1(x1), F2(x2)
)

, F3(x3)
)

(9)

if α1 ≤ α2 with α1 = α(X1, X3) = α(X2, X3) and α2 = α(X1, X2).

Now, we apply this extension to the three series of MSCI daily log-returns
X1, X2 and X3 in order to model the tail of their empirical joint distribution
F̂ by means of trivariate Archimedean copulas.

As in the previous paragraph, we estimate the tail of the empirical distri-
bution F̂i of Xi using the threshold ui that corresponds to the 95th sample
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percentile, i ∈ {1, 2, 3}. Thus, we use the estimated parameters ξ̂ and β̂
given in Table 2 to get the tail estimator F̂i of Xi for xi > ui, i ∈ {1, 2, 3}.

To be allowed to use (9), the dependence parameter of one pair of series
defined in the tail has to be greater or equal than the two others which have
to be equal. According to Table 4, for the Gumbel, Cook and Johnson and
Ali-Mikhail-Haq copulas, the largest dependence parameter α is computed
for the pair (X1,X2) and the parameters are not equal for the two other
pairs (X1,X3) and (X2,X3). For the Frank copula, the largest parameter is
computed for the pair (X2,X3). In spite of these results, we decide never-
theless to continue our empirical study to show how the expression (9) works.

For each of the four Archimedean copulas, we decide to set α̂1 = α̂(X1, X3)
and α̂2 = α̂(X1, X2). We also do the same choice for the Frank copula in
a view of being able to compare the results. Then, using these parameters,
we build the trivariate Archimedean copula (9) for each bivariate family of
Archimedean copula. To choose the trivariate copula Cα̂1,α̂2

that best models

the tail of the empirical joint distribution F̂ of the series X1, X2 and X3, we

derive an extension of the numerical criterion D
(2)
C in the following way:

D
(3)
C =

∑

x1,x2,x3

∣

∣

∣
Cα̂1

(

Cα̂2

(

F̂1(x1), F̂2(x2)
)

, F̂3(x3)
)

− F̂ (x1, x2, x3)
∣

∣

∣

2
.

Then, the copula Cα̂1,α̂2
for which we get the lowest D

(3)
C will be chosen as

the best copula. For the various copulas, the quantities D
(3)
C that we have

computed are reported in Table 5.

CG
α1,α2

CCJ
α1,α2

CAMH
α1,α2

CF
α1,α2

D
(3)
C 26.5131 2.1215 2.1410 2.2540

Table 5: Values of D
(3)
C with respect to the various trivariate Archimedean

copulas for (X1, X2, X3)
′

.

According to the criterion D
(3)
C , we get the best model using the trivariate

Cook and Johnson copula. On the basis of our analysis, we explicit the
expression (9) for the tail of the empirical joint distribution of the three
series X1, X2 and X3:

F̂ (x1, x2, x3) = CCJ
α̂1

(

CCJ
α̂2

(

F̂1(x1), F̂2(x2)
)

, F̂3(x3)
)

for x1 > u1, x2 > u2, x3 > u3, with α̂1 = α̂(X1, X3) and α̂2 = α̂(X1, X2).
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4 Conclusion

In this paper, we have performed models to fit the tail of the joint distri-
bution of n components in a portfolio. We have successively considered the
cases n = 2 and n = 3. These models have been built using Archimedean
copulas and thanks to their easy relationship with Kendall’s tau.

Archimedean copulas are worth studying since they allow for a great variety
of different dependent structures. Unlike the family of elliptical copulas, they
are not derived from multivariate distributions using Sklar’s theorem. A pos-
itive consequence of this feature is that we do not have to take into account
the marginal distributions. This point of view is not considered here, but
will be investigated in a companion paper. However, a disadvantage of this
feature is that extensions of bivariate Archimedean copulas to multivariate
ones suffer from lack of free dependence parameters choice. In particular,
some of these parameters are forced to be equal (see Paragraph 3.3 for the
trivariate case). In spite of these technical conditions, it is important to
remark that the generalization to the n-variate case, with n ≥ 3, is possible
without great difficulties. However, the generalization is very restrictive us-
ing elliptical copulas because in that case we need to use elliptical marginals.

Also, we have proposed two methods to decide which copula best models the
tail of the joint distribution of n components in a portfolio. The first method
is based on a numerical criterion and the second method is graphical and
use QQ-plots.

Thanks to the notion of copula, our approach permits to obtain some infor-
mation about the dependence between more than two markets, and this is
of primary importance because most measures of dependence do not permit
to get similar results.
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