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Abstract
The main contribution of the paper is to provide a weaker non-

satiation assumption than the one commonly used in the literature
to ensure the existence of competitive equilibrium. Our assumption
allows for satiation points in the set of individually feasible consump-
tions, provided that the consumer has satiation points available to
him outside this set. As a result, we show the concept of equilibrium
with dividends (See Aumann and Dreze (1986), Mas-Collel (1992)) is
pertinent only when the set of satiation points is included in the set of
individually feasible consumptions. Our economic motivation stems
from the fact that in decentralized markets, increasing the incomes of
consumers through dividends, if it is possible, is costly since it involves
the intervention of a social planner. Then, we show, in particular, how
in securities markets our weak nonsatiation assumption is satisfied by
Werner’s (1987) assumption.
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1 Introduction

Since the seminal contributions of Arrow-Debreu (1954), and Mckenzie (1959),
on the existence of a competitive equilibrium, a subject of ongoing interest
in the economics profession has been the robustness of the various assump-
tions made to ensure such a result. On the consumer side, assumptions such
as, the convexity of preferences, free-disposal and survival have been inves-
tigated both conceptually and empirically by numerous economists ranging
from development economists to decision theorists. The seemingly innocuous
assumption of nonsatiation, normally represented in Microeconomics text-
books by the monotonicity of preferences, appears to have received much
less attention. Perhaps, the main critique to the insatiability assumption is
that the human nature calls it into question. Namely, any moderately greedy
person will testify to their occasional satiation. Technically, a satiation point
seems to be genuinely guaranteed with continuous preferences, whenever the
choice set is bounded. Having a bounded choice set is hardly surprising, as
consumption activities take place over a limited time span. Accordingly, this
condition has been weakened by assuming that nonsatiation holds only over
individually feasible consumptions;1 that is to say, satiation levels are higher
than the actual consumption levels involved in trade. In the presence of

satiation points in individually feasible consumption sets, we find in the lit-
erature the concept of equilibrium with coupons or dividends that extend the
classical general equilibrium theory to the class of such economies (see Au-
mann and Dreze (1986), Mas-Collel (1992), Kaji (1996), Cornet, Topuzu and
Yildiz (2003)).2 The underlying idea is to allow the nonsatiated consumers to
benefit, through dividends, from the budget surplus created by non budget-
binding optimal consumptions of satiated consumers. The analysis of the
above-named authors has proved to be relevant to the study of markets with
price rigidities, such as Labor market. One issue with equilibrium with divi-
dends is that, increasing the incomes of consumers in decentralized markets,
if it is possible, is costly since it involves the intervention of a social plan-
ner. In this paper, our main contribution is to introduce a weak nonsatiation

assumption that ensures the existence of an exact competitive equilibrium

1Individually feasible consumptions are defined as the projection, on individual’s choice
set, of consumptions that could potentially be achieved by trade

2See also Dreze and Muller (1980), Florig and Yildiz (2002), Le Van and Minh (2004),
Konovalov (2005).
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(without dividends). Our assumption allows for the satiation points in in-
dividually feasible consumption set, provided that the satiation area is not
a subset of the individually feasible consumptions. Stated formally, if we
consider Mi to be the maximum of the utility function of consumer i over
individually feasible consumption set, our assumption stipulates that there
be a consumption bundle outside the individually feasible consumption set
that guarantees at least the utility level Mi. The standard nonsatiation as-
sumption rather requires that there be a consumption bundle outside the
individually feasible consumption set that guarantees strictly more than the
utility level Mi. In a recent paper, Yannelis and Won (2005) demonstrate

the existence of a competitive equilibrium with a different nonsatiation as-
sumption, in a more general setting. Their assumption allows the satiation
area to be inside the individually feasible consumption sets, provided that it
is unaffordable with respect to any price system supporting the preferences
of the nonsatiated consumers. Yannelis and Won (2005) also show that their
assumption is implied by our weak nonsatiation assumption and could be
suitably applied to some asset pricing models. Notwithstanding the novelty
of their approach, their assumption relies on price systems, whereas our weak
nonsatiation is defined on the primitives of the economy. In securities mar-

kets with short-selling, Werner (1987) introduces a nonsatiation assumption
which allows the existence of satiation points even if they are in the pro-
jections of the feasible set. Werner’s assumption stipulates that each trader
has a useful portfolio. This is defined as a portfolio which, when added, at
any rate, to any given portfolio increases the trader’s utility. In particular
his assumption implies an unbounded set of satiation point. In the paper,
we show that Werner’s nonsatiation implies our weak nonsatiation assump-
tion. We also provide an example where Werner’s nonsatiation does not hold,
whereas our weak nonsatiation assumption is satisfied, and consequently an
equilibrium exists. The paper is organized as follows, Section 2 is devoted

to the model. In Section 3, we shall introduce our new nonsatiation assump-
tion. In section 4, we compare our new nonsatition assumption with Werner’s
nonsatiation. Section 5 is an Appendix.

2 The Model

We consider an economy having a finite number l of goods and a finite number
I of consumers. For each i ∈ I, let Xi ⊂ Rl denote the set of consumption
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goods, let ui : Xi −→ R denote the utility function and let ei ∈ Xi be the
initial endowment. In the sequel, we will denote this economy by

E = {(Xi, ui, ei)i∈I} .

An individually rational feasible allocation is the list (xi)i∈I ∈ ∏
i∈I Xi, which

satisfies
∑

i∈I xi =
∑

i∈I ei, and ui(xi) ≥ ui(ei), ∀i ∈ I. We denote by A the
set of individually rational feasible allocations. We shall denote by Ai the
projection of A onto Xi.

The set of individually rational utilities is given by

U = {(vi) ∈ R
|I|
+ | there exists x ∈ A s.t. ui(ei) ≤ vi ≤ ui(xi), ∀i ∈ I}.

In the following, for short, U will be called utility set.

We consider the following definition of Walras equilibrium (resp. quasi-
equilibrium).

Definition 1 A Walras equilibrium (resp. quasi-equilibrium) of E is a list
((x∗i )i∈I , p

∗) ∈ ∏
i∈I Xi × (Rl \ {0}) which satisfies: (a)

∑
i∈I x∗i =

∑
i∈I ei

(Market clearing); (b) for each i one has p∗ · x∗i = p∗ · ei (Budget constraint),
and for each xi ∈ Xi, with ui(xi) > ui(x

∗
i ), it holds p∗ · xi > p∗ · ei. [resp.

p∗ · xi ≥ p∗ · ei].

In the presence of satiation points in individually feasible consumption sets,
we find in the literature the concept of equilibrium with dividends (see
Aumann and Dreze (1986), Mas-Collel (1992), Cornet, Topuzu and Yildiz
(2003)). The dividends increase the income of nonsatiated consumers, in or-
der to capture the surplus created by satiated consumers. In the following we
define the concept of equilibrium (resp. quasi-equilibrium) with dividends.

Definition 2 An equilibrium (resp. quasi-equilibrium) with dividends (d∗i )i∈I ∈
R
|I|
+ of E is a list ((x∗i )i∈I , p

∗) ∈ ∏
i∈I Xi × Rl which satisfies: (a)

∑
i∈I x∗i =∑

i∈I ei (Market clearing); (b) for each i ∈ I one has p∗ · x∗i ≤ p∗ · ei + d∗i
(Budget constraint), and for each xi ∈ Xi, with ui(xi) > ui(x

∗
i ), it holds

p∗ · xi > p∗ · ei + d∗i . [resp. p∗ · xi ≥ p∗ · ei + d∗i ].
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When d∗i = 0, for all i ∈ I, an equilibrium (resp. quasi-equilibrium) with
dividends is a Walras equilibrium (resp. quasi-equilibrium).

Remark The passage from a quasi-equilibrium with dividends to an equi-
librium with dividends is similar to the one in the standard Walrasian case.
That is to say, let ((x∗i )i∈I , p

∗) be a quasi-equilibrium with dividends (d∗i )i∈I .
Assume that for all i ∈ I, the set {xi ∈ Xi | ui(xi) > ui(x

∗
i )} is relatively

open in Xi, and infp∗ ·Xi < p∗ · x∗i , then, ((x∗i )i∈I , p
∗) is an equilibrium with

dividends (d∗i )i∈I .

Now, we list our assumptions:

(H1) For each i ∈ I, the set Xi is closed and convex.

(H2) For each i ∈ I, the utility function ui is strictly quasi-concave and upper
semicontinuous.3

(H3) The utility set U is compact.

(H4) For each i ∈ I, for all xi ∈ Ai, there exists x′i ∈ Xi such that ui(x
′
i) >

ui(xi).

For every i ∈ I, let Si = {x∗i ∈ Xi : ui(x
∗
i ) = maxxi∈Xi

ui(xi)}. The set
Si is the set of satiation points for agent i. Observe that under assumptions
(H1)− (H2), the set Si is closed and convex for every i ∈ I.

3 The Results

3.1 Equilibrium with dividends

We first give an existence of Walras quasi-equilibrium theorem when there
exists no satiation.

Theorem 1 Assume (H1)−(H4), then there exists a Walras quasi-equilibrium.

3We recall that a function ui is said to be quasi-concave if its level-set Lα = {xi ∈ Xi :
ui(xi) ≥ α} is convex, for each α ∈ R.

The function ui is strictly quasi-concave if and only if, for all xi, x
′
i ∈ Xi, ui(x′i) > ui(xi)

and λ ∈ [0, 1), then ui(λxi + (1 − λ)x′i) > ui(xi). It means that ui(λxi + (1 − λ)x′i) >
min(ui(xi), ui(x′i)), if ui(xi) 6= ui(x′i). The function ui is upper semicontinuous if and only
if Lα is closed for each α.
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Proof. The proof is quite standard. See e.g. Arrow and Debreu (1954) when
the consumption sets are bounded from below, or the proof given in Dana,
Le Van and Magnien (1999) for an exchange economy.

Now, we come to our first result. This result has been proved by adding a
virtual commodity to the economy and then modifying the utility functions
of the agents. Our proof follows the steps of Le Van and Minh (2004) in
introducing a new commodity, but our modification of the utility functions
differs from theirs. The advantage of such modification will become clear
when we introduce a new nonsatiation assumption. Let us recall the following
definition.

Definition 3 Let B be a closed convex nonempty set of Rl, where l is an
integer. The recession cone of B, denoted by O+B, is defined as follows:

O+B = {w ∈ Rl : ∀x ∈ B, ∀λ ≥ 0, x + λw ∈ B.}

We first give an intermediate result. The proof of the result is new, since
we use a new modification of utility functions. The modified economy is,
then, used to establish the existence of a quasi-equilibrium with dividends
for the initial economy. In the following, we restrict the economy to compact
consumption sets.

Proposition 1 Assume (H1) − (H2), and Xi is compact for every i. Then
there exists a quasi-equilibrium with dividends.

Proof. Let us introduce the auxiliary economy Ê =
{
(X̂i, ûi, êi)i∈I

}
, where

X̂i = Xi×R+, êi = (ei, δi) with δi > 0 for any i ∈ I and the utility functions
ûi are defined as follows. Let Mi = max {ui(x) | x ∈ Ai} .

Case 1. If there exists x∗i ∈ Ac
i (the complement of Ai in Xi), such that

ui(x
∗
i ) > Mi, then ûi(xi, di) = ui(xi) for every (xi, di) ∈ X̂i.

Case 2. Now, consider the case where there exists no xi ∈ Ac
i which satisfies

ui(xi) > Mi, but there exists x∗i ∈ Ac
i , such that ui(x

∗
i ) = Mi. We modify

agent’s i utility function as follows: Using x∗i we define the function

λi(·) : Si → R+ ∪ {+∞}
where,

λi(xi) = sup{β ∈ R+ | x∗i + β(xi − x∗i ) ∈ Si}.
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Now, using the function λi, we can define a new utility function, ûi, for agent
i:

ûi(xi, di) =

{
ui(xi) + 1− 1

λi(xi)
, if xi ∈ Si

ui(xi), otherwise,

for every (xi, di) ∈ X̂i.

Case 3. If there exists no xi ∈ Ac
i , such that ui(xi) ≥ Mi, then, for some

strictly positive µi let

ûi(xi, di) =

{
ui(xi) + µidi, if xi ∈ Si

ui(xi), otherwise,

for every (xi, di) ∈ X̂i. We will check that Assumption (H2) is satisfied for

every ûi. We will make use of the following lemma, the proof of which is in
the Appendix.

Lemma 1 Let B be a closed, convex set of Rn and x∗ be in B. Let λ : B →
R+ ∪ {+∞} be defined by

λ(x) = sup{β ≥ 0 : x∗ + β(x− x∗) ∈ B}.
Then λ is upper semicontinuous and strictly quasi-concave.

To prove that ûi is quasi-concave and upper semicontinuous, it suffices to
prove that the set L̂α

i = {(xi, di) ∈ Xi ×R+ : ûi(xi, di) ≥ α} is closed and
convex for every α.

Case 1. It is clear that L̂α
i = Lα

i × R+, with Lα
i = {xi ∈ Xi : ui(xi) ≥ α}.

Therefore, L̂α
i is closed and convex for every α.

Case 2. (a) If α ≤ Mi, then obviously L̂α
i = Lα

i ×R+.
(b) If Mi < α ≤ 1 + Mi, then one can easily prove that L̂α

i = σi( 1
(Mi+1−α)

)×
R+, where σi( 1

(Mi+1−α)
) = {x ∈ Si : λi(x) ≥ 1

(Mi+1−α)
}. From Lemma 1 this

set is closed and convex.
(c) If 1 + Mi < α, then obviously L̂α

i = ∅.
Case 3. We follow here the proof given by Le Van and Minh (2004), in which
we have two cases,
(a) If α < Mi. We claim that L̂α

i = Lα
i × R+. Indeed, let (xi, di) ∈ L̂α

i . It
follows ûi(xi, di) ≥ α and there are two possibilities for xi:
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• If xi /∈ Si, then ûi(xi, di) = ui(xi). It implies ui(xi) ≥ α or xi ∈ Lα
i and

hence (xi, di) ∈ Lα
i ×R+.

• If xi ∈ Si, then ui(xi) = Mi > α. Thus, it follows that xi ∈ Lα
i and

(xi, di) ∈ Lα
i ×R+.

So, L̂α
i ⊂ Lα

i ×R+. But it is obvious that Lα
i ×R+ ⊂ L̂α

i .

(b) If α ≥ Mi. We claim that L̂α
i = Si ×

{
di | di ≥ α−Mi

µ

}
. Indeed, if

ûi(xi, di) ≥ α, then xi ∈ Si. In this case, ûi(xi, di) = Mi +µdi ≥ α, and hence
di ≥ α−Mi

µ
. The converse is obvious.

We have proved that ûi is upper semicontinuous and quasi-concave for every
i ∈ I.

Now, we prove that ûi is strictly quasi-concave.

Claim 1 The utility function ûi is strictly quasi-concave, for every i ∈ I.

Proof. See the Appendix.

Since Xi is assumed to be compact for every i, the individually feasible
set Â of economy Ê is also compact and Assumption (H3) is fulfilled by
economy Ê .
We now prove that the ûi has no satiation point on the set Âi, the projection
of Â onto X̂i.

Case 1. It is obvious.

Case 2. Since λi(x
∗
i ) = +∞, it suffices to prove that λi(xi) < +∞, for

any xi ∈ Ai. For that, take xi ∈ Si ∩ Ai. If λi(xi) = +∞, then for all
β ≥ 0, x∗i + β(xi − x∗i ) ∈ Si. Since O+Si = {0}, that implies xi = x∗i which
contradicts x∗i ∈ Ac

i .

Case 3. Indeed, let (xi, di) ∈ Xi × R+. Take any x′i ∈ Si and d′i > di. We
have

ûi(x
′
i, d

′
i) = ui(x

′
i) + µd′i > ui(xi) + µdi ≥ ûi(xi, di).

We have proved that for any i, ûi has no satiation point.

Summing up, Assumptions (H1) − (H4) are fulfilled in economy Ê . From
Theorem 1, there exists a Walras quasi-equilibrium ((x∗i , d

∗
i )i∈I , (p

∗, q∗)) with
(p∗, q∗) 6= (0, 0). It satisfies:

(i)
∑

i∈I

(x∗i , d
∗
i ) =

∑

i∈I

(ei, δi),
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(ii) for any i ∈ I, p∗ · x∗i + q∗d∗i = p∗ · ei + q∗δi.

Observe that the price q∗ must be nonnegative.

We claim that ((x∗i )i∈I , p
∗)) is a quasi-equilibrium with dividends (q∗δi)i∈I .

Indeed, first, we have

∀i ∈ I, p∗ · x∗i ≤ p∗ · ei + q∗δi.

Now, let xi ∈ Xi such that ui(xi) > ui(x
∗
i ). That implies x∗i /∈ Si and

hence ûi(x
∗
i , d

∗
i ) = ui(x

∗
i ). We have ûi(xi, 0) ≥ ui(xi) and hence ûi(xi, 0) >

ûi(x
∗
i , d

∗
i ). Applying the previous theorem, we obtain

p∗xi = p∗ · xi + q∗ × 0 ≥ p∗ · ei + q∗δi.

We have proved our proposition.

3.2 New nonsatiation assumption

The above concept of equilibrium with dividends is used in the literature
whenever the standard nonsatiation assumption fails to be satisfied, that is
to say, the satiation area intersects with individually feasible consumption
set. The underlying idea is to allow the nonsatiated consumers to capture,
through dividends, the budget surplus created by non budget-binding optimal
consumptions of satiated consumers. A shortcoming of equilibrium with
dividends is that, granting additional incomes to consumers could possibly
be inconsistent with the spirit of decentralized markets.

In the following we introduce our new nonsatiation assumption. First,
observe that under (H1) − (H3), for every i ∈ I, there exists x̂i ∈ Ai which
satisfies ui(x̂i) = Mi = max{ui(xi) | xi ∈ Ai}. for every i ∈ I.

Assumption (H4) could be rewritten in another way using Mi:

(H4) For every i, there exists x′i ∈ Ac
i such that ui(x

′
i) > Mi.

We introduce a new nonsatiation condition (H ′
4) weaker than (H4)

(H ′
4) For every i, there exists x′i ∈ Ac

i such that ui(x
′
i) ≥ Mi.

Assumption (H ′
4) allows to have satiation points inside the individually fea-

sible consumptions set, provided that the satiation area is not a subset of
the individually feasible consumption set.
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We now state the main contribution of this paper. We demonstrate that
using our new nonsatiation assumption (H ′

4) leads us to the existence of
a Walras quasi-equilibrium. Hence, we show that we show the concept of
(quasi-)equilibrium with dividends is relevant only when the satiation area
is a subset of individually feasible consumption set.

Theorem 2 Assume (H1), (H2), (H ′
4) and the compactness of A. Then there

exists a Walras quasi-equilibrium. 4

Proof. For any i, from (H ′
4), one can take some x′i ∈ Ac

i such that ui(x
′
i) ≥ Mi.

Let Si be the set of satiation points of agent i.
Let (δi > 0)i∈I . Let B(0, a) denote the closed ball centered at the origin

with radius a. Choose a sufficiently large such that for all i, both ei and
x′i belong to intB(0, a), and Ai ⊂ intB(0, a) . Consider the economy {Ea}
defined by Ea = (Xa

i , ui, ei)i∈I where Xa
i = Xi ∩ B(0, a). This economy Ea

satisfies the assumptions of Proposition 1. Let ûa
i : Xa

i × R+ → R be the
modified utility associated with Ea as in the proof of Proposition 1. The
utilities {(ûa

i )i∈I} have no satiation points and are strictly quasi-concave.
Hence, likewise Proposition 1, from Theorem 1, there exists a Walras quasi-
equilibrium ((x∗i , d

∗
i )i∈I , (p

∗, q∗)) with (p∗, q∗) 6= (0, 0). It satisfies:

(i)
∑

i∈I

(x∗i , d
∗
i ) =

∑

i∈I

(ei, δi),

(ii) for any i ∈ I, p∗ · x∗i + q∗d∗i = p∗ · ei + q∗δi.

(iii) for any i ∈ I, if ûa
i (xi, di) > ûa

i (x
∗
i , d

∗
i ) then p∗ ·xi+q∗di ≥ p∗ ·ei+q∗δi.

Now, we show that q∗d∗i = 0. It is clear that from (H ′
4) we have just to

consider only cases 1 and 2 in Proposition 1. Thus, one has ûa
i (x

′
i, 0) >

ûa
i (x

∗
i , d

∗
i ) = ûa

i (x
∗
i , 0).

For any λ ∈ ]0, 1] , from the strict quasi-concavity of ûa
i , it follows that

ûa
i (λx′i+(1−λ)x∗i , 0) > ûa

i (x
∗
i , d

∗
i ) = ûa

i (x
∗
i , 0) and hence p∗ ·(λx′i+(1−λ)x∗i ) ≥

p∗ · x∗i + q∗d∗i . Letting λ converge to zero, we obtain q∗d∗i ≤ 0. Thus q∗d∗i = 0

4In a previous version, we assumed the compactness of U instead of the compactness
of A. The proof was not correct. Martins-da-Rocha and Monteiro [13] provide a counter
example.
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since q∗ is nonnegative. Since
∑

i∈I d∗i =
∑

i∈I δi > 0, it follows that q∗ = 0.
In this case, one deduces ‖p∗‖ = 1 and therefore ((x∗i )i∈I , p

∗) is a Walras
quasi-equilibrium for Ea.

We claim that ((x∗i )i∈I , p
∗) is a Walras quasi-equilibrium for the initial econ-

omy. Indeed, we have:

∑

i∈I

x∗i =
∑

i∈I

ei

∀i, p∗ · x∗i = p∗ · ei.

Now, let ui(xi) > ui(x
∗
i ). For any λ ∈ ]0, 1], from the strict quasi-concavity

of ui, it follows that ui(λxi + (1− λ)x∗i ) > ui(x
∗
i ). Since Ai ⊂ intB(0, a), for

λ close to 0, λxi + (1− λ)x∗i ∈ Xa
i . Then,

ûa
i (λxi + (1− λ)x∗i ) ≥ ui(λxi + (1− λ)x∗i ) > ui(x

∗
i ) = ûa

i (x
∗
i ),

and hence,

p∗ · (λxi + (1− λ)x∗i ) ≥ p∗ · ei = p∗ · x∗i ,

which implies, p∗ · xi ≥ p∗ · ei.

4 Securities market

In securities markets with short-selling, Werner (1987) introduces a nonsa-
tiation condition which requires each trader to have a useful portfolio. Ac-
cordingly, Werner (1987) proves the existence of a competitive equilibrium in
securities markets. For each agent i ∈ I, we define the weakly preferred set
at xi P̂i(xi) = {x ∈ Xi | ui(x) ≥ ui(xi)}. Under assumptions (H1) − (H2),
the weak preferred set P̂i(xi) is convex and closed for every xi ∈ Xi. We
define the ith agent’s arbitrage cone at xi ∈ Xi as, O+P̂i(xi), the recession
cone of the weakly preferred set P̂i(xi). Also, we define the lineality set Li(xi)
as the largest subspace contained in the arbitrage cone O+P̂i(xi). For nota-
tional simplicity, we denote each agent’s arbitrage cone and lineality space
at endowments in a special way. In particular, we will let

Ri := O+P̂i(ei), and Li := L(ei).
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Werner (1987) assumes the two following assumptions:

[W1] Uniformity O+P̂i(xi) = Ri, for all, xi ∈ Xi, for each i ∈ I.

[W2] Werner’s nonsatiation Ri \ Li 6= ∅, for each i ∈ I.

The first assumption asserts that every agent has a uniform arbitrage cones.
The second assumption is viewed as a nonsatiation assumption. It requires
that there exists a useful net trade vector ri ∈ Ri \ Li. This is a portfolio
which, when added, at any rate, to any given portfolio increases the trader’s
utility.

Werner (1987) also introduces a no-arbitrage condition [WNAC], which stipu-
lates that there exists a price system at which the value of all useful portfolios
is positive.

[WNAC] The economy E satisfies
⋂I

i=1 SW
i 6= ∅, where SW

i = {p ∈ R` | p·y >
0, ∀y ∈ Ri \ Li} is Werner’s cone of no-arbitrage prices.

Let A⊥ denote the orthogonal projection of A onto
∏
i∈I

L⊥i . It follows from

Allouch, Le Van, and Page (2002) that [WNAC] is equivalent to the com-
pactness of A⊥ while [WNAC] and [W1] imply that U is compact. Hence,
Assumption (H3) is satisfied.

In the following proposition we show that Werner’s nonsatiation implies
assumption (H ′

4).

Proposition 2 Assume (H1)−(H2), [W1] and [WNAC]. Then, [W2] implies
(H ′

4).

Proof. Let i ∈ I. Since [WNAC] and [W1] imply that U is compact, there
exists x∗i = argmaxAi

ui(.) Let ri ∈ Ri \ Li. Write x∗i = y∗i + z∗i , ri = si + ti
with y∗i ∈ A⊥

i , si ∈ L⊥i , z∗i ∈ Li, ti ∈ Li. Since ri /∈ Li, we have si 6= 0.
Observe that [W1] implies ui(xi) = ui(xi + ti),∀xi ∈ Xi,∀ti ∈ Li. Therefore,
we have

ui(y
∗
i + λsi) = ui(y

∗
i + λri) ≥ ui(y

∗
i ) = ui(x

∗
i ), ∀λ ≥ 0,

and hence, for λ > 0, large enough, we must have y∗i + λsi /∈ A⊥
i since A⊥

i is
compact. In particular x∗i + λsi /∈ Ai, and ui(x

∗
i + λsi) ≥ ui(x

∗
i ).
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Proposition 3 Assume (H1)− (H2), [W1]-[W2] and [WNAC]. Then, there
exists a Walras quasi-equilibrium.

Proof. Consider, for any i, the direct decomposition

Xi = (Xi ∩ L⊥i ) + Li.

Let πi denote the orthogonal projection of x onto L⊥i . Observe that under
[W1], we have for any i, ui(xi) = ui(yi), where yi is the projection of xi onto
L⊥i . In particular, ui(x + li) = ui(x) for any x ∈ Xi, any li ∈ Li.
Let Si denote the set of satiation points of agent i and S⊥i = Si ∩L⊥i . When
Si is non-empty, take x̂i ∈ S⊥i ∩Ac

i . Let B(0, a) be a closed ball of Rl which
is sufficiently large to contain in its interior A⊥

i , x̂i and ei for every i. Let

Xa
i =

[
Xi ∩ L⊥i ∩B(0, a)

]
+ Li.

Define on Xa
i ∩ Si the function µa

i as follows:

xi ∈ Si ∩Xa
i −→ µa

i (xi) = sup{β ≥ 0 : x̂i + β(πi(xi)− x̂i) ∈ Si ∩Xa
i }

One can check that µa
i is upper semi-continuous, strictly quasi-concave.

Moreover, µa
i (xi + ti) = µa

i (xi),∀xi ∈ Xa
i ,∀ti ∈ Li and µa

i (xi) = +∞ iff
πi(xi) = x̂i. Let

ua
i (xi) = ui(xi) + 1− 1

µa
i (xi)

, if xi ∈ Xa
i ∩ Si

ua
i (xi) = ui(xi) otherwise.

Note that ua
i (xi+ti) = ua

i (xi) for any xi ∈ Xa
i , any ti ∈ Li. Consider economy

Ea = {(Xa
i , ua

i , ei)i}. Let Aa be the individually rational feasible allocations
set of this economy, and Aa

i be its projection onto Xa
i . It is easy to check that

ua
i is upper semi-continuous, strictly quasi-concave and it has no satiation

point on Aa
i . Assumptions [WNAC] and [W1] imply the compactness of the

individually rational utility set of Ea. From Theorem 1, Ea admits a quasi-
equilibrium ((x∗i )i, p

∗). We claim that it also is a quasi-equilibrium for the
initial economy. Indeed, we have

∑

i∈I

x∗i =
∑

i∈I

ei

∀i, p∗ · x∗i = p∗ · ei

13



Now, let ui(xi) > ui(x
∗
i ). In this case, x∗i is not in Si. For any λ ∈ (0, 1) one

has ui(λxi + (1− λ)x∗i ) > ui(x
∗
i ). For λ close to zero, λxi + (1− λ)x∗i ∈ Xa

i

and thus,

ua
i (λxi + (1− λ)x∗i ) ≥ ui(λxi + (1− λ)x∗i ) > ui(x

∗
i ) = ua

i (x
∗
i ).

Hence, p∗ · (λxi + (1− λ)x∗i ) ≥ p∗ · ei = p∗ · x∗i which gives p∗ · xi ≥ p∗ · ei.

4.1 Example

Now, we provide an example where both the standard nonsatiation assump-
tion (H4) and Werner’s nonsatiation [W2] fail to be satisfied. However, our
new nonsatiation assumption (H ′

4) holds. In this example, we have the ex-
istence of a competitive equilibrium that could not have been inferred from
standard existence theorems.

Example Consider the economy with two consumers and two commodities.
Consumer 1 has the following characteristics: X1 = [0, 10]× [0, 10],

u1(x1, y1) =

{
min{x1, y1}, if either x1 ∈ [0, 3] or y1 ∈ [0, 3],
3 otherwise.

e1 = (6, 2).

Consumer 2 has the following characteristics: X2 = R2
+ u2(x2, y2) = x2 + y2

e2 = (2, 6).
We have u1(e1) = 2, u2(e2) = 8.
The satiation set of agent 1 is S1 = [3, 10] × [3, 10]. Let ζ1 = (x1, y1), ζ2 =
(x2, y2). The set of individually rational feasible allocations is:

A = {(ζ1, ζ2) ∈ X1 ×X2 : ζ1 + ζ2 = (8, 8), and u1(ζ1) ≥ 2, u2(ζ2) ≥ 8}.
It is easy to see that (3, 3) ∈ A1 and hence M1 = 3. But observe that
(10, 10) /∈ A1 and satisfies u1(10, 10) = 3 = M1. In other words, for agent
1, Assumption (H4) is not satisfied. It is also worth noticing that Werner’s
nonsatiation is not satisfied by agent 1 since X1 is a compact set, and there-
fore R1 = {0}. However, it is obvious that Assumption (H ′

4) is satisfied by
both consumers.
One can easily show that the allocation ((4, 4), (4, 4)) together with the price
(1, 1) is an equilibrium for the economy.
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5 Appendix

Lemma 1 Let B be a closed, convex set of Rn and x∗ be in B. Let λ : B →
R+ ∪ {+∞} be defined by

λ(x) = sup{β ≥ 0 : x∗ + β(x− x∗) ∈ B}.

Then λ is upper semicontinuous and strictly quasi-concave. Proof. First,

observe that λ(x) ≥ 1,∀x ∈ B.

(i) Upper semicontinuity of λ: First we have:

x− x∗ ∈ O+B ⇐⇒ λ(x) = +∞.

Let xn → x. If lim sup λ(xn) = +∞, take a subsequence which satisfies
lim λ(xν) = +∞. Let ε > 0 be any small positive number. We have

x∗ + (λ(xν)− ε)(xν − x∗) = zν ∈ B, ∀ν,

or

(xν − x∗) =
zν − x∗

λ(xν)− ε
.

Let ν → +∞. We have zν−x∗
λ(xν)−ε

→ x−x∗, hence, x−x∗ ∈ O+B. That implies

λ(x) = +∞ and lim sup λ(xn) = λ(x).
Now, assume lim sup λ(xn) = A < +∞. Without loss of generality, one
can assume that λ(xn) → A. Take any ε > 0 small enough. Then, ∀n, x∗ +
(λ(xn)−ε)(xn−x∗) ∈ B. Let n go to infinity. Then x∗+(A−ε)(x−x∗) ∈ B.
That implies λ(x) ≥ A − ε for any ε > 0 small enough. In other words,
λ(x) ≥ lim sup λ(xn). We have proved that λ is upper semicontinuous.

(ii) Quasi-concavity of λ: Let x1 ∈ B, x2 ∈ B, θ ∈ (0, 1) and x = θx1 +(1−
θ)x2. Assume λ(x1) ≤ λ(x2). As before take any ε > 0 small enough. We
then have

x∗ + (λ(x1)− ε)(x1 − x∗) ∈ B,

and
x∗ + (λ(x1)− ε)(x2 − x∗) ∈ B,

since λ(x1) ≤ λ(x2). Thus

θ(x∗ + (λ(x1)− ε)(x1 − x∗)) + (1− θ)(x∗ + (λ(x1)− ε)(x2 − x∗)) ∈ B
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since B is convex. We obtain x∗+(λ(x1)−ε)(θx1+(1−θ)x2−x∗) ∈ B. Hence
λ(θx1 + (1− θ)x2) ≥ λ(x1)− ε for any ε > 0 small enough. In other words,
λ(θx1 +(1− θ)x2) ≥ min{λ(x1), λ(x2)}. We have proved the quasi-concavity
of λ.

(iii) Strict quasi-concavity of λ: Let λ(x2) > λ(x1). We first claim that
x∗ + λ(x1)(x1 − x∗) ∈ B. Indeed, ∀n, x∗ + (λ(x1) − 1

n
)(x1 − x∗) ∈ B. Let

n → +∞. The closedness of B implies that x∗ + λ(x1)(x1 − x∗) ∈ B.
Now, let θ ∈]0, 1[. We claim that λ(θx1 + (1 − θ)x2) > λ(x1). For that,for
short, write λ1 = λ(x1), λ2 = λ(x2). Let A satisfy λ1 < A < λ2. Then
x∗ + A(x2 − x∗) ∈ B. Hence

θA

λ1(1− θ) + θA
(x∗ + λ1(x1 − x∗)) +

λ1(1− θ)

λ1(1− θ) + θA
(x∗ + A(x2 − x∗)) ∈ B,

or equivalently

x∗ +
Aλ1

λ1(1− θ) + θA
(θx1 + (1− θ)x2 − x∗) ∈ B.

Thus, λ(θx1 + (1− θ)x2) ≥ Aλ1

λ1(1−θ)+θA
> λ1, since A > λ1.

Claim 1 The utility function ûi is strictly quasi-concave.
Proof. Let

ûi(x2, d2) > ûi(x1, d1) (1)

and θ ∈]0, 1[. We claim that

ûi(θ(x2, d2) + (1− θ)(x1, d1)) > ûi(x1, d1). (2)

Let us distinguish the three cases again:

Case 1. The claim is obviously true since (1) is equivalent to ui(x2) > ui(x1)
and ui is assumed to be strictly quasi-concave.

Case 2. We have two sub-cases.
(a) If x1 ∈ Si, then x2 ∈ Si. In this case, (1) is equivalent to λi(x2) > λi(x1).
From Lemma 1, λi is strictly quasi-concave. Hence (2) is true, since Si is
convex, and therefore θx2 + (1− θ)x1 ∈ Si.
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(b) If x1 /∈ Si. Then (1) is equivalent to ui(x2) > ui(x1). Since ui is a strictly
quasi-concave function, we obtain

ui((1− θ)x1 + θx2) > ui(x1).

Therefore, one has

ûi(θ(x2, d2) + (1− θ)(x1, d1)) ≥ ui(θx2 + (1− θ)x1) > ui(x1) = ûi(x1, d1),

and consequently (2) is true.

Case 3. We can consider the following cases: (a)If x1 ∈ Si, then x2 ∈ Si.
Hence, we have

ûi(x1, d1) = Mi + µd1, ûi(x2, d2) = Mi + µd2.

It follows from (1) that d2 > d1. Hence,

(1− θ)d1 + θd2 > (1− θ)d1 + θd1 = d1.

Since (1− θ)x1 + θx2 ∈ Si, we deduce

ûi((1− θ)x1 + θx2, (1− θ)d1 + θd2) =

Mi + µ((1− θ)d1 + θd2) > Mi + µd1 = ûi(x1, d1).

(b)If x1 /∈ Si. Then (1) implies ui(x2) > ui(x1). Since ui is a strictly quasi-
concave function, we obtain

ui((1− θ)x1 + θx2) > ui(x1).

Then, it follows that

ûi((1−θ)x1 +θx2, (1−θ)d1 +θd2) ≥ ui((1−θ)x1 +θx2) > ui(x1) = ûi(x1, d1).

The proof of the claim is complete.
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