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Abstract— Mapping high-dimensional data in a low-
dimensional space, for example for visualization, is a
problem of increasingly major concern in data analysis. This
paper presents DD-HDS, a nonlinear mapping method that
follows the line of Multi Dimensional Scaling (MDS)
approach, based on the preservation of distances between
pairs of data. It improves the performance of existing
competitors with respect to the representation of high-
dimensional data, in two ways. It introduces i) a specific
weighting of distances between data taking into account the
concentration of measure phenomenon, and ii) a symmetric
handling of short distances in the original and output spaces,
avoiding false neighbor representations while still allowing
some necessary tears in the original distribution. More
precisely, the weighting is set according to the effective
distribution of distances in the data set, with the exception of
a single user-defined parameter setting the trade-off between
local neighborhood preservation and global mapping. The
optimization of the stress criterion designed for the mapping
is realized by "Force Directed Placement". The mappings of
low- and high-dimensional data sets are presented as
illustrations of the features and advantages of the proposed
algorithm. The weighting function specific to high-
dimensional data and the symmetric handling of short
distances can be easily incorporated in most distance
preservation-based nonlinear dimensionality reduction
methods.

Index Terms — high-dimensional data, neighborhood
visualization, non-linear mapping, Multi Dimensional
Scaling.

I. INTRODUCTION

isualization of high-dimensional data is intended to

facilitate the understanding of data sets by preserving

some "essential" information. It generally requires the

mapping of the data into a low (usually 2- or 3-)

dimensional space. However, high-dimensional data raise

unusual problems of analysis, given that some properties of

the spaces they live in cannot be extrapolated from our

common experience. In particular (notably in the case of

Euclidian spaces), we often face the problems of empty

space and concentration of measure: when the number of

dimensions is high, the neighborhood of each object is
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scarcely filled whereas most of the other objects are found in

a thin outer shell. Distances between high-dimensional

objects are usually very concentrated around their average

[1].

Exploration and analysis of high-dimensional data are

often made by means of dimension reduction techniques [2,

3]. Since human experience mostly deals with three-

dimensional space (and most data display devices are two-

dimensional), finding a meaningful mapping of high-

dimensional data into such low-dimensional spaces is a

major issue. Often linear mapping methods do not lead to

satisfactory representations. Indeed real data most often

show nonlinear relationships that cannot be approximated in

a satisfactory way by linear methods. Nonlinear mappings

(also called nonlinear methods for dimensionality reduction)

offer more flexibility, often at the price of an additional

complexity.

In this paper, we propose a nonlinear dimensionality

reduction method specifically adapted to high-dimensional

data. It follows the line of Multi Dimensional Scaling

(MDS) methods, based on the preservation of distances

between pairs of data [4]. However, it differs from existing

methods in two ways. First, it includes a weighting of

distances that takes the concentration of measure

phenomenon into account (see section IV.A); this is of

primary importance when dealing with high-dimensional

data, for which the concept of "small" and "large" distances

strongly differ from the traditional view in low-dimensional

spaces. Secondly, existing nonlinear dimensionality

reduction methods either favor the preservation of small

distances in the original space ([5] for example), at the risk

of collapsing far points together in the representation, or

favor the preservation of small distances in the output space

([6] for example), allowing sometimes unwanted tears in the

original distribution. The method proposed in this paper is

symmetric with respect to distances in the original and

output spaces (see section IV.B), leading to better and more

intuitive representations, as attested by experiences. Finally,

the optimization of the method-specific objective function is

performed by Force Directed Placement (FDP), as an

alternative to more traditional gradient-based algorithms (see

section IV.C).

This paper is organized as follows. Section II shows

known phenomena occurring in high-dimensional spaces,

and how metric transformations can deal with them. Section

III briefly reviews dimensionality reduction methods, and

highlights the difficulties encountered in these methods with

high-dimensional data. Section IV presents our original

nonlinear mapping algorithm called DD-HDS for Data
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Driven High-Dimensional Scaling. Section V defines

efficiency measures used in section VI that presents

experimental results and comparisons with existing

methods.

II. DISTANCES IN HIGH-DIMENSIONAL SPACE

Mapping methods based on the comparison of distances

between pairs of data in the original and output spaces, such

as MDS, need to take care of how distances are measured.

Specific distances are often used to measure similarities in

the original space; distances in the (low-dimensional) output

space are usually measured in a more conventional way. In

this paper, we focus on Euclidean and derived metrics

(section II.A and section II.B, respectively) for the

representation of data in the original space and on the

Euclidean metric for the output space for sake of simplicity.

However, most results in this work may be easily extended

to other metrics.

A. Euclidean distances in high-dimensional space

Several surprising phenomena appear when dealing with

high-dimensional data. This fact is known as the "curse of

dimensionality" [1], and has strong impact on the validity

and performances of data analysis tools [7]. In particular, the

Euclidean metric (
x = x

i

2∑ ) is known to suffer from the

unwanted concentration of measure phenomenon [8]. Let us

consider the distances between pairs of uniformly distributed

data in a n-dimensional unit-edge hypercube. It can be

shown that the mean of the distances increases with the

square root of n, while the variance remains constant. This

is illustrated in Fig. 1. As a result, it is much more difficult

to discriminate between small and large distances in a

relative way (e.g. when distances are normalized) in a high-

dimensional space. As we will see in a short review in the

next section, nonlinear dimensionality reduction tools will

thus fail to give more weight to small and/or large

distances, as it should be the case for a proper functioning of

the algorithms.

The Euclidean norm is not the only one to suffer from the

concentration of measure phenomenon. All other Minkoswki

metrics, Minkowski pseudo-metrics (fractional norms),

Pearson correlation metric, etc… have this characteristic,

though at different levels [8]. Transformations of distances

may be used to overcome these problems. We briefly review

such transformations in the next subsections.

B. Derived metrics

It is common practice changing data representation to

help the mapping procedure and, eventually, to add

supervised information (see [9] for example). Three powerful

approaches are particularly useful as preprocessing when

dealing with high-dimensional data.

1- Nowadays kernel methods have a huge attractiveness in

data analysis [10]. Kernel methods rely on the principle of

first mapping data onto a (usually higher-dimensional) space

before further processing. In practice, the mapping is not

explicitly calculated: a so-called kernel k(.,.) is used to

calculate distances between the mapped data. If the kernel is

positive definite, it can be verified that it is indeed the scalar

product between data in a transformed space: k(xi,xj)=

<φ(xi), φ(xi)> where <. ,  .> denotes the scalar product and

φ(.) a mapping to a possibly high-dimensional space. The

so-called kernel trick avoids calculating both the mapping

and the distances (here scalar products) in the original

spaces: only the outputs of kernels have to be evaluated.

By using nonlinear transformations of data, kernel

methods succeed in building nonlinear models (e.g. for

classification and regression) keeping many advantages of

linear tools. Their optimization procedure is also simplified

compared to many other nonlinear models.

 Kernels are used in the context of nonlinear

dimensionality reduction too. This leads for example to the

Kernel Principal Component Analysis (KPCA) method

consisting in applying the linear PCA method in a kernel-

induced space [10-13]. As kernels are defined as a dot

product between nonlinear data transformations, Kernel PCA

can be viewed as PCA applied after a transformation of

metric. As in MDS methods, the user is faced to the crucial

choice of an adequate metric transformation, more precisely

to the choice of the kernel [11, 14]. Weinberger et al. for

example use semidefinite programming for manifold

learning that provides optimized kernels for high-

dimensional data projection [15, 16]. In this context, it

must be pointed out the high similarity of this approach

with Fast Mixing Markov chains [17]. A variant, described

in [10] page 436, consists in using classical MDS on a

distance matrix generated through a kernel function. Taking

the exponential of (Euclidean) distances is a possible

transformation that enhances the contrast between small and

large distances.

dim=1
dim=2

dim=5
dim=10 dim=20 dim=50 dim=200

0

0

distance

count

5 10 15 20 25

Fig. 1. Histogram of distances between uniformly distributed data in a unit cube, according to space dimension. Histograms for dimensions larger than 200
would have the same Gaussian-like shape, but their centers would be shifted to the right proportionally to the square root of the dimension.
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2- Geodesic metrics (also called curvilinear metrics) may

offer interesting data representations when dealing with

high-dimensional spaces. They are based on the fact that if

data occupy a non-convex part of the space, it seems

legitimated to force distances to be measured through the

cloud of data, instead of using a conventional Euclidean

distance. Intuitive justifications for the interest of curvilinear

distances may for be found for example in [18, 19]. The

curvilinear distance is measured in a graph the nodes of

which are the data themselves (or a reduced set). Close data

in the space are linked together to form a connected graph

(the way they are connected define the type of distance;

classically, each node is connected to the k closest nodes).

The curvilinear distance between any pair of data xi and xj is

subsequently the sum of Euclidean distances between all

pairs of data connected in the shortest path on the graph

between xi and xj.

Floyd's and Dijkstra algorithms may be used to compute

such distances [20, 21]. Isomap [18] and Curvilinear

Distance Analysis (CDA) [19, 22] are methods belonging to

this category, the difference resulting in the way distances

are weighted: Isomap extends classical MDS [4] while CDA

extends the "Curvilinear Component Analysis" [6].

Extensions to these methods have been published, e.g. to

allow the possibility for tears in the original distribution,

avoiding loops or other closed surfaces to collapse in the

mapping (see for example [23]).

3- A last class of derived metrics discussed here consists

in using rank orders. Indeed on some data (such as genomic

signatures [24]), the ranking of neighbors is important,

while the distance itself may be less [25]. Switching from

distance to rank order may thus reveal interesting data

properties. Kruskal's criterion is close to such a

transformation [26, 27].

Rank orders are not symmetric: let’s note

X = x
1
,x

2
,...,x

N( )  the data in the original space; if data xi is

the k-th neighbor of xj, xj is not necessarily the k-th neighbor

of xi. In order to use the rank as a distance, dij
r
 may be

defined as the average of the rank order of xi with respect to

xj and vice-versa. Note that, nevertheless, d
r
 must be called

a pseudo-distance as it is does not respect the triangular

inequality. Furthermore this pseudo-distance is data set

dependent (just as curvilinear distance is), as dij
r
 may be

influenced by the addition of a data xk (k ≠ i and k ≠ j) in

the data set; to limit this effect, it is possible to normalize

the pseudo-distances (for example by their maximum value).

By construction, rank orders do not suffer from the

concentration of measure phenomenon; however, they are

not commonly used in nonlinear dimensionality reduction

methods, probably due to the lack of conventional distance

properties.

All these derived metrics are designed to enhance the

contrast between small and large distances. However,

whatever is the method used for that purpose, they fail to

address the specific properties of high-dimensional data. The

concentration of distances phenomenon detailed in section

II.A makes that all distances are approximately equal.

Transforming these distances by a nonlinear function such a

kernel does not help, unless the transformation is designed

specifically to take the concentration phenomenon into

account. This is the goal of the algorithm described in

section IV.

III. DIMENSION REDUCTION TECHNIQUES

Data X = x
1
,x

2
,...,x

N( )  are defined in the vector space E
1

with associated metric m
1
. Our goal is to represent X  in a

vector Euclidian space E
2
 of lower dimension than N.

Mapping data from a high-dimensional space to a low-

dimensional one, keeping exactly all distances between the

pairs of points in the original and output spaces, is most

often impossible whatever is the distance used to measure

similarities in the original space. Then, a data representation

has to release some constraints according to a specific “point

of view”. Numerous dimensionality reduction methods have

been proposed, with variants in the methodology and in the

criterion (the point of view) to optimize. In this section, we

briefly present the main aspects of these techniques, before

providing some insight about the difficulties encountered

when the dimension of the original space is high.

A. Approaches for dimension reduction

Because keeping exactly all distances between pairs of

points unchanged in the representation is most often

impossible, all methods emphasize the preservation of some

distances or types of distances, therefore privileging a

specific point of view. For example, Principal Component

Analysis (PCA) and classical MDS [4, 28, 29] maximize

the variance of the data cloud after projection, under linear

projection hypothesis; the resulting representation expresses

the overall form of the data set. Locally Linear Embedding

(LLE) [30], Laplacian Eigenmaps [31] and Hessian-based

Locally Linear Embedding (HLLE) [32] assume that data are

located on a manifold, smooth enough to be reasonably well

approximated by local linear models ; these methods unfold

the set of data through local linear projections. The merging

of local projections may be optimized afterward [33].

Supervised methods such as Discriminant Analysis and

Partial Least Squares (PLS) regression [34] use a dependent

variable (discrete or continuous, respectively) to guide the

mapping. Self-Organizing Maps (SOM) [35, 36] visualize

data on a grid obtained by a topology-preserving vector

quantization. ViSOM and PRSOM merge SOM and MDS

algorithms in order to map data based both on topology and

distance preservation [37-39]. The Generative Topographic

Mapping (GTM) is also inspired from SOM [40]: a lower-

dimensional manifold is optimized to approach data in the

original space (see [41] for discrete data). The Gaussian

Process Latent Variable Model (GP-LVM) results from a

novel probabilistic interpretation of PCA [42]. This non-

linear method is close to KPCA and GTM. Methods such as

Sammon’s mapping [5], non linear MDS [26, 27, 43],

Curvilinear Component Analysis (CCA) [6, 44], and Isotop

(a SOM the nodes of which are positioned by CCA) [45,

46] emphasize on local neighborhood preservation, often at

the price of allowing huge deformations of the global shape

of the data cloud. Note that the CCA acronym used in this

paper according to the literature covering this algorithm does

not mean here Canonical Correlation Analysis. As detailed

in the previous section, derived distances in the original

space may be used, entitling for example the use of MDS

after a kernel transformation, or the replacement of Euclidean
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distances by curvilinear distances in MDS and CCA,

leading to Isomap and CDA respectively.

The method introduced in the next section is placed in

the context of neighborhood preservation. The goal is to

build a method emphasizing on the preservation of small

distances, possibly at the price of distortions in large

distances. The difference with respect to previously

mentioned methods arises from the fact that the specific

properties of high-dimensional spaces are taken into account

when measuring distances in the original space.

Furthermore, the question whether to emphasize on small

distances in the original or output space is answered in a

symmetric way, offering a compromise between the risk of

mapping far points together and the possibility to tear the

initial distribution for a better representation.

B. Sammon’s stress and high-dimensional data

Distance preservation methods such as Sammon's

mapping, CCA and CDA, minimize the differences between

di j, the distance between xi and xj in the original space, and

d'i j, the distance between their representations x'i and x'j in

the output space. Small distances are emphasized in order to

preserve local topology (and small distances). An objective

criterion ς = F dij − ′ d ij .k dij( )( )
i< j

∑  similar to the original

Sammon's stress, where k(di j) is a monotonically decreasing

function giving more weight to small distances in the F

criterion is generally used. Sammon's stress [5] is for

example :

ς sammon =
1

dij
i< j

∑
(dij − d'ij )

2

diji< j

∑ , (1)

and Kruskal criterion [27] is:

∑
<

−
=

ji ij

ijij

d

d'd

2

2
kruskal

'

)(
ς . (2)

Stress functions as (1) and (2) are also called error

functions, energy function or loss functions, depending on

the literature.

In both cases, the weighting function is related to the

inverse of the distance. In high-dimensional spaces however,

as detailed in section II.A, all distances tend to be similar.

The weighting factor in (1) and (2) does not play its role

anymore. The criterions then give similar weights to small

and large distances, leading to a mapping that mixes global

representation and local neighborhood preservations. Such a

poor behavior of Sammon's stress was already mentioned by

its author, who noted that linearly separable classes in high-

dimensional spaces might not be separable in the mapping

[5].

C. Representation with false neighborhoods or tears

Distance preservation methods penalize more heavily

mismatches in small distances, by weighting the stress

criterion with a decreasing function of either the distances in

the original space (see (1) for example), or the distances in

the output space (see (2) for example). However, in the first

case, it is difficult to tear distributions with loops, leading

to the so-called "false neighborhood" representation: data far

from each other in the original space could be mapped to

close points, exactly as PCA "flattens" volumes when the

number of principal components used in the projection is

not sufficient. As an example, the extreme points of a "C"

shape (two-dimensional space) with two long branches (with

respect to their inter-distance) will be projected as neighbors

(in a one-dimensional space), although their distance in the

original space is large (compared to distances between

neighbouring points in the "C" shape); a good mapping

procedure would unroll the "C" shape instead of flattening

it.

 In the second case, tears are allowed, with the risk that

neighbor points in the original space may be found widely

separated in the output space; tears are sometimes necessary,

but may lead to wrong interpretations of neighborhoods in

the output space. For example, mapping a "O" shape

requires tears to avoid flattening and false neighbors, but the

location of tears appears randomly in some methods, or

depends more strongly on the density of data in the original

space than on the manifold geometry.

False neighbors and tears are limitations of nonlinear

dimensionality reduction methods, which cannot be avoided

in most cases due to the intrinsic nature of the manifold.

Illustrations of tears and false neighbors are provided in

section VI.E, where mappings of open boxes with various

algorithms are shown.

However, in most cases, there is no reason to favor a

priori false neighbors or tears. See the recent paper of

Lawrence and Quiñonero-Candela for a comprehensive

discussion of this problem in terms of similarities and

dissimilarities between data [47]. There is thus a need for a

method that implements a compromise and reduces the risk

of both false neighbors and tears.
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IV. DD-HDS: PRINCIPLES RULING THE METHOD

In this section a new nonlinear dimensionality reduction

method is proposed, which addresses the two shortcomings

detailed above: the method implements a weighting of

distances specifically adapted to high-dimensional data, and

avoids too high risks of both tears and false neighbors

through a symmetric weighting approach.

A. The sigmoid balancing function

Based on Fig. 1, it seems obvious that a discrimination

between small and large distances cannot be achieved in

high-dimensional spaces by a simple inverse of distances (or

inverse of squares of distances) as in Sammon's-like (or

Kruskal's-like) criteria. We thus suggest using a weighting

function of the form

k dij( ) =1− f u,µ,σ( )du
−∞

d ij

∫ , (3)

where f(u,µ,σ) is the probability density function of a

Gaussian variable with mean µ  and standard deviation  σ.

An example of such function is shown in Fig. 2, where it

can be seen that small distances in their effective range will

contribute to the objective stress, while large ones will not.

Sigmoid-like weighting functions were already proposed by

Demartines [6]. Here, the shape of the weighting function is

adapted to the effective distribution of the data in the high-

dimensional space. Note that using a cumulative Gaussian

function as weighting does not assume, in practice, that the

distribution of distances is Gaussian. What we are interested

in is to discriminate between small and large effective

distances in the distribution, with respectively a large and a

small weighting. We may observe thus that the beginning

and the end of the decreasing part of the weighting function

are located at distances that correspond approximately to

small and large effective distances in the distribution,

respectively. Besides these characteristics, the exact shape of

the weighting is not important, similarly to other choices of

weighting functions in other mapping methods. In this case,

the cumulative Gaussian function has been chosen because

the central limit theorem ensures that distances in high-

dimensional spaces will be Gaussian distributed, at least

when the marginal distributions are i.i.d. The weighting

function is called a sigmoid balancing function, because of

its similarity in shape with the sigmoid function, and its

balancing role in the weighting of small and large distances.

Of course, mean µ and standard deviation σ must be

chosen in order to adapt to the effective distribution of data.

As a rule-of-thumb, it is suggested to take

µ = mean
1≤ i< j≤N

dij( ) − 2 1− λ( ) std
1≤ i< j≤N

dij( ) (4)

and

( )ij
Nji
d

≤<≤
=

1

std2λσ , (5)

where the mean and standard deviation (std) are taken over

the distribution of distances between all pairs of data in the

original space. Thus, the weighting function can make the

difference between small and large distances even if data

come from a high-dimensional space. Such data-dependent

weighting is similar to the p-Gaussian kernel proposed in

[48] to take into account the effects of dimensionality. λ is a

positive user-defined parameter (usually to be taken between

0.1 and 0.9). Section IV.D details how λ is varied during

the course of the algorithm, and section VI.B shows the

effect of λ on the resulting mapping in the case of the two

open boxes problem. This single parameter allows

controlling how large distances are taken into account in the

stress objective function, as compared to small distances.

Making it vary leads to weighting functions k(di j) as shown

in Fig. 2. Of course, for more flexibility or for the fine-

tuning of the weighting function, µ  and  σ  could be

individually considered.

0
0

weighting functions

histogram of distances

distance

λ=0.1

λ=0.9
λ=0.5λ=0.5

λ=0.5

weighting

value

histograms :

count

5 10 15 20 25
0

1

0.5

Fig. 2. The weighting function as implemented by (3) fits the distributions of distances in n-dimensional spaces (see Fig. 1; histograms from left to right are
drawn with n = 1, 10, 50 and 200 respectively). For n = 200, the effect of varying parameter λ (λ = 0.9, 0.7, 0.5, 0.3 and 0.1)  is illustrated.
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B. The importance given to a distance depends on
original space and output space

Section III.B detailed how existing nonlinear dimensionality

reduction methods either avoid tears in the original

distribution or false neighborhood representations (see also

[49]). It is suggested here to avoid as much as possible both

drawbacks, by using a weighting function that is symmetric

with respect to distances in the original (di j) and output (di j’)

spaces: short distances both in the two spaces will be

emphasized. The weighting function is subsequently defined

by

k min dij ,d'ij( )( ) =1− f u,µ,σ( )du
−∞

min d ij ,d ' ij( )

∫ , (6)

Fig. 3 shows the mismatch level between a distance in

the original space and the corresponding distance in the

output space, in three different situations: without any

weighting, with a weighting using the distance in the

original space, and with the weighting given by (6): it

clearly shows the symmetry of the weighting with respect to

both original and output spaces. The symmetric function

prohibits that far points in the original space could be

displayed as neighbors in the output space, while still

allowing tears when they are necessary to map distributions

with closed loops.

Note that a symmetric use of distances in the original and

output spaces is made possible by the fact that Sammon-like

methods precisely aim at making these distances equal.

There is thus no scaling problem or risk that the distances in

both spaces could not be comparable.

The resulting stress function is given by

ς = dij − ′ d ij . 1− f u,µ,σ( )du
−∞

min d ij ,d
′
ij( )

∫
 

 

 
 

 

 

 
 

 

 

 
 








i< j

∑ . (7)

Usually, the stress function is related to the square of

differences between distances. However, absolute values are

used here instead of squares, to avoid giving a too high

importance to large distances (often responsible of large

differences) in the criteria. Moreover, the formulation of the

stress proposed in this paper is consistent with the

optimization procedure described in section IV.C (the spring

metaphor).

C. Optimization by Force Directed Placement

In general, the optimal position of the data in the output

space, resulting from the optimization of stress (7), cannot

be obtained analytically. It is necessary to implement a

function minimization algorithm with widely recognized

robustness and convergence properties. Classically, in the

context of dimensionality reduction, one uses the

generalized Newton-Raphson algorithm [50], TABU Search

[51], genetic algorithms [52, 53], simulated annealing [54]

or neural networks [6]. To optimize (7) in the context of the

proposed method, it is suggested here to use an algorithm

based on the "Force Directed Placement" paradigm (FDP).

FDP is an optimization technique for graph visualization

introduced by Eades [55]. It compares graphs to spring

systems: nodes are associated to masses and edges to

springs between masses [56, 57]. Such system generates

forces on the masses, inducing their movement. After a

transition phase the system stabilizes; the assumption is

made that the final organization corresponds to an acceptable

graph representation. The stopping criterion of the algorithm

may be a maximum number of iterations, but it has been

shown (c.f. [56, 57]) that it is possible to define an energy

function whose minimum is attained when the algorithm

stabilizes; this function may then be used to control the

convergence and stop the algorithm.

FDP principles are commonly used in graph

representation [56]. They are also used for data visualization

[58-60], as a data set may be seen as a complete graph, the

distance matrix defining the edge lengths. A similar

approach is also used for the design of printed circuit boards

[61, 62]. Although defining objective performance criteria

for a mapping must obviously reflect the goal of the user,

FDP is known to give satisfying results in mappings for

visualization [55-57, 60]. One of the main advantages of

FDP over other optimization techniques for graph and data

visualization is its plasticity: adding or removing a node or

edges rarely induces a strong change in the graph mapping.

When new data are added, this makes it possible for the user

to keep its intuitive view of the graph and be familiar with

the new representation [56, 57]. In addition, FDP makes it

possible to escape easily from local minima of the mapping
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No weighting k =1− f u,µ,σ( )du
−∞

d ij

∫ k =1− f u,µ,σ( )du
−∞

min d ij ,d ' ij( )

∫

Fig. 3. Stress (weighted mismatch between dij and d'ij) when (left) no weighting is used, (center), the weighting is based on the distances in the original space,
and (right), the symmetric weighting is used (stress increases from light to dark).
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stress thanks to the iterative algorithm and the extra random

force that accounts for pressure as detailed in section IV.E

[58-60]. Computational complexity of FDP is O(N
2
) per

iteration [58, 59] but can be reduced to O N N( )  [59].

Despite its advantages, FDP is not a central feature of the

method presented in this paper. FDP is used as one way to

minimize the stress function (7), but other ways could be

used as well. In particular, any gradient-based procedure

compatible with the high number of parameters (the

locations of the data in the mapped space) could be used.

Advantages and drawbacks may be found both in the use of

FDP and gradient-based optimization procedures. They

depend on the number of data, the number of parameters, the

complexity of the stress function that results e.g. from the

complexity of the initial manifold, on the need for an easy

addition of new data in the mapping, etc.

In the case of the proposed algorithm (FDP), each data xi

is associated to a node x’i in the output space. Each node is

linked to all others through springs whose lengths at rest

correspond to the distances between nodes in the original

space; in this way, FDP places the nodes in the output space

keeping all distances as similar as possible to those in the

original space.

The stiffness of the springs is adjusted to give more

importance to small distances; according to the discussion in

sections IV.A and IV.B, the stiffness is given by (6). The

force acting on node i by node j is thus given by

  

r 
F x' i ,x j '

= ′ d ij − dij( ).k min dij ,d
′
ij( )( ).

r 
u ij

= ′ d ij − dij( ). 1− f u,µ,σ( )du
−∞

min d ij ,d
′
ij( )

∫
 

 

 
 

 

 

 
 
.
r 
u ij

. (8)

where 
  

r 
u ij  is the unitary vector oriented from ′x 

i
 to ′ x j .

At time t, a node is characterized by its position (noted

′x 
i
), its speed (noted   

r 
v 

i
) and its acceleration (noted   

r 
a 

i
).   

r 
a 

i

is given by the resultant of forces on the node:

  

r 
a i(t) =

r 
F ′ x j ′ x ij=1

N

∑ . Δ t being the time increment,   

r 
v 

i
 is

modified according to 
  

r 
v 

i
t( ) = θ ×

r 
v 

i
(t −Δt) +

r 
a 

i
(t) ×Δt

where θ ∈ 0,1[ ]  is a damping coefficient (here θ  = 0.7).

The node i  is then moved in the direction of   

r 
v 

i

(
  
′ x 
i

t( ) = ′ x 
i

t −Δt( ) +
r 
v 

i
(t) ×Δt ).

Applying these formula for acceleration, speed and

position forces the positions ′x 
i
 to converge toward a

minimum of the stress function (7). Indeed the system is

relaxed until stability. Stability of each node means that the

acceleration of each node, or the sum of the forces applied to

it, vanishes. Comparing (7) and (8) shows that this situation

is reached when the forces themselves vanish, which results

in a minimum of the stress function. However, stability

could also be reached when the sum of forces applied to a

node vanishes, while forces do not. This situation

corresponds to a local minimum of the stress function;

section IV.E will describe a stochastic perturbation scheme

designed to escape from such a minimum.

The system is relaxed until stability. The level of

stability may be measured by the total energy in the system

given by

  

E =
1

2

r 
v 

i

2

i=1

N

∑ , (9)

where N is the number of nodes. When the system becomes

stable, the positions of the nodes x’i in the output space

form a mapping of the original data. Using criterion (9)

instead of (7) to measure the level of stability is justified by

the fact that (9) can be compared to 0 with a simple, not

critical threshold, while (7) never reaches 0; using (7) would

mean to develop a strategy based on the empirical derivative,

which reveals much more critical in practice. Using a

stopping criterion like (9) is also standard practice within

FDP framework [56, 57].

Of course, as it is the case in any distance-based

dimensionality reduction method, the orientation of the

resulting graph has no specific meaning, as any result

obtained by rotation or symmetry would be equivalent. The

possibility to obtain different mappings when the algorithm

is run several times on the same data results from its

stochastic character; the only stochastic part of the method is

described in section IV.E.

D. The dimensionality reduction algorithm

The proposed dimensionality reduction algorithm is

detailed here, based on the concepts described in the

previous subsections.

The goal of the algorithm is to find the locations ′x 
i
 of

the points in the output space. The unknowns of the

optimization procedure are thus these locations. To find

them, the stress function given by (7) is minimized. In

practice, if the FDP optimization algorithm is used, this is

done by moving the points so as to minimize (7) after the

computation of acceleration, and speed.

The algorithm first builds a global representation based

on a limited number of data, and then iteratively adds

subsets of data to refine the mapping at the local level,

possibly at the price of a global distortion. Each addition of

new data is followed by a learning phase aimed at refining

the mapping.

The order of selection of data is obtained thanks to a

procedure that was described by Hastie et al to select

adequate "seeds" before a clustering procedure [2]. The

advantage of this procedure is that the selected data are

guaranteed to spread over the whole domain of the original

data; the well known drawback of Hastie’s clustering

procedure i.e. the need for the complete distance matrix is

not relevant here since this matrix is also required for the

mapping within the DD-HDS framework. More precisely,

the prototypes are selected as follows:

The first prototype is selected as the data for which the

sum of distances to all other data is minimum (it is the

closest data to the center of gravity).

The (i+1)th prototype is selected as the one giving the

best quantization of the data when it is associated to the i

already selected ones. The best quantization is defined as the

minimum of the quantization error, i.e. the sum of distances

between all data and their nearest prototypes.

Once the full data set is sorted as described above, data

are positioned in the output space. It is always possible to



TNN05-P800 8

place p+1 data in a p-dimensional output space, while

exactly preserving their distances in the original space. The

p+1 first data (prototypes) are therefore first placed in this

way. Next, the number of prototypes to map onto the output

is increased (multiplied by two for example) according to

the selection order. The FDP algorithm is then used to find

a stable configuration considering the new prototypes. Steps

of prototype choice, and steps of subset representation are

alternated until the total number of data is used. In practice,

doubling the number of prototypes after each relaxation step

appears to be a good tradeoff between the number of

partitions and the relaxation time.

As the stiffness of springs (8) makes use of

k min dij ,d
′
ij( )( ), it is necessary to choose the value of λ

for insertion in (4) and (5). At the beginning of the

algorithm, prototypes are far one from another, due to the

data ordering procedure. It is thus legitimate to choose a high

value for λ , so that large distances will influence the

mapping. When the number of data is increased, the value of

λ is decreased to give more importance to neighborhoods and

small distances. The effect of λ is therefore similar to the

neighborhood parameters in Kohonen's self-organizing maps.

Its final value reflects the user-driven compromise between

the efficiency of local representations and a global view of

the data cloud or manifold.

For the experiments presented in the result section, the

number of data was doubled and λ  was monotonously

decreased from 0.9 to 0.1 after each step.

E. Pressure allows avoiding local minima

Forces given by (8) are applied to each node of the graph;

the resultant of forces moves the node. The sum of the

modules of these forces may be interpreted in terms of

“pressure”:

  

Pi =
r 
F x' i ,x ' j

j=1, j≠ i

N

∑ (10)

Our use of the “pressure” term is not academic: it does

not strictly follow the physical definition of pressure.

Nevertheless, it allows differentiating stable nodes because

forces are weak (low value of Pi), from stable nodes because

non-null forces mutually compensate (high value of Pi). In

the latter case, the position of the node corresponds to a

local minimum of the stress function. In order to escape

from this minimum, a supplementary force is added along a

random direction (simulating a Brownian movement). Its

intensity is function of the local pressure:

  

r 
F 

browniani

=α iteration( ) ×
P

i

N
×

r 
u 

i
 (11)

where 
  

r 
u 

i
 is an unit vector randomly oriented and α  tends

toward 0 when the number of iterations increases to allow

system relaxation. Equation (11) describes the only

stochastic part of the method. It is responsible for the fact

that slightly different mappings could result from different

runs of the algorithm, as detailed in section IV.C.

The resulting algorithm is called DD-HDS, for Data

Driven High-Dimensional Scaling.

F. Computational complexity

Computational complexities of DD-HDS and other

nonlinear mapping algorithms such as CCA and Sammon's

mapping are similar. Compared to CCA and Sammon's

mapping, the sigmoid balancing function replaces other

weighting functions with similar complexity, and the FDP

optimization procedure is used as an efficient alternative to

gradient-based procedures. The computational complexity of

all nonlinear mapping methods is of course larger than the

complexity of PCA; the latter relies only on linear algebra

computations, while nonlinear mappings require

optimization procedures. This difference is essential in terms

of computational complexity; the computational load of the

optimization procedures themselves is however quite

impossible to evaluate in practical situations, as it depends

dramatically on the content of the initial data set, which

determines when the stopping criterion is reached. FDP

methods are however reputed to be fast and robust [57]; the

reader is referred to [56] for a discussion about the

computational complexity of FDP.

V. VISUALIZATION OF THE MAPPING EFFICIENCY

Local and global visualizations may be used in order to

explore the efficiency of the mapping with DD-HDS.

Pressure (10) gives valuable information about the

efficiency of mapping: the better the placement of a data

with respect to its neighbors, the smaller the pressure it

undergoes. It must be kept in mind however that the

pressure depends on λ , i.e. on the size of the effective

neighborhood (set by the user).

Criterion (10) may be averaged over all data x’i for a

global measure of the representation efficiency.

Alternatively, Demartine's dy-dx diagram [6, 63] may be

used to view how distances are preserved in the output

space. The principle of this diagram is to plot d'i j as a

function of di j for all pairs of data. All pairs for which the

distance in the output space is exactly equal to the one in

the original space fall on the diagonal of this graph; if short

distances are mapped without much distortion, only small

departures from the diagonal may be seen close to the origin

of the dy-dx diagram axes.
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VI.  EXPERIMENTAL RESULTS

In this section, four databases are mapped on a two-

dimensional space (2D space). The two first examples (earth

globe and open boxes) are 3D distributions for which the

intrinsic dimension is two (two coordinates are sufficient to

describe the location of a point on the distribution).

The two last examples are high-dimensional

distributions. The first one is the set used by Tenenbaum

[18]: data are pictures of a virtual face viewed under various

angles and illumination conditions. As no preprocessing is

used, the dimension of the data is the number of pixels in

the images, i.e. 4096. However, the intrinsic dimensionality

is three, as two viewing angles and one illumination angle

are sufficient to characterize each image. As in [18], the data

are mapped here on a 2D surface.

The last example is a real-world high-dimensional data

set, carrying some information extracted from genome

sequences of living species. The intrinsic dimension of these

data is not known, as traditional dimension estimation

techniques do not result in convincing results. Nevertheless,

a two-dimensional mapping is of interest in order to make it

possible browsing the data space.

A. Earth globe

Data to be mapped are 273 large cities around the world.

Their distances in the original space are calculated in the 3D

space (Fig. 4-left). The mapping by DD-HDS is given in

Fig. 4-right. It can be seen that the mapping accounts for the

local density of cities. The north hemisphere is properly

developed. Continents can be identified. Cities-free areas

(like Pacific ocean, Antarctic, …) are distorted although

continuity is preserved in most places.

The grid materializes latitudes and longitudes, and shows

the deformations resulting from the mapping. The grid was

not used during the mapping process. It has been placed on

the representation a posteriori, through interpolations

between mapped cities: each intersection between latitude

and longitude lines were placed in order to best fit its

distances with cities in the original space (according to (8)).

Points were then connected to give a lattice. This

interpolation procedure is not specific to DD-HDS and could

be used in a similar way with other mapping methods.

This example makes it possible to understand the

viewpoint proposed by DD-HDS. Short distances are

properly represented, while large ones are not necessarily

mapped in a realistic way.

Fig. 4. Mapping of the earth globe (defined by large cities) in a 2D space. Color (right part) indicates the satisfaction of pairwise distances for the
corresponding city (pressure, Eq. (10)). Darkest points indicate highest pressures. For clarity, the part of the grid close to the South Pole is not displayed.
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B. Open boxes

Original data live in a 3D space. They are situated on the

sides of two open cubes with open sides pointing toward

two different directions (Fig. 5, upper left part). The

mapping by DD-HDS is shown to its right. Under these

plots, the Pi criterion (10) for each point (left), and the dy-dx

diagram (right) are shown. Others subplots display

mappings achieved by competing methods.

This simulation illustrates on a simple example the

advantages of DD-HDS. It correctly develops the two boxes,

despite a twist on a large scale. The method effectively

combines obvious nonlinear properties with a faithful

representation of neighborhoods. Sammons' mapping gives

a more expected view, but the lateral faces of the cubes are

drastically compressed.

Even if nonlinear mappings are achieved with most

methods, it can be seen that more or less intuitive

representations are obtained. In the case of SOM, the two

clusters are correctly found and neighborhoods are preserved,

but the shape of the original objects is not recovered.

Methods based on the geodesic concept (Isomap and LLE)

give two disconnected plots for the two boxes as there is no

path available between them (see § II B 2). The black line

between the two box representations expresses this

segmentation. The impact of long distances does not allow

the development of the sides adjacent to the open side of the

boxes.

On the one hand, Sammon’s mapping does not generated

any tear, but many false neighborhoods (just as PCA does).

On the other hand, CCA succeed in mapping data without

any false neighborhood, but some tears can be observed.

This result was expected (see section III.B).

Except for the mapping produced by DD-HDS, all other

show false neighborhoods and/or tears.

The two open boxes data set can be used to visualize the

impact of λ (Fig. 6). High values for λ increase the quality

of global structure representations (highest left panels) but

neighborhood relations are jeopardized. Low values for λ

(0.1 for example) permit a better neighborhood

representation, but the overall shape is not guaranteed. Very

low values for λ  (here 0.05) generate “unreasonable”

weighting functions although the mapping may be still

found acceptable.

Fig. 5. Mapping of two 3D open boxes in a 2D space (The color codes for the position of the data in the original space (except for the local mapping
efficiency and global mapping efficiency plots). Upper left set of subplots: upper left: original data (3D space), upper right: mapping by DD-HDS (2D
space), lower left: pressure (Color lut is similar to Fig. 4), lower right, pairwise distance preservation (color codes for density of distances). Other subplots
are self-explanatory. Isomap code used for this simulation is from     http://isomap.stanford.edu/   , SOM is from Matlab Neural Network Toolbox (nnet),

Sammon’s mapping and LLE are from     http://www.cis.hut.fi/projects/somtoolbox/   .
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Fig. 6. Mapping of the two boxes data set according to λ: left side; color code is the same as in Fig. 5; right side: associated distances in output space
and corresponding weighting functions.
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C. Face data

The set contains 698 pictures of the same virtual face

under different angle and illumination conditions. It has

been used by Tenenbaum [18] to test Isomap on high-

dimensional data. The original dimension of the data is

4096 (number of pixels), and their intrinsic dimension

should is 3 (two viewing angles and one illumination

angle). Fig. 7 shows the mappings achieved by PCA,

Sammon’s mapping, CCA and DD-HDS with Euclidean

distance, and Isomap and DD-HDS with geodesic distance

(five neighbors have been used to build the grid for geodesic

distance). Each resulting map is displayed three times, from

top to bottom in each column, but points are colored

differently: from top to bottom, they are colored according

to the horizontal viewing angle, the vertical viewing angle,

and the illumination angle. Typical examples of images

bordered by the color corresponding to the respective angle

are shown in the left part of Fig. 7.

The intrinsic dimension of this data set is 3. Actually,

most of the tested methods succeed in mapping these data

onto a 3D space. However, maps on Fig. 7 are generated in

a 2D space. This test cannot be perfectly passed: tears or

false neighborhoods are unavoidable. Here, the challenge is

to get as less tears as possible while avoiding false

neighborhoods. As expected, PCA and Sammon’s mappings

display high levels of false neighborhood and tears. DD-

HDS and CCA with Euclidean distance effectively place

points close from one another when their characteristics are

similar. This can be seen through the fact that close points

have similar colors on the three graphs. Nevertheless, much

more exceptions (close points with different colors) are

found with CCA. The methods illustrated in the two last

columns of Fig. 7 (Isomap and DD-HD) use geodesic

distance in the original space. It is much easier to observe

the continuity of the three intrinsic parameters (the three

angles) in these two mappings. The horizontal angle is

properly mapped by both methods. The vertical angle is also

properly captured by Isomap, whereas DD-HDS provides a

smooth mapping of light rotation. However, only DD-HDS

mapping is such that almost all pairs of close points have

similar values (colors) for each of the three angles. Having

all three angles similar in a pair of points that are close in

the mapping is indeed the necessary condition to have two

close points corresponding to close faces (closes faces means

that all three angles are similar). Although both Isomap and

DD-HDS lead to close points that do not fulfill these

requirements (again, tears and false neighbors are

unavoidable in this application), Fig. 7 shows that the

number of such situations is much lower in DD-HDS: a

large number of false neighbors (in Isomap) has been

replaced by a lower number of tears (in DD-HDS).

D. The genomic signature issues

Dealing with real data often rises problems that are not

encountered with simulated data. In particular, the eventual

complexity of real data distribution in high-dimensional

space may strongly reduce mapping efficiency.

Genomic signatures are high-dimensional data resulting

from the analysis of DNA sequences in terms of short

oligonucleotide frequencies. Within the paradigm of

genomic signature, DNA sequences are considered as “texts”

build with a 4-letter alphabet (nucleotides A, T, C, G).

Short oligonucleotides are small DNA sequences (usually 2

to 8 nucleotides long). It has been shown that the set of

oligonucleotide frequencies calculated from a DNA sequence

at least several thousands nucleotides long (the so-called

genomic signature) is species specific i.e. different species

have different signatures [24].

Similarities between species allow building a taxonomy

of life, usually displayed as a tree (the famous tree of life).

Fig. 7. Representation of face data by PCA, Sammon’s mapping, CCA and DD-HDS (4 first columns, Euclidean distances) and Isomap and DD-HDS (2 last
columns, geodesic distances). See text for details. Scales of distances are shown for the methods that respect Euclidean distances (Sammon’s mapping, CCA
and DD-HDS on Euclidean distances).
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Traditional taxonomy is essentially based on macroscopic

observations about species. Genomic features may also be

used. Along branches of the tree of life, successive

refinements lead to an accurate description of species that are

the leaves of the tree. For example, "root; cellular organims;

Eukaryota; Fungi/Metazoa group; Metazoa; Eumetazoa;

Bilateria; Coelomata; Deuterostomia; Chordata; Craniata;

Vertebrata; Gnathostomata; Teleostomi; Euteleostomi;

Sarcopterygii; Tetrapoda; Amniota; Mammalia; Theria;

Eutheria; Euarchontoglires; Primates; Simiiformes;

Catarrhini; Hominoidea; Hominidae; Homo/Pan/Gorilla

group; Homo sapiens" is the path in the tree to a well

k n o w n  s p e c i e s  ( N C B I  :

www   .ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html   ).

It has been shown that close species in terms of

taxonomy have close signatures and vice versa. It is not

realistic (yet?) to observe (and corroborate) the full tree of

life using the genomic signature as a criterion. However,

large partitions (at the bottom of the tree) as well as some

specific branches are already properly described with it (see

[64-66] for examples). It seems therefore interesting to check

the ability of dimensionality reduction methods to preserve

the taxonomic features of genomic signatures.

Depending on the size of examined oligonicleotides, the

genomic signature may have a various number of

dimensions, ranging usually from 16 to 65536. For this

paper, we focused on 256-dimension signatures that have the

most interesting properties with respect to taxonomy. The

study presented here concerns 2046 genomic signatures

illustrating the diversity of living organisms (697

Eukaryotes (plants, vertebrates, fungus, ...), 1349

Prokaryotes made up of 1287 bacteria and 62 archebacteria).

It has been shown that taxonomic information can be

derived from genomic signatures by means of the Euclidean

metric that allows characterizing similarity between them

[25, 64]. Euclidean metric and derived “metrics” (rank and

geodesic) were successively used within DD-HDS to

compare genomic signatures. According to the procedure

described above, the weighting function was fitted to the

various distributions of distances (Fig. 8). The interest of an

adaptive weighting function is obvious here, considering the

diversity in values and shapes of the distance distributions.

Fig. 9 shows the mapping obtained by PCA, KPCA,

SOM, Sammon's mapping, CCA, Isomap, and DD-HDS

using the three “metrics”. In the upper part of the figure, we

are concerned with the ability of the mapping to express

segmentation between signatures near the root of the tree of

life. The groups the species belong to (namely Eukaryotes,

bacteria and Archebacteria) are recognized by the gray

intensity of points. Mappings achieved by PCA and KPCA

do not clearly reveal the taxonomic features of the genomic

signatures. The high non-linear correlations between

variables are likely responsive for the typical croissant

shaped layout. Although Sammon’s mapping makes a better

use of the output space, it fails to display the species

organization: the projection remains folded, because of the

limitations resulting from the Sammon's stress weighting

by distances in the original space, and also probably because

of the concentration of measure phenomenon (see section

III.B). Groups are not easily identifiable in the Kohonen

map although a general organization of signatures is

observable. Isomap allows separating Eukaryotes from

bacteria but overlapping remains important. CCA offers an

interesting display where groups can be localized and

segmented. The paving-like structure may result from the

ultimate preservation of short distances between signatures,

considering that in high-dimensional Euclidean spaces, even

“short” distances are “long”.

DD-HDS also offers mappings where groups of species

can be segmented. In addition, DD-HDS provides a sharper

separation between groups of species.

Mappings obtained using the rank order pseudo-

distance and with ISOMAP are pretty close. The spatial

orientation of data follows the nucleotide bias (frequencies

of the nucleotides are not necessarily equal over species). It

is already know in fact that although the nucleotide bias

largely varies between species, it is not linked to taxonomy.

The nucleotide bias explains an important part of the overall

dispersion of genomic signatures in the high-dimensional

space. It is also captured by PCA and KPCA. Mappings

obtained from Euclidean distances and geodesic distances are

more informative. In particular, substructures in data are

observable (see subplots in Fig. 9, lower part, where

actinobacteria are highlighted). They correspond to well-

identified subgroups of species and are probably the

expression of local substructures in the original space.

As bottom lines, we would like to point out that the

mapping of genomic signatures achieved in this study

would have been better, if more dimensions would have

been allowed for the output space. Our experience with

genomic signatures, DD-HDS and other experimental

protocols suggests that the intrinsic dimension of the

genomic signatures should be around 7-8.

rank order pseudo-distance

std(d ) = 26.9
ij

i < j

mean(d ) = 50
ij

i < j

B

geodesic distance (k=5)

std(d ) = 0.056
ij

i < j

mean(d ) = 0.12ij
i < j

C

Euclidean distance

std(d ) = 0.025ij
i < j

mean(d ) = 0.52ij
i < j

λ=0.1

λ=0.9

A

Fig. 8. Weighting functions fitted to the distributions of distances: A)
Euclidean metric, B) rank order pseudo-metric and C) geodesic metric
(connectivity=5).
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Fig. 9. Mappings of 2046 genomic signatures. Upper panels: signatures as mapped by PCA, KPCA (polynomial kernel of degree 2), SOM (35X55 nodes),
Sammon's mapping, Isomap (connectivity=5), CCA, and DD-HDS using Euclidean metric, and derived metrics or pseudo-metrics (rank order and geodesic
(connectivity=5)); points correspond to species, grey levels code for taxonomy: light gray = Eukaryotes, dark gray = bacteria, black = archebacteria.
Lower panels: Highlights of the subgroup of actinobacteria for some of the above mappings (others species are in grey).
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VII. CONCLUSION

This paper presents DD-HDS (Data Driven High-

Dimensional Scaling), a mapping method designed to take

into account the specificities of high-dimensional data. In

particular, it introduces a specific weighting of distances

taking into account the concentration of measure

phenomenon, and a symmetric handling of short distances

in the original and output spaces, avoiding false neighbor

representations while still allowing some necessary tears.

 Giving an “objective” quantitative evaluation of the

efficiency of mapping methods is quite difficult: there is

obviously a subjective part in the low-dimensional mapping

of high-dimensional data. Some authors even use the term

aesthetic or pleasant drawing. For the genomic signatures

data set at least, we observe structures that correspond to

known organisations of species based on the tree of life. The

different hierarchical levels of organisation, which are

available here, may be more or less detected, depending on

the methods and parameters. Only experts (Biologists in

that case) may validate (or invalidate) the mappings. It is

believed that the exploration of high-dimensional data must

be somehow supervised (i.e. user driven), and, depending on

the “point of view”, mappings may be quite different and

more or less satisfying. In DD-HDS, a single user-defined

parameter allows fixing the compromise between local

neighborhood preservation and global mapping; in our

experience, this feature turns out very convenient for the

interactive exploration of high-dimensional data.
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