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A value for bi-cooperative games

Christophe Labreuche1 and Michel Grabisch2

1. THALES Research and Technology France, RD 128, 91767 Palaiseau Cedex,
France
2. University of Paris I, CERMSEM - 106-112, Bd de l’Hôpital,75647 Paris Cedex
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Abstract Bi-cooperative games have been introduced by Bilbao et al as a
generalization of TU cooperative games, where each player can participate
positively to the game, negatively, or do not participate. In this paper,
we propose a definition of a share of the wealth obtained by some players
after they decided on their participation to the game. It turns out that the
cost allocation rule does not look for a given player to her contribution at
the opposite action to the one she chooses. The relevance of the value is
discussed on several examples.

Keywords: bi-cooperative games, value, efficiency.

1 Introduction

Acquisition and possession of scarce resource is economically costly so that
the mutual use of such resource by several agents or organizations usually
implies positive externalities on these latters. Once the agents have decided
to cooperate, the question of how to allocate the use of the resource as well as
how to share its costs and benefits among the users arises. The main concern
of Cooperative Game Theory is precisely to deal with this issue. The most
classical model is the concept of game in characteristic form. When all side
payments are possible among players, this leads to usual TU games. This
representation is used to model the exchange of private goods under private
ownership, or the collaborative use of commons that can be a public good or
a common technology. This has been applied to very different areas such as
water supply, power supply, distributive justice, or the share of maintenance
costs among the user of a common shared railway infrastructure [10,17,11].

TU games are encoded with a function v : 2N → R where N is the set of
players, which assigns to any coalition S ⊆ N its worth v(S) representing
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the stand alone worth of coalition S, e.g. the cost for supplying all players
of S with the resource. In the microeconomic situations modeled by TU
games, all players participating to the game have usually the same role. For
instance, all players can be consumers of the commons.

As shown in the following example, there are situations in which the
players can choose between two different roles.

Example 1 (Irrigation Network) Water is a critical resource in many agricul-
tural areas, especially in deserts. Farmers have thus interest in cooperating
and constructing common irrigation networks. We assume here that there is
only one possible location for the setting up of a well in a given area. Hence
the farmers who possess a parcel close to that well must share this well and
decide to construct jointly an irrigation network that will convey water to
their parcel.

We consider an example with three farmers. The situation of the parcels
is given in Figure 1.

Parcel 1

Parcel 2

Parcel 3

�Well �

Fig. 1 Situation of the three parcels and the well .

The water network basically consists of pipes that are buried at the
borders of the parcels. The parcel of the first farmer is located just closeby
the well, and is also the largest one. To supply water to the two other
parcels, it is necessary to skirt around farmer 1’s parcel. This requires a
long distance of pipes and leads thus a huge cost. Figure 2 below presents
the different paths of the network in all possible cases: Case a corresponds
to the situation where only farmer 1 asks for water, case b to the situation
where farmer 2 asks for water and not farmer 3, case c to the situation
where farmer 3 asks for water and not farmer 2, and case d to the situation
where farmers 2 and 3 both ask for water. Figure 2 also gives the cost in
each situation. The cost of digging the well is 1 and the cost of buying
and burying the pipes is 1 per unit of length, where the union of the three
parcels corresponds to a square of 10 × 10 in unit of length.

The cost for constructing the network supplying water to all possible
coalitions of farmers defines a usual TU game which is a tree game [10].
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Case a (cost=1)

1

2

3

�

Case b (cost=11)

1

2

3

�

�
Case c (cost=11)

1

2

3

�

�

Case d (cost=16)

1

2

3

� �

Fig. 2 The four different cases of irrigation networks.

Since parcel 1 has an important surface, the price of supplying water
to parcels 2 and 3 is very large. An option to reduce hugely the cost is to
decide that the pipes cut through farmer 1’s parcel in its middle. This leads
to the situation depicted in Figure 3. Yet, the decision of cutting parcel 1’s
field can only be made by farmer 1 since this causes annoyance to her. It
will indeed implies a decrease of the estate price, and a higher complexity
of the sweeping of the parcel during ploughing. Therefore, farmer 1 wants
to quantify the consequence of the two possible options (allowing or not
trespassing) before making her final decision. Remark that farmers 2 and 3

Case e (cost=6)

1 2

3

� �

Fig. 3 The case of parcel 1 being cut in its middle.

may also allow the pipes to cut their field but this will not help in reducing
the length of the network, and thus the overall cost.

In previous example, farmer 1 when asking for water can adopt two
attitudes - namely either requiring that the pipes lie on the border of her
parcel (first attitude), or allowing the pipes to cut her field (second attitude).
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The cost of the irrigation network increases when a farmer switches from
not asking water to asking water while adopting the first attitude (e.g. from
11 up to 16 for farmer 2 if the other two farmers already asked water).
Moreover, the network cost usually decreases when farmer 1 switches from
not asking water to asking water while adopting the second attitude (e.g.
from 16 down to 6 if the other two farmers already asked water).

More generally, one sees that there exists situations in which the play-
ers can choose among two roles or attitudes - called hereafter positive and
negative roles - when deciding to cooperate, such that the choice of one
of the two roles implies opposite externalities on the other players. The
worth increases when a player decides to participate to the game through
the positive role, compare to the case where this player does not participate
to the game. Symmetrically, the worth generally decreases when a player
decides to participate to the game through the negative role. A player that
decides to cooperate with the positive role is called positive contributor, and
a player that decides to cooperate with the negative role is called negative
contributor. More examples of this situation are given in Section 2.

There exist TU games in which the participants can take two opposite
roles. This is the case of market games in which some players are potential
sellers that own several items of commodities, and the other players are
buyers who want to possess some commodities. However, in these games,
the role of the players cannot vary since it is fixed in advance. Moreover,
v(S) represents the largest social wealth players of S can produce after
bargaining among themselves. Clearly v is monotone since the more players
in the coalition the larger the wealth of the coalition. Thus, the situation is
completely different from that depicted in Example 1.

It can be assumed that the role of each player when participating to the
game is given exogenously and can thus be frozen. Hence each player can
either cooperate given her exogenous choice of cooperation, or not partici-
pate to the game, which can be translated into a TU game. However, unlike
market games where a buyer cannot become a seller and vice versa, a posi-
tive contributor could have decided to be a negative contributor. Computing
the share alloted to each player from previous TU game implies that the
contribution of a player when she chooses the opposite behavior (positive
vs. negative role) to that given exogenously, is ruled out in the share. Since
players may hesitate between two roles (see farmer 1 in Example 1), there is
a priori no argument for discarding the opposite role in the computation of
the sharing rule. This shows that the TU model is not sufficient. One needs
to know the role chosen by the active players. Thus two disjoint coalitions
are necessary - one for the positive contributors and one for the negative
ones. The game we need is thus a function that assigns to any couple of
disjoint coalitions a wealth. This corresponds to bi-cooperative games [3].

A central question in Cooperative Game Theory is how the players
should share the total wealth v(N) of a TU game v if the grand coalition
N forms. A solution is a payoff vector x ∈ R

N
+ such that

∑
i∈N xi = v(N).
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As an example, the Shapley value is a solution concept that evaluates the
players’ mean prospect.

Three different definitions of a value have been proposed for bi-cooperative
games [5,7,2]. Beyond the question of the choice of the best suited value
among the three previous ones, the interpretation of the notion of solution
for a bi-cooperative game is not so obvious. These values satisfy the same
efficiency axiom, which states that the value is a share of the difference
of worth between situations where all players are positive contributors and
where all players are negative contributors. This axiom is technical and lacks
of clear interpretation. As a result, the solutions defined in [5,7,2] cannot
be viewed as a share of the wealth of the players but represents a mean
prospect over the three possible choices of all players (i.e. being positive or
negative contributor, or do not participate).

The goal of this paper is to revisit this problem. We abandon the idea of
a value that represents a mean prospect whatever the level of participation
of the players to the game. What we aim to do is similar to what is done
in cost allocation problems in which the sought value is a share of the
total cost corresponding to the actual demand asked by each player. It is
thus natural to define, in our case, efficiency as the property such that the
payoff is a share of the worth obtained by the players after they have decided
either to be positive contributor, negative contributor or absent (see Section
3). Five other axioms are used to characterize a value for bi-cooperative
games: linearity, null player, monotonicity and two symmetry axioms. An
important result is obtained in Section 3. The main result of this paper
proves that under linearity, null player, monotonicity and efficiency axioms,
the payoff for a positive contributor depends only on her added-value from
absent to positive contributor. The information regarding how this player
behaves when she becomes negative contributor is not relevant. The same
argument holds symmetrically for negative contributors. It is not possible
to define an allocation rule that looks at the contribution for the opposite
action to the one chosen by each agent (positive vs. negative). Hence for
the computation of the value, one can restrict the bi-cooperative game to a
usual TU game. Even though there is much more information contained in
the bi-cooperative game than in the restricted game, the remaining terms
cannot be used in a coherent way. The Shapley value is then applied to the
TU game so obtained.

An overall value that is not conditional on the choice of the action of
each player is defined in Section 4. It is an expected value computed from
the value defined earlier. The expression we obtain is different from the
existing ones [5,7,2].

Section 5 discusses on the relevance of our value on several examples.
Section 6 compares our proposal to previous ones.

In this paper, we have assumed that the choice of each player to be
positive or negative contributor, or to be absent is exogenous. However, the
bi-cooperative model can be seen as an intermediate argument towards the
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strategic choice of the best action for each player. This view is sketched in
the conclusion (Section 7).

2 Bi-cooperative games: definition and examples

Throughout the paper, N := {1, . . . , n} will denote the finite set of play-
ers. Cardinalities of coalitions will be denoted by corresponding lower case
letters, i.e., |S| =: s.

Formally, we introduce Q(N) := {(S, T ) | S, T ⊆ N,S ∩ T = ∅}, the
set of pairs of disjoint coalitions. A bi-cooperative game is a function v :
Q(N) −→ R with v(∅, ∅) = 0, where v(S, T ) is the worth when players in
S are positive contributors, players in T are negative contributors, and the
remaining players do not participate. Since cooperative games focus on the
added-value of players when they participate to the game, it is natural that
the worth v(∅, ∅) when no player participates to the game vanishes. In the
context of cost sharing problems, condition v(∅, ∅) = 0 means that the cost
when no player demands the technology or the commons is zero. We denote
by G[2](N) the set of all bi-cooperative games on N .

A ternary voting game is a particular bi-cooperative game where v can
take only two values, value 1 when the bill is accepted and value 0 when the
bill is rejected [5]. Worth v(S, T ) corresponds to the result of the vote when
S are the voters in favor of the bill, T are the voters against the bill, and
the remaining voters are abstentionist. Abstention is an alternative option
to the usual yes and no opinions.

Example 2 (Irrigation Network continued) We are now in position to con-
struct the bi-cooperative game of Example 1 from the costs given in Figures
2 and 3.

v(∅, ∅) = 0 , v({1}, ∅) = v(∅, {1}) = 1 (case a)
v({2}, ∅) = v({3}, ∅) = v({1, 2}, ∅) = v({1, 3}, ∅) = 11 (cases b and c)
v({2, 3}, ∅) = v({1, 2, 3}, ∅) = 16 (case d)
v({2}, {1}) = v({3}, {1}) = v({2, 3}, {1}) = 6 (case e)

and for any (S, T ) ∈ Q({2, 3})

v(S ∪ {1}, T ) = v(S ∪ T ∪ {1}, ∅)
v(S, T ) = v(S ∪ T, ∅)
v(S, T ∪ {1}) = v(S ∪ T, {1})

which means choosing positive or negative roles for farmers 2 and 3 has no
consequence on the overall cost.
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A player i is called positively monotone if

∀(S, T ) ∈ Q(N \ {i}) v(S ∪ {i}, T ) ≥ v(S, T ) .

In Example 1, all farmers are clearly positively monotone. A player i is
called negatively monotone if

∀(S, T ) ∈ Q(N \ {i}) v(S, T ∪ {i}) ≤ v(S, T ) .

In Example 1, farmer 1 is negatively monotone, except for bi-coalition (∅, ∅).
A bi-cooperative game is said to be monotone if all players are positively and
negatively monotone. Bi-cooperative games which are monotone have been
introduced independently by the authors under the name of bi-capacities
[6,14].

When

∀(S, T ) ∈ Q(N \ {i}) v(S ∪ {i}, T ) = v(S, T ∪ {i})

the choice of the positive or negative role for player i has no impact on the
added value of this player when joining a coalition. Such player is called
symmetric contributor. In Example 1, farmers 2 and 3 are symmetric con-
tributors.

For illustrative purpose, we present three other examples of bi-cooperative
games.

Example 3 (Urban Water Supply) Three cities want to share the cost of a
common water supply network. In the original project, the water is sup-
plied by a unique factory F which pumps in the groundwater aquifer. The
geographical situation of the cities, the factory and the water network (in
dotted lines) is depicted in Figure 4. The problem is to share the water
supply costs. The cost of conveying water to a city depends mainly on its
distance to F and its altitude, since this has an impact on the number of
intermediate raising pumps that shall be put on the network. If the net is
private and constructed by the cities, the share of cost will be based on the
effective part of each city in the overall cost.

�� city A

�� city B

�city C
�Factory F

�

A
lt

it
u
d
e

Fig. 4 Situation of the three cities (the vertical axis indicates altitude).
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City C is a large city located in the valley. The price for supplying only
C is pC . Cities A and B are small cities located on the hill. The price of
providing water uphill is quite expensive. We denote by pA, pB and pAB the
price for supplying only A, only B, and both A and B, respectively. One
assumes that

0 < pB < pA < pAB < pA + pB . (1)

City A has several major clearwater springs, which makes this place a
very well-known recreation place (trout fishing, kayak, . . .). On the other
hand, the springs can be easily collected. If A decides to allow the pumping
of its springs, the overall supply price will decrease dramatically. In this
case, A is said to be negative contributor. We denote by qA and qAB the
price for supplying water to only A and both A and B, respectively, when
A is negative contributor. We have

0 < qA < pA , 0 < qAB < pAB . (2)

We obtain the following game, assuming that the water consumption of city
C can only be provided by factory F and that the marginal cost of C is
independent of the choices of cities A and B.

v(∅, ∅) = 0 , v(A, ∅) = pA , v(B, ∅) = pB , v(C, ∅) = pC

v(AB, ∅) = pAB , v(AC, ∅) = pA + pC , v(BC, ∅) = pB + pC

v(ABC, ∅) = pAB + pC , v(∅, A) = qA

v(B,A) = qAB , v(C,A) = qA + pC , v(BC,A) = qAB + pC .

Since the cost of supplying cities A and B on top of city C is very high, this
extra cost shall not be shared uniformly by all cities but shall be sponsored
mainly by cities A and B. This is a classical argument in cost sharing
problems.

Now we see that a new problem arises here. If city A produces enough
water for itself and city B, then the cost of transporting water to A and
B becomes negligible. However, A is not surely willing to pump a great
quantity of clear water from the springs since this could decrease the recre-
ational attractiveness of the city. So A must analyze the two options of being
positive or negative contributor.

Example 4 (Multi-valued Ternary voting games) In ternary voting games,
v(S, T ) can take only two values: 1 when the motion is accepted and 0 if
it is rejected. Yet in many voting situations, the motion is not just simply
accepted or rejected. For a strong winning coalition of yes voters, the initial
motion is adopted. However, for a weak winning coalition of yes voters,
a negotiation between the yes and the no voters usually yields a modified
motion which can be seen as a weak version of the initial one. This situation
corresponds to bills with amendment. In this case, since the initial motion
is not applied, an intermediate value between 0 and 1 is assigned to v(S, T ).
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Example 5 (Heating Costs) In a building, heating is performed through floor
heating. Each resident can choose among three attitudes: normal heating
(say 70◦F ), cold (say 64◦F ) and warm heating (say 76◦F ). Due to the
technology that is used, residents cannot change by themselves the type of
heating. A company is in charge of this job once a year, following the demand
of each resident. N is the set of apartments. Let us denote by C(S, T )
the global annual cost of ensuring hot temperature to S, cold temperature
to T and normal temperature to the remaining residents. Set v(S, T ) =
C(S, T )−C(∅, ∅). The value C(∅, ∅) is supposed to be known. Each resident
pays a monthly cost corresponding to heating so that she is charged 1

nC(∅, ∅)
at the end of the year. In the situation given by the bi-coalition (S, T ), we
want to know how to share the extra cost or surplus v(S, T ) among the
residents. In this example, the bi-cooperative game v is monotone.

We have described so far cooperative games that are constructed directly
from a cooperative situation. Another classical situation arises when the TU
game is derived from a strategic game.

Example 6 (Conversion from a game in normal form) Consider here two
neighbor states that are part of a Union. The level of industrial production of
a state i is denoted by si. The higher si the wealthier the state but the more
pollution there is. Since the two states are neighbor, the pollution caused
by one state affects the other one to a certain degree α ∈ (0, 1). We assume
that the effect of production on pollution can be represented by a square
function. Hence the utility function of state 1 is u1(s1, s2) = s1−(s1+αs2)2.
The best response of state 1 given the level s2 of state 2 is s1(s2) = 1

2 −αs2.
Likewise u2(s1, s2) = s2 − (s2 + α s1)2 and the best response for state 2 is
s2(s1) = 1

2 − α s1.
Utility functions u1 and u2 describe a game in normal form. This game

has exactly one Nash equilibrium characterized by values s1 = s2 = s :=
1

2(1+α) . On the other hand, the social welfare of the Union of the two states
is u1(s1, s2) + u2(s1, s2). The levels of production that maximize the social
welfare for both states are s1 = s2 = s� := 1

2(1+α)2 . Level s� is lower than
the selfish strategies s. Hence the Union wishes to introduce tax in order to
give incentive to the states to reduce their level to s�. However, the Union
does not want to impose a tax that is a direct function of si − s� for state i.

The Union defines three areas: the negative one when si ≤ θ s� (with
θ ∈ (0, 1)) for a state i willing to privilege the quality of life over profit, the
null one when si ∈ (θ s�, s�] for state i that chooses to adopt roughly the
social optimum, and the positive one when si > s� for a state i that privileges
profit to pollution. A bi-coalition (S, T ) describes the attitude chosen by
each player, where S, T and N \ (S∪T ) are the sets of states having chosen
the positive, negative and null attitude respectively. One can then compute
the Nash equilibrium of the two states for all possible bi-coalitions (S, T ), i.e.
the optimum values ŝ1(S, T ) and ŝ2(S, T ) of s1 and s2 in this situation. This
defines the bi-cooperative game v as follows: v(S, T ) = P (ŝ1(S, T ), ŝ2(S, T ))
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where P (s1, s2) := (s1 + α s2)2 + (s2 + α s1)2 is the overall pollution in the
two states caused by levels s1 and s2. Using the best response functions s1
and s2, one easily gets the following values since α, θ ∈ (0, 1).

ŝ1({1, 2}, ∅) = ŝ2({1, 2}, ∅) = s = 1
2(1+α)

ŝ1({1}, ∅) = 1+α+α2

2(1+α)2 , ŝ2({1}, ∅) = s� = 1
2(1+α)2

ŝ1({2}, ∅) = s� = 1
2(1+α)2 , ŝ2({2}, ∅) = 1+α+α2

2(1+α)2

ŝ1(∅, ∅) = ŝ2(∅, ∅) = s� = 1
2(1+α)2

ŝ1(∅, {1}) = θ
2(1+α)2 , ŝ2(∅, {1}) = s� = 1

2(1+α)2

ŝ1(∅, {2}) = s� = 1
2(1+α)2 , ŝ2(∅, {2}) = θ

2(1+α)2

ŝ1({1}, {2}) = 1+(1−θ) α+α2

2(1+α)2 , ŝ2({1}, {2}) = θ
2(1+α)2

ŝ1({2}, {1}) = θ
2(1+α)2 , ŝ2({2}, {1}) = 1+(1−θ) α+α2

2(1+α)2

ŝ1(∅, {1, 2}) = ŝ2(∅, {1, 2}) = θ
2(1+α)2

Bi-cooperative game v depicts the overall level of pollution coming from
both states 1 and 2. From a knowledge of v, the Union determines the
contribution of each state to the overall pollution in any situation (S, T ).
The tax imposed on each state is then the contribution of the state to
pollution v(S, T ) times a constant factor. Based on that, each state will
decide which level is best for itself.

3 Definition of a value

Let us try to define the notion of value for bi-cooperative games, in the
spirit of what was done by Shapley for cooperative games [18].

Let us first take the point of view of a value, and denote by G(N) the set
of cooperative games on N . In classical cooperative game theory, an impu-
tation (more precisely, a pre-imputation) is a vector x ∈ R

n satisfying the
efficiency principle, that is,

∑
i∈N xi = v(N) [4]. The imputation represents

the share of the total worth of the game v(N) among the players, assuming
that all players have decided to join the grand coalition N . A value is a
mapping φ : G(N) −→ R

n which assigns to every game an imputation. The
well-known Shapley value [18] is defined by

φSh
i (v) :=

∑
S⊆N\i

s!(n− s− 1)!
n!

[v(S ∪ i) − v(S)]. (3)

In usual games, each player has only two options: either to join a coalition
or to stay aside. Cost allocation problems [17,19] and multi-choice games
[12] model situations in which each player has several levels of participation
to the games.

In a cost allocation problem, each agent i ∈ N is interested in one type of
a personalized good (each agent asks for a special good) and may demand
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several items of a good. A demand vector q ∈ N
n describes the number

of items asked by each agent. A cost function is a nondecreasing function
v : N

n → R such that v(0, . . . , 0) = 0, where v(q) is the overall cost for
satisfying demand q. One is interested by cost-sharing methods that define
for each agent i ∈ N a nonnegative cost xi satisfying the budget balance
condition

∑
i∈N xi = v(q) [17].

Unlike usual games where at the end, all players join the grand coalition
(unless for games in coalition form), it is not assumed here that all players
have decided to be positive contributors. In multi-choice games, the players
are not necessarily participating to the game at the highest possible level.
We denote hereafter by S the set of players that have decided to be posi-
tive contributors, by T the set of players that have decided to be negative
contributors. The remaining players N \ (S ∪ T ) are not participating to
the game. In the situation depicted by bi-coalition (S, T ), the worth that
is obtained by the players is v(S, T ). Let φS,T (v) : G[2](N) → R

N be the
payoff vector in the situation of bi-coalition (S, T ) as described previously.
We are interested in defining this share φS,T (v).

In the Weber characterization of the Shapley value, four axioms are used:
linearity, null player, symmetry and efficiency [20]. Consider first linearity.
This axiom states that if several games are combined linearly then the values
of each individual game shall be combined in the same way to obtain the
value of the resulting game. This axiom is trivially extended to the case of
bi-cooperative games.

Linearity (Lin): φS,T is linear on G[2](N).

Proposition 1 Under Lin, for all i ∈ N , there exists real constants ai,S,T
S′,T ′

for all (S′, T ′) ∈ Q(N) such that for every game v ∈ G[2](N)

φS,T
i (v) =

∑
(S′,T ′)∈Q(N)

ai,S,T
S′,T ′ v(S′, T ′) .

The proof of the proposition and all other results are given in the ap-
pendix.

In the Weber characterization of the Shapley value [20], the second axiom
is called null player. It says that if a player i is null, i.e. v(S′∪{i}) = v(S′) for
any S′ ⊆ N \{i}, then this player does not contribute at all to any coalition
and thus the payoff for this player shall be zero. For bi-cooperative games,
a player is said to be null if the asset is exactly the same if she joins the
positive or the negative contributors.

Definition 1 The player i is said to be null for the bi-cooperative game v
if v(S′, T ′ ∪ {i}) = v(S′, T ′) = v(S′ ∪ {i}, T ′) for any (S′, T ′) ∈ Q(N \ {i}).

We propose the following axiom.
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Null player (Null): If a player i is null for the bi-cooperative game
v ∈ G[2](N) then φS,T

i (v) = 0.

Proposition 2 Under Lin and Null, there exists for all i ∈ N , ai,S,T
S′,T ′ for

all (S′, T ′) ∈ Q(N \ {i}) , bi,S,T
S′,T ′ for (S′, T ′) ∈ Q(N \ {i}) such that

φS,T
i (v) =

∑
(S′,T ′)∈Q(N\{i})

ai,S,T
S′,T ′ [v(S′ ∪ {i}, T ′) − v(S′, T ′)]

+
∑

(S′,T ′)∈Q(N\{i})
bi,S,T
S′,T ′ [v(S′, T ′ ∪ {i})− v(S′, T ′)] . (4)

It is possible to replace Null by a stronger axiom, namely the dummy
player axiom. For a usual TU game v, a player i is said to be dummy if
v(S′ ∪ {i}) = v(S′) + v({i}) for all S′ ⊆ N \ {i}. The contribution of this
player to any coalition is constant. Thus the payoff for this player shall
by his solo worth v({i}). For a bi-cooperative game, a dummy player is a
player whose contribution to any bi-coalition is always the same, whatever
the (positive or negative) level of contribution. This implies in particular
that this player is a symmetric contributor.

Definition 2 The player i is said to be dummy for the bi-cooperative game
v if there exists λ ∈ R such that v(S′ ∪ {i}, T ′) − v(S′, T ′) = v(S′, T ′ ∪
{i})− v(S′, T ′) = λ for any (S′, T ′) ∈ Q(N \ {i}). Constant λ is called the
constant added value of player i to v.

Dummy player (Dum): If a player i is dummy for the bi-cooperative
game v ∈ G[2](N) then φS,T

i (v) = λ, where λ ∈ R is the constant
added value of player i to v.

Proposition 3 Under Lin and Dum, there exists for all i ∈ N , ai,S,T
S′,T ′ for

all (S′, T ′) ∈ Q(N \ {i}) , bi,S,T
S′,T ′ for (S′, T ′) ∈ Q(N \ {i}) such that (4)

holds. Moreover, ∑
(S′,T ′)∈Q(N\{i})

ai,S,T
S′,T ′ +

∑
(S′,T ′)∈Q(N\{i})

bi,S,T
S′,T ′ = 1 .

Replacing Null by Dum in Proposition 2, one sees that the coefficients
become normalized since they sum up to one.

The basic idea of monotonicity of solutions is that if the wealth that
the players get collectively increases then the payoff of the players shall
not decrease. Property called Aggregate Monotonicity (AM) states that if
the worth for the grand coalition increases and the value of the game for
sub-coalitions remains the same, then the payoff vector shall not decrease
[15]. Clearly solutions are not monotone w.r.t. the game since, for instance,
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increasing the game on a coalition S cannot imply increasingness of the
payoff vector for players outside S. Hence, one shall be careful when giving
a more general form of the aggregate monotonicity axiom.

We define monotonicity in the following way. Let (N, v) and (N, v′) two
TU games such that there exists i ∈ N with v′(K) = v(K) and v′(K∪{i}) ≥
v(K ∪ {i}) for all K ⊆ N \ {i}. Then the contribution of player i to game
v′ is larger than that of player i to game v. Then the payoff of i in game v
shall not be greater to that of i in v′.

Generalizing that to bi-cooperative games, we obtain

Monotonicity (Mon): Let v, v′ be two bi-cooperative games such
that there exists i ∈ N with⎧⎨

⎩
v′(S′, T ′) = v(S′, T ′)
v′(S′ ∪ {i}, T ′) ≥ v(S′ ∪ {i}, T ′)
v′(S′, T ′ ∪ {i}) ≥ v(S′, T ′ ∪ {i})

for all (S′, T ′) ∈ Q(N \ {i}), then φS,T
i (v′) ≥ φS,T

i (v).

When i joins the positive coalition S′, the added value for i is larger for
game v′ than for v. When i joins negative coalition T ′, the negative added
value for i is smaller in absolute value for v′ than for v (the decrease of the
value of the game when i joins the negative contributors is less important
for v′ than for v). Then the payoff of i in v shall not be greater to that of i
in v′.

Proposition 4 Under Lin, Null and Mon, for all i ∈ N , there exists
ai,S,T

S′,T ′ ≥ 0 for all (S′, T ′) ∈ Q(N \ {i}) , bi,S,T
S′,T ′ ≥ 0 for (S′, T ′) ∈ Q(N \ {i})

such that

φS,T
i (v) =

∑
(S′,T ′)∈Q(N\{i})

ai,S,T
S′,T ′ [v(S′ ∪ {i}, T ′) − v(S′, T ′)]

+
∑

(S′,T ′)∈Q(N\{i})
bi,S,T
S′,T ′ [v(S′, T ′ ∪ {i})− v(S′, T ′)] .

Replacing Null by Dum in Proposition 4, one would obtain, as for
Proposition 3, that the non-negative coefficients ai,S,T and bi,S,T sum up to
one. The probabilistic values [16] for bi-cooperative games are thus defined
by Lin, Dum and Mon, and result from a variant of Proposition 4.

We finally introduce the efficiency axiom. φS,T (v) is a share of the worth
obtained by the bi-coalition (S, T ).

Efficiency axiom (Eff): For every game in G[2](N),∑
i∈N

φS,T
i (v) = v(S, T ) .
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For K ⊆ S ∪ T , we set

V (K) := v(S ∩K,T ∩K) . (5)

Proposition 5 Under Lin, Null, Mon and Eff , for all i ∈ S ∪ T there
exists coefficients ai,S,T

K ≥ 0 for K ⊆ (S ∪ T ) \ {i} such that

φS,T
i (v) =

∑
K⊆(S∪T )\{i}

ai,S,T
K [V (K ∪ {i}) − V (K)] .

Moreover, if i ∈ N \ (S ∪ T ), φS,T
i (v) = 0

Replacing Null by Dum in Proposition 5, one would obtain as for
Proposition 3 that the non-negative coefficients ai,S,T sum up to one. Quasi-
values, which are defined as efficient probabilistic values [16], are obtained
from Lin, Dum, Mon and Eff , and result from a variant of Proposition 5.

Proposition 5 is essential since it proves that the only terms of a bi-
cooperative game v that are used to determine φS,T (v) belong to

QS,T (N) = {(S′, T ′) ∈ Q(N) , S′ ⊆ S , T ′ ⊆ T} .

The payoff for a positive contributor depends only on her contribution from
non-contribution to positive contributor. The information regarding how
this player behaves when she becomes negative contributor is not relevant.
The same argument can be used symmetrically for negative contributors.
From Proposition 5, it is not possible to define an allocation rule that looks
at the contribution for the opposite action to the one chosen by each agent
(positive vs. negative contributor). Hence for the computation of the value,
one can restrict the bi-cooperative game to a usual game (namely V ). Even
though we have much more information than what is contained in V , the
remaining terms cannot be used in a coherent way. This argument justifies
the use of classical cooperative game model.

This property holds for cost allocation problems. For such games, the
value for a demand q depends only on the restriction of the cost function
on lower demands {q′ ∈ N

n , ∀i ∈ N q′i ≤ qi} [19].

From Proposition 5, one easily gets the following corollary.

Corollary 1 We have

∀i ∈ N \ (S ∪ T ) , φS,T
i (v) = 0 (6)

∀i ∈ S with i positively monotone , φS,T
i (v) ≥ 0 (7)

∀i ∈ T with i negatively monotone , φS,T
i (v) ≤ 0 (8)



15

If i ∈ T is positively monotone and symmetric contributor, then φS,T
i (v) ≥

0.
Let us give an interpretation of Corollary 1. For classical values, it is

assumed that all players finally participate to the game so that the grand
coalition is formed. If it is not the case, a coalition structure has formed.
Then the players of each coalition share the worth obtained by that coalition
[1]. In this case, the players that do not belong to the coalition get zero from
this coalition. Hence it is natural that the payoff for a player that does not
participate vanishes. Hence (6).

Inequality (7) comes from the fact that players of S contribute positively
to the game (provided i is positively monotone) and deserve thus a non-
negative payoff. Likewise, inequality (8) holds since players of T contribute
negatively to the game (provided i is negatively monotone) and deserve
thus a non-positive payoff. In Example 1, (8) means that farmer 1 should
be rewarded for having accepted that the pipes cut her field. In cost sharing
problems, this condition is interpreted as a compensation for players that
have accepted to be negative contributor, since this attitude causes them
annoyance. The trouble caused by the choice to be negative contributor is
clear in all three examples 1, 3 and 5.

Example 7 (Urban Water Supply continued) Let us give an interpretation
of (6), (7) and (8) in the context of Example 5. Value φS,T

i (v) corresponds
to a share of the extra cost v(S, T ) compared to the cost C(∅, ∅) when all
residents choice normal heating. The residents that asked for normal heating
are not asked to pay more, which is natural since the overall cost would have
been C(∅, ∅) if all residents had made this choice. The residents that asked
for warm heating are charged extra-costs, and residents that asked for cold
heating are paid back to some extent.

In the Weber characterization of the Shapley value [20], the last axiom
that we have not considered yet is symmetry with respect to the players.
It states that the rule for computing the share does not depend on the
numbering of the players. It means that nothing special is done to one player
compared to another one. In other words, the players are anonymous. This
depicts fairness.

Let σ be a permutation on N . With some abuse of notation, we denote
σ(K) := {σ(i)}i∈K . The role of the players of S, T and N \ (S ∪ T ) is
different. So, for bi-cooperative games, symmetry holds only among players
of S, players of T and players of N \ (S ∪ T ).

Intra-Coalition Symmetry axiom (IntraSym): For any permu-
tation σ of N such that σ(S) = S and σ(T ) = T ,

φS,T
σ(i)(v ◦ σ

−1) = φS,T
i (v) .
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Proposition 6 Under Lin, Null, Mon, Eff and IntraSym, there exists
coefficients p+,S,T

a,b ≥ 0 for a ∈ {0, . . . , s−1}, b ∈ {0, . . . , t}, and there exists
coefficients p−,S,T

a,b ≥ 0 for a ∈ {0, . . . , s}, b ∈ {0, . . . , t− 1} such that for all
i ∈ S ∪ T

φS,T
i (v) =

∑
K⊆(S∪T )\{i}

pεi,S,T
|K∩S|,|K∩T |[V (K ∪ {i}) − V (K)] .

where εi = “+” if i ∈ S and εi = “−” if i ∈ T .

Inter-Coalition Symmetry axiom (InterSym): Let i ∈ S and
j ∈ T , and vi, vj be two bi-cooperative games such that for all
(S′, T ′) ∈ Q((S ∪ T ) \ {i, j})

vi(S′ ∪ {i}, T ′) − vi(S′, T ′) = vj(S′, T ′) − vj(S′, T ′ ∪ {j})
vi(S′ ∪ {i}, T ′ ∪ {j}) − vi(S′, T ′ ∪ {j})

= vj(S′ ∪ {i}, T ′) − vj(S′ ∪ {i}, T ′ ∪ {j})

Then
φS,T

i (vi) = −φS,T
j (vj) .

The axiom says that when the contribution of a player i ∈ S to a game
vi is exactly the opposite of that of a player j ∈ T to a game vj , then the
incentive payoff for i shall be exactly the opposite of the payoff for j.

Proposition 7 Under axioms Lin, Null, Mon, Eff , IntraSym and In-
terSym, there exists coefficients pS,T

k ≥ 0 for k ∈ {0, . . . , s+ t− 1},

φS,T
i (v) =

∑
K⊆(S∪T )\{i}

pS,T
k [V (K ∪ {i}) − V (K)] .

Theorem 1 φS,T satisfies to axioms Lin, Null, Mon, IntraSym, Inter-
Sym and Eff if and only if one has for all i ∈ N

φS,T
i (v) =

∑
K⊆(S∪T )\{i}

k!(s+ t− k − 1)!
(s+ t)!

[V (K ∪ {i})− V (K)] .

The indices in φS,T
i (v) coincide with the Shapley value of cooperative

game V (see (3)).

Let us give now some properties of this value.

Property 1 If all players of T are null, then for all i ∈ S, φS,T
i (v) equals

the usual Shapley value φS
i (w) of player i for game (S,w), where w(S′) :=

v(S′, ∅), ∀S′ ⊆ S.

Property 2 If all players of S are null, then for i ∈ T , φS,T
i (v) equals the usual

Shapley value φT
i (w) of player i for game (T,w), where w(T ′) := v(∅, T ′),

∀T ′ ⊆ T .
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Combining previous results with Lin, we obtain the following property.

Property 3 If v is decomposable (i.e. v(S′, T ′) = w+(S′) − w−(T ′) for all
(S′, T ′) ∈ QS,T (N), where w+ and w− are TU games) then

φS,T
i (v) =

⎧⎨
⎩
φS

i (w+) if i ∈ S
−φT

i (w−) if i ∈ T
0 otherwise

4 Mean prospect to a player

One interesting problem is to know the mean prospect of player i without
the prior knowledge about the other players’ intention. In other words, one
does not know in advance coalitions S and T . Two options are basically
possible. The first one is to define the mean prospect to player i considering
all possible choices (S, T ) of the other players. If player i chooses to be
positive contributor, the mean payoff is

φ+
i (v) =

1
3n−1

∑
(S,T )∈Q(N\{i})

φ
S∪{i},T
i (v)

and the mean payoff to player i is she chooses to be negative contributor is

φ−i (v) =
1

3n−1

∑
(S,T )∈Q(N\{i})

φ
S,T∪{i}
i (v)

The mean payoff of a player that chooses to be absent is always zero by
definition. Finally the mean prospect to player i if she did not make up her
mind yet is

φi(v) =
1
3
(
φ+

i (v) + φ−i (v)
)

The second option is to compute the mean prospect not over all bi-
coalitions (S, T ) but over the bi-coalitions that form a partition of N (i.e.
S∪T = N). The idea is that the only relevant decisions we are interested in
are positive and negative contributors. So each player is either positive or
negative contributor. In the previous approach, none of the three decisions
is ruled out. The reason is that non-participation is a very special situation,
often not considered as a relevant option. In usual cooperative game theory,
all players are supposed to participate at the end to the game. In our context,
this means that all players will have a non zero level of participation to the
game.

If player i chooses to be positive contributor, the mean payoff is

φ+
i (v) =

1
2n−1

∑
S⊆N\{i}

φ
S∪{i},N\(S∪{i})
i (v) .



18

One has by Theorem 1,

φ+
i (v) =

1
2n−1

∑
S⊆N\{i}

∑
T⊆N\{i}

t!(n− t− 1)!
n!

× [v((T ∩ S) ∪ {i}, T ∩ (N \ S)) − v(T ∩ S, T ∩ (N \ S))]

=
1

2n−1

∑
(K,L)∈Q(N\{i})

dK,L [v(K ∪ {i}, L)− v(K,L)]

where

dK,L =
∑

S⊆N\{i}

∑
T⊆N\{i}

K=S∩T , L=T\S

t!(n− t− 1)!
n!

=
(k + l)!(n− k − l − 1)!

n!

∑
A⊆N\(K∪L∪{i})
S=K∪A , T=K∪L

1

=
(k + l)!(n− k − l − 1)!

n!
× 2n−1−k−l

Hence

φ+
i (v) =

∑
(K,L)∈Q(N\{i})

(k + l)!(n− k − l− 1)!
2k+l n!

(v(K ∪ {i}, L)− v(K,L))

(9)

Similarly the mean prospect when i decides to be negative contributor
is

φ−i (v) =
∑

(K,L)∈Q(N\{i})

(k + l)!(n− k − l − 1)!
2k+l n!

(v(K,L ∪ {i})− v(K,L))

(10)
Finally, the mean prospect when i has not yet made a decision (but will

decide between positive and negative contributors) is

φi(v) =
1
2
(
φ+

i (v) + φ−i (v)
)
. (11)

5 Discussion

We investigate in this section the relevance of our proposal on previous
examples.

Example 8 (Irrigation Network continued) Let us consider the bi-cooperative
game given in Example 2. When farmer 1 does not allow the pipes to cut
her field (positive contributor), the cost share of the irrigation network is :

φ
{1,2,3},∅
1 (v) =

1
3

, φ
{1,2,3},∅
2 (v) = φ

{1,2,3},∅
3 (v) =

47
6

≈ 7.83 .
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The construction of the well is a necessary condition for any farmer to access
water. Hence it is fair that the cost 1 of the well is divided equally among
the farmers, hence a cost 1/3 per farmer. Farmer 1 shall not pay more than
her solo contribution to the well, since she does not need any pipe for her
own usage of water. Hence the price for farmer 1 is 1/3.

When farmer 1 decides to allow the pipes to cut her field (negative
contributor), the cost share becomes

φ
{2,3},{1}
1 (v) = −14

3
≈ −4.66 , φ

{2,3},{1}
2 (v) = φ

{2,3},{1}
3 (v) =

16
3

≈ 5.33 .

We see that farmer 1 is given a significant amount of money as a compen-
sation for allowing her field to be cut by the pipes. Hence farmer 1 earns
φ
{1,2,3},∅
1 (v) − φ

{2,3},{1}
1 (v) = 5 by switching her behavior from positive to

negative contributor. One also notices that the switch of farmer 1 implies
positive externalities on the two other players since the price they have to
pay decreases from 47

6 downto 16
3 .

In Example 3, city A is actually the only city that has to make up its
mind about which role to adopt. Cities B and C cannot become producer of
water. For these cities, assigning a negative role to them is purely artificial
and does not correspond to any reality. This example shows that in practice
there are players for which one of the two roles is forbidden. Let N+ be the
set of players that are allowed to be positive contributors, and N− be the
set of players that are allowed to be positive contributors. We assume that
every player can choose to be absent from the game. In Example 3, one has
N+ = {A,B,C} and N− = {A}. Let

QN+,N−(N) :=
{
(S, T ) ∈ Q(N) , S ⊆ N+ and T ⊆ N−}

.

Let us denote by vN+,N− a bi-cooperative game restricted to QN+,N−(N).
By Proposition 5, the value φS,T (v) where S ⊆ N+ and T ⊆ N−, requires
information of v only in QN+,N−(N) and thus of vN+,N− . Hence our value
is well-suited to the case of forbidden roles for players.

Example 9 (Urban Water Supply continued) Example 3 is a typical case of
previous situation where cities B and C can only be positive contributors.
One has

φABC,∅
A (v) =

1
2

(pA + pAB − pB) , φBC,A
A (v) =

1
2

(qA + qAB − pB) ,

φABC,∅
B (v) =

1
2

(pB + pAB − pA) , φBC,A
B (v) =

1
2

(pB + qAB − qA) ,

φABC,∅
C (v) = φBC,A

C (v) = pC .

Last relation comes from the fact that the contribution of city C to the
cost of any coalition is always pC . By virtue of (1) and (2), φABC,∅

A (v) >
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φABC,∅
B (v) and φBC,A

A (v) < φABC,∅
A (v). The benefit for A when becoming

negative contributor is 1
2 (pA + pAB − qA − qAB) > 0. The decision by A to

allow pumping implies positive externalities on B (and thus a decrease in
the cost share for B) iff qAB − qA ≤ pAB − pA. This condition means that
the marginal cost for B in the presence of A is smaller when A decides to
be negative contributor instead of positive contributor.

Example 10 (Multi-valued Ternary voting games continued) For any (S, T ) ∈
Q(N), v(S, T ) is the degree to which the initial motion has been adopted.
It seems reasonable that v is monotone. By virtue of Corollary 1, one has
φS,T

i (v) ≥ 0 for all i ∈ S, φS,T
i (v) ≤ 0 for all i ∈ T , φS,T

i (v) = 0 for
all i ∈ N \ (S ∪ T ). Value φS,T

i (v) can be interpreted as a power index.
However, classical power indices are non-negative numbers. Here a negative
value φS,T

i (v) ≤ 0 corresponds to a voter that defeats the motion, and can
quantify the harmful power of that voter against the motion. One can define
a power index in situation (S, T ) from φS,T

i (v) as ψS,T
i (v) =

∣∣∣φS,T
i (v)

∣∣∣.
Reproducing what has been said in Section 4, the mean power index of

voter i when she defends the motion is

ψ+
i (v) =

1
2n−1

∑
S⊆N\{i}

ψ
S∪{i},N\(S∪{i})
i (v)

=
∑

(K,L)∈Q(N\{i})

(k + l)!(n− k − l − 1)!
2k+l n!

(v(K ∪ {i}, L)− v(K,L))

Similarly, the mean power index of voter i when she defeats the motion is

ψ−
i (v) =

1
2n−1

∑
S⊆N\{i}

ψ
S,N\S
i (v)

=
∑

(K,L)∈Q(N\{i})

(k + l)!(n− k − l − 1)!
2k+l n!

(v(K,L) − v(K,L ∪ {i}))

Hence the mean power index of voter i is

ψi(v) =
1
2

(
ψ+

i (v) + ψ−
i (v)

)
=

∑
(K,L)∈Q(N\{i})

(k + l)!(n− k − l − 1)!
2k+l n!

(v(K ∪ {i}, L)− v(K,L ∪ {i}))

Note that these indices do not sum up to 1 in the general case, which is
also the case of some well-known power indices such as the Banzhaf one for
usual voting games.
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6 Comparison with previous works

Let us compare these solutions to previous proposals.
The first proposal seems to be due to Felsenthal and Machover for

ternary voting games [5]. We introduce it briefly, and for this we need some
definitions. A ternary roll-call R is a triplet R = (σR, DR, ER) composed of
an ordering σR of the voters, a coalition DR which contains all voters that
are in favor of the bill, and a coalition ER which contains all voters that are
against the bill. The voters in N \ (DR ∪ ER) are abstentionist. The set of
all ternary roll-calls for the voters N is denoted by TN . When a voter i is
called he/she tells his/her opinion, that is to say in favor if i ∈ DR, against
if i ∈ ER or abstention otherwise. The pivot Piv(v,R) is the voter σR(j)
called at position j, where j is the smallest index such that the result of the
vote does not change after. The following definition is then proposed [5] :

φFM
i (v) =

|{R ∈ TN , i = Piv(v,R)}|
|TN | ,

where |TN | = 3n n!. After some tedious computations, it can be shown that
[13]

φFM
i (v) =

∑
(S,T )∈Q(N\{i})

[
(ηs +

ηt

2
)(v(S ∪ {i}, T )− v(S, T ))

−(ηt +
ηs

2
)(v(S, T ∪ {i})− v(S, T ))

]
with

ηt =
1

3nn!

t∑
t′=0

t′!(t− t′)!
t!

(n− 1 − t+ t′)!(t− t′)! 3t−t′ .

A second proposal was done by the authors in [7], which distinguishes
the cases where i is a positive contributor (denoted by φ+) or a negative
contributor (denoted by φ−):

φ+
i (v) =

∑
S∈N\i

(n− s− 1)!s!
n!

[v(S ∪ i, N \ (S ∪ i)) − v(S,N \ (S ∪ i))]

φ−i (v) =
∑

S∈N\i

(n− s− 1)!s!
n!

[v(S,N \ (S ∪ i)) − v(S,N \ S)].

A single value can be obtained putting φLG
i (v) := φ+

i (v) + φ−i (v).
The most recent proposal seems to be due to Bilbao et al. [2]. It reads

φB
i (v) =

∑
(S,T )∈Q(N\i)

[
pi
(S,T )(v(S∪i, T )−v(S, T )+pi

(S,T )
(v(S, T )−v(S, T∪i)

]
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with pi
(S,T ), p

i
(S,T )

given by

ps,t =
(n+ s− t)!(n+ t− s− 1)!

(2n)!
2n−s−t

p
s,t

=
(n+ t− s)!(n+ s− t− 1)!

(2n)!
2n−s−t.

Comparing with the mean prospect to a player (formulas (9) to (11)),
all these values differ from our proposal. The meaning of the power index of
Felsenthal and Machover is deeply rooted in voting theory, and its explicit
expression in terms of v is not simple. It nevertheless satisfies natural axioms
such as linearity Lin, null player Null, the classical symmetry axiom (which
is stronger than IntraSym), and 2φFM

i satisfies an efficiency axiom Eff1
which is very similar to the classical one:

Efficiency 1 (Eff1):
∑

i∈N φi(v) = v(N, ∅) − v(∅, N).

Imposing in addition to Lin, Null, the classical symmetry axiom, and
Eff1, a fifth one expressing a symmetry between the positive and and the
negative parts, one obtains the value φLG [13]. An interesting feature of this
value is that only a small subset of Q(N \ i) is used in the computation.

The proposal of Bilbao et al. also relies on Eff1. It is based on the
following well known formula of the classical Shapley value:

φi(v) =
∑

S⊆N,S�i

c(S \ i) c([S,N ])
n!

[v(S) − v(S \ i)] (12)

with c([T, S]) the number of maximal chains from T to S, c(S) := c([∅, S]),
c([S, S]) = c(∅) = 1. In fact, the coefficients ps,t, ps,t

are the relative numbers
of maximal chains from (∅, N) to (N, ∅) passing by (S, T ), (S ∪ i, T ) and
(S, T ∪ i), (S, T ) respectively. Hence, φB is a transposition of (12) to Q(N).

An important remark is that Eff1 is satisfied by all previous proposals,
while we use Eff instead. It turns out that the crucial point lies here. Axiom
Eff1 implies that Q(N) has two remarkable elements which are (N, ∅) and
(∅, N). These are the top and bottom elements of Q(N) when the order
relation is the one implied by monotonicity: (S, T ) � (S′, T ′) iff S ⊆ S′

and T ⊇ T ′. This situation makes bi-cooperative games “isomorphic” to
multichoice games with three levels of participation (say 0, 1 and 2), since
3N endowed with the usual order on vectors is isomorphic to (Q(N),�). To
our opinion, bi-cooperative games are very different from 3-choice games.

By contrast, axiom Eff considers (∅, ∅) as a remarkable element in Q(N),
as well as all elements (S,N \S), S ⊆ N . Then the suitable order relation is
now the product order, i.e., (S, T ) ⊆ (S′, T ′) iff S ⊆ S′ and T ⊆ T ′, making
(∅, ∅) the bottom element, and all (S,N \S), S ⊆ N becoming top elements.
We call this a bipolar extension of 2N , a concept which is studied in detail in
[9,8]. This structure is much more in accordance with the meaning conveyed
by bi-cooperative games.
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7 Conclusion

We have given examples that justify the use of an extension of TU games
where each player that decides to participate to the game can choose be-
tween positive participation and negative participation. Our concern is then
how to fairly share the wealth obtained by the players given their choice.
Several axioms are defined to characterize a value. This value is based on
the Shapley value. The positive contributors will receive a positive payoff
whereas the negative contributors will receive a negative payoff.

The value φ is the sharing rule that the benevolent dictator will apply
on the players. So if the game is a common knowledge, it can help the
players in understanding what is their best choice, i.e., being positive or
negative contributor. In cost sharing problems, the non-participation is not
an option since all players want to access to the resource or the commons. In
Example 1, farmer 1 has pros and cons for the two options. The difference
φ
{1,2,3},∅
1 (v) − φ

{2,3},{1}
1 (v) represents the financial gain for farmer 1 when

switching from positive contribution to negative contribution. If this figure
is larger than the estimated financial harm of allowing her parcel to be cut
by a pipe, farmer 1 will accept to be negative contributor.

More generally, each player chooses her best response, given the strategy
adopted by the other players. Hence rational players will certainly adopt a
Nash-like equilibrium. This suggests that the coalitions S and T can be
determined endogenously rather than given exogenously.
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Appendix

Proof of Proposition 1: Consider φS,T satisfying Lin. Let UK,L be defined
by UK,L(S′, T ′) = 1 if S′ = K and T ′ = L, UK,L(S′, T ′) = 0 otherwise. Then
we have v =

∑
(K,L)∈Q(N) v(K,L) UK,L. By Lin,

φS,T
i (v) =

∑
(K,L)∈Q(N)

v(K,L) φS,T
i (UK,L).

Setting ai,S,T
K,L := φS,T

i (UK,L), we obtain the wished result.

Proof of Proposition 2: Consider
{
φS,T

i (v)
}

i∈N
satisfying Lin and Null.

By Proposition 1, there exists ci,S,T
S′,T ′ for (S′, T ′) ∈ Q(N) such that

φS,T
i (v) =

∑
(S′,T ′)∈Q(N)

ci,S,T
S′,T ′ v(S′, T ′) .
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We write

φS,T
i (v) =

∑
(S′,T ′)∈Q(N\{i})

ci,S,T
S′,T ′ v(S′, T ′) +

∑
(S′,T ′)∈Q(N\{i})

ci,S,T
S′∪{i},T ′ v(S′ ∪ {i}, T ′)

+
∑

(S′,T ′)∈Q(N\{i})
ci,S,T
S′,T ′∪{i} v(S

′, T ′ ∪ {i}) (13)

Assume now that i is null for the bi-cooperative game v. Hence

φS,T
i (v) =

∑
(S′,T ′)∈Q(N\{i})

v(S′, T ′)
[
ci,S,T
S′,T ′ + ci,S,T

S′∪{i},T ′ + ci,S,T
S′,T ′∪{i}

]
.

This relation holds for any bi-cooperative game v such that i is null for v,
in particular for all games satisfying for a given (K,L) ∈ Q(N \ i):

∀(S′, T ′) ∈ Q(N \ i),

⎧⎪⎨
⎪⎩
v(S′, T ′) = UK,L(S′, T ′)
v(S′ ∪ i, T ′) = v(S′, T ′)
v(S′, T ′ ∪ i) = v(S′, T ′).

By Null, this gives for all (S′, T ′) ∈ Q(N \ {i})

ci,S,T
S′,T ′ + ci,S,T

S′∪{i},T ′ + ci,S,T
S′,T ′∪{i} = 0 .

Consequently, formula (13) can be rearranged in such a way to give the
wished form. Yet ci,S,T

S′∪{i},T ′ is denoted by ai,S,T
S′,T ′ and ci,S,T

S′,T ′∪{i} by bi,S,T
S′,T ′ .

Proof of Proposition 3: Consider
{
φS,T

i (v)
}

i∈N
satisfying Lin and Dum.

Axiom Dum implies Null. Hence by Proposition 2, there exists for all
i ∈ N , ai,S,T

S′,T ′ for all (S′, T ′) ∈ Q(N \ {i}) , bi,S,T
S′,T ′ for (S′, T ′) ∈ Q(N \ {i})

such that (4) holds. Assume that player i is dummy. Then by Dum∑
(S′,T ′)∈Q(N\{i})

ai,S,T
S′,T ′ λ+

∑
(S′,T ′)∈Q(N\{i})

bi,S,T
S′,T ′ λ = λ .

This concludes the proof since one can take any λ ∈ R.

Proof of Proposition 4: Let i ∈ N . Under Lin and Null,

φS,T
i (v) =

∑
(S′,T ′)∈Q(N\{i})

αi,S,T
S′,T ′ [v(S′ ∪ {i}, T ′) − v(S′, T ′)]

+
∑

(S′,T ′)∈Q(N\{i})
βi,S,T

S′,T ′ [v(S′, T ′ ∪ {i}) − v(S′, T ′)] .

Let v be a monotone bi-cooperative game such that

min
(S′,T ′)∈Q(N\{i})

min (v(S′ ∪ {i}, T ′) − v(S′, T ′), v(S′, T ′) − v(S′, T ′ ∪ {i})) =: δ > 0
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Let (K,L) ∈ Q(N \ {i}). Define v′ as follows: For all (S′, T ′) ∈ Q(N \ {i})

⎧⎪⎪⎨
⎪⎪⎩
v′(S′, T ′) = v(S′, T ′)

v′(S′ ∪ {i}, T ′) =
{
v(K ∪ {i}, L) + δ

2 if S′ = K and T ′ = L
v(S′ ∪ {i}, T ′) otherwise

v′(S′, T ′ ∪ {i}) = v(S′, T ′ ∪ {i})

By definition of δ, v′ is monotone. Moreover

φS,T
i (v′) − φS,T

i (v) = αi,S,T
K,L × δ

2
.

By Mon, we obtain αi,S,T
K,L ≥ 0 for all (K,L) ∈ Q(N \ {i}).

Define now v′ by for all (S′, T ′) ∈ Q(N \ {i})

⎧⎪⎪⎨
⎪⎪⎩
v′(S′, T ′) = v(S′, T ′)
v′(S′ ∪ {i}, T ′) = v(S′ ∪ {i}, T ′)

v′(S′, T ′ ∪ {i}) =
{
v(K,L ∪ {i}) + δ

2 if S′ = K and T ′ = L
v(S′, T ′ ∪ {i}) otherwise

v′ is monotone. Hence

φS,T
i (v′) − φS,T

i (v) = βi,S,T
K,L × δ

2
.

By Mon, we obtain βi,S,T
K,L ≥ 0 for all (K,L) ∈ Q(N \ {i}).

The proof of Proposition 5 is based on the following lemmas

Lemma 1 Under Lin, Null, Mon and Eff , one has for all (K,L) ∈ Q(N)
with (K,L) �∈ {(S, T ), (∅, ∅)}

∑
i∈K

ai,S,T
K\{i},L −

∑
i∈L

bi,S,T
K,L\{i} −

∑
i∈N\(K∪L)

(
ai,S,T

K,L − bi,S,T
K,L

)
= 0 (14)

where the coefficients a and b are given by Proposition 4.
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Proof : Under Lin, Null and Mon, one has∑
i∈N

φS,T
i (v) =

∑
i∈N

∑
(S′,T ′)∈Q(N\{i})

ai,S,T
S′,T ′ [v(S′ ∪ {i}, T ′) − v(S′, T ′)]

+
∑
i∈N

∑
(S′,T ′)∈Q(N\{i})

bi,S,T
S′,T ′ [v(S′, T ′) − v(S′, T ′ ∪ {i})]

=
∑

(K,L)∈Q(N)

v(K,L) ×

⎡
⎢⎣ ∑

i∈N , (S′,T ′)∈Q(N\{i})
K=S′∪{i} , L=T ′

ai,S,T
S′,T ′

−
∑

i∈N , (S′,T ′)∈Q(N\{i})
K=S′ , L=T ′∪{i}

bi,S,T
S′,T ′ −

∑
i∈N , (S′,T ′)∈Q(N\{i})

K=S′ , L=T ′

(
ai,S,T

S′,T ′ − bi,S,T
S′,T ′

)⎤⎥⎦
=

∑
(K,L)∈Q(N)

v(K,L) ×
[∑

i∈K

ai,S,T
K\{i},L −

∑
i∈L

bi,S,T
K,L\{i}

−
∑

i∈N\(K∪L)

(
ai,S,T

K,L − bi,S,T
K,L

)⎤⎦
Since this holds for all bi-cooperative game, the proof is completed by Eff .

Lemma 2 Consider coefficients ai,S,T
K,L and bi,S,T

K,L given by Proposition 4.
For K ⊆ N fixed, if the following two conditions are fulfilled

(i) (14) holds for all L ⊆ N \K;
(ii) ai,S,T

K,L = 0 for all L ⊆ N \K and all i ∈ N \ (K ∪ L);

then {
∀i ∈ K , ∀L ⊆ N \K , ai,S,T

K\{i},L = 0
∀L ⊆ N \K , ∀i ∈ N \ (K ∪ L) , bi,S,T

K,L = 0
(15)

Proof : By assumptions (i) and (ii),

0 =
∑

L⊆N\K

⎡
⎢⎣∑

i∈K

ai,S,T
K\{i},L −

∑
i∈L

bi,S,T
K,L\{i} −

∑
i∈N\(K∪L)

⎛
⎜⎝ai,S,T

K,L︸ ︷︷ ︸
=0

−bi,S,T
K,L

⎞
⎟⎠
⎤
⎥⎦

=
∑

L⊆N\K

∑
i∈K

ai,S,T
K\{i},L −

∑
L′⊆N\K , i∈N\(K∪L′)

bi,S,T
K,L′

+
∑

L⊆N\K , i∈N\(K∪L)

bi,S,T
K,L

=
∑

L⊆N\K , i∈K

ai,S,T
K\{i},L
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By Proposition 4, all terms ai,S,T
K\{i},L are non-negative. Hence we deduce that

∀i ∈ K , ∀L ⊆ N \K ai,S,T
K\{i},L = 0 .

Hence (14) becomes∑
i∈L

bi,S,T
K,L\{i} −

∑
i∈N\(K∪L)

bi,S,T
K,L = 0 (16)

for all L ⊆ N \K. Let us prove by induction on l that for all l ∈ {0, . . . , n−
k − 1} and all L ⊆ N \K with |L| = l,

bi,S,T
K,L = 0 , ∀i ∈ N \ (K ∪ L) .

By (16) for L = N \K, we obtain
∑

i∈N\K bi,S,T
K,N\(K∪{i}) = 0. From Proposi-

tion 4, all terms bi,S,T
K,N\(K∪{i}) are non-positive. Hence for all L ⊆ N \K with

|L| = n− k − 1, bi,S,T
K,L = 0 for i ∈ N \ (K ∪ L). The induction assumption

is thus satisfied for l = n− k − 1.
Assume that the induction assumption holds till index l. Consider thus

L ⊆ N \K with |L| = l. By (16) and the induction assumption∑
i∈L

bi,S,T
K,L\{i} = 0 .

From Proposition 4, we conclude that the induction assumption also holds
for index l − 1.

Lemma 3 Assume that Lin, Null, Mon and Eff hold. Consider coeffi-
cients ai,S,T

K,L and bi,S,T
K,L given by Proposition 4. Assume that (S, T ) �= (N, ∅).

Then for all i ∈ N and all (K,L) ∈ Q(N \ {i})

|K| ≥ s ⇒ ai,S,T
K,L = 0 , |K| > s ⇒ bi,S,T

K,L = 0

Moreover, for all i ∈ N and all (K,L) ∈ Q(N \ {i})

(|K| < s and K ∪ {i} �⊆ S) ⇒ ai,S,T
K,L = 0

(|K| ≤ s and K �⊆ S) ⇒ bi,S,T
K,L = 0

Proof : Assume that (S, T ) �= (N, ∅). Let us show by induction on |K|
that for all K ⊆ N with |K| > s, (15) holds. By Lemma 1, condition (i) of
Lemma 2 is satisfied for all K ⊆ N with |K| > s. Consider first the case
K = N . Then condition (ii) in Lemma 2 is implicitly satisfied since it is
void. By Lemma 2, then (15) holds for K = N . Assume now by induction
that (15) is satisfied for all K ⊆ N with |K| = p ∈ {s+ 2, . . . , n}. Consider
thus K ⊆ N with |K| = p− 1. By the induction assumption, condition (ii)
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holds. Hence by Lemma 2, (15) is fulfilled for K. We have thus shown the
first part of the lemma.

We now show by induction on p that for all p ∈ {s, . . . , 0}, all (K,L) ∈
Q(N) and all i ∈ N \ (K ∪ L)

(|K| = p− 1 and K ∪ {i} �⊆ S) ⇒ ai,S,T
K,L = 0

(|K| = p and K �⊆ S) ⇒ bi,S,T
K,L = 0

For K = S, condition (i) of Lemma 2 is not fulfilled for L = T . Consider
thus K with |K| = s and K �= S. By the first part of the lemma, condition
(ii) holds. By Lemma 1, (i) is also satisfied. Hence Lemma 2 can be applied,
leading to the induction assumption for p = s. Assume now that the induc-
tion assumption holds at index p. Let K with |K| = p and K �⊆ S. Since
K �⊆ S, there does not exists L ⊆ N \ K and i ∈ N \ (K ∪ L) such that
K ∪ {i} ⊆ S. Thus condition (ii) in Lemma 2 is satisfied by the induction
assumption at p. By this lemma, we obtain the induction assumption at
index p− 1. This proves the second part of the lemma.

Lemma 4 Consider coefficients ai,S,T
K,L and bi,S,T

K,L given by Proposition 4.
For L ⊆ N fixed, if the following two conditions are fulfilled

(i) (14) holds for all K ⊆ N \ L;
(ii) bi,S,T

K,L = 0 for all K ⊆ N \ L and all i ∈ N \ (K ∪ L);

then {
∀i ∈ L , ∀K ⊆ N \ L , bi,S,T

K,L\{i} = 0
∀K ⊆ N \ L , ∀i ∈ N \ (K ∪ L) , ai,S,T

K,L = 0
(17)

Proof : Similar to that of Lemma 2.

Lemma 5 Assume that Lin, Null, Mon and Eff hold. Consider coeffi-
cients ai,S,T

K,L and bi,S,T
K,L given by Proposition 4. Assume that (S, T ) �= (∅, N).

Then for all i ∈ N and all (K,L) ∈ Q(N \ {i})

|L| ≥ t ⇒ bi,S,T
K,L = 0 , |L| > t ⇒ ai,S,T

K,L = 0

Moreover, for all i ∈ N and all (K,L) ∈ Q(N \ {i})

(|L| < t and L ∪ {i} �⊆ T ) ⇒ bi,S,T
K,L = 0

(|L| ≤ t and L �⊆ T ) ⇒ ai,S,T
K,L = 0
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Proof : Similar to that of Lemma 3.

We are now in position to show Proposition 5.

Proof of Proposition 5: φS,T has the expression given in Proposition 4.
Let i ∈ N .

Let us show that for (K,L) ∈ Q(N \ {i})

(K,L) �∈ {(K ′, L′) ∈ Q(N \ {i}) , K ′ ∪ {i} ⊆ S and L′ ⊆ T}
=⇒ ai,S,T

K,L = 0 (18)

(K,L) �∈ {(K ′, L′) ∈ Q(N \ {i}) , K ′ ⊆ S and L′ ∪ {i} ⊆ T}
=⇒ bi,S,T

K,L = 0 (19)

First of all, if (S, T ) �∈ {(N, ∅), (∅, N)}, then by Lemmas 3 and 5, for (K,L) ∈
Q(N \ {i}), one has ai,S,T

K,L = 0 if K ∪ {i} �⊆ S or L �⊆ T , and bi,S,T
K,L = 0 if

K �⊆ S or L ∪ {i} �⊆ T . Hence (18) and (19) are proved.
Now when (S, T ) = (N, ∅), (18) and (19) follow from Lemma 5. When

(S, T ) = (∅, N), (18) and (19) follow from Lemma 3.

From (18) and (19), if i ∈ N \ (S ∪T ), all terms ai,S,T
K,L and bi,S,T

K,L vanish.
Hence φS,T

i (v) = 0.

Let i ∈ S. Then by (18) and (19), all the bi,S,T
K,L terms vanish, and the

only non-zero terms of ai,S,T
K,L are such that K ⊆ S \ {i} and L ⊆ T . For

R ⊆ (S \ {i}) ∪ T , we set ci,S,T
R := ai,S,T

R∩S,R∩T . Then we obtain

φS,T
i (v) =

∑
R⊆(S∪T )\{i}

ci,S,T
R [v((R ∩ S) ∪ {i}, R ∩ T ) − v(R ∩ S,R ∩ T )]

=
∑

R⊆(S∪T )\{i}
ci,S,T
R [V (R ∪ {i})− V (R)] .

By Proposition 4, ci,S,T
R ≥ 0.

Let i ∈ T . Then by (18) and (19), all the ai,S,T
K,L terms vanish, and the

only non-zero terms of bi,S,T
K,L are such that K ⊆ S and L ⊆ T \ {i}. For

R ⊆ S ∪ (T \ {i}), we set ci,S,T
R := −bi,S,T

R∩S,R∩T . Then we obtain

φS,T
i (v) =

∑
R⊆(S∪T )\{i}

−ci,S,T
R [v(R ∩ S,R ∩ T ) − v(R ∩ S, (R ∩ T ) ∪ {i})]

=
∑

R⊆(S∪T )\{i}
ci,S,T
R [V (R ∪ {i})− V (R)] .
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By Proposition 4, ci,S,T
R ≥ 0.

Proof of Proposition 6: By Lin, Null, Mon and Eff , we have

φS,T
i (v) =

∑
K⊆(S∪T )\{i}

ai,S,T
K [V (K ∪ {i}) − V (K)] .

Moreover,

φS,T
σ(i)(v ◦ σ

−1) =
∑

K⊆(S∪T )\{σ(i)}
a

σ(i),S,T
K [V (σ−1(K ∪ {σ(i)})) − V (σ−1(K)]

But V (σ−1(K ∪ {σ(i)})) = V (σ−1(K) ∪ {i}). Hence

φS,T
σ(i)(v ◦ σ

−1) =
∑

K′⊆(S∪T )\{i}
a

σ(i),S,T
σ(K′) [V (K ′ ∪ {i})− V (K ′)]

where K ′ = σ−1(K). By IntraSym, one obtains

∀K ⊆ (S ∪ T ) \ {i} , a
σ(i),S,T
σ(K) = ai,S,T

K .

Consider first the case when σ(i) = i. Since S and T are invariant by σ, we
conclude, for i fixed, that ai,S,T

K depends only on the cardinality of K ∩ S
and K ∩ T . Hence

ai,S,T
K =: pi,S,T

|K∩S|,|K∩T | .

Now when σ(i) �= i, we have thus

pi,S,T
|K∩S|,|K∩T | = ai,S,T

K = a
σ(i),S,T
σ(K) = p

σ(i),S,T
|K∩S|,|K∩T | .

We conclude that mapping i �→ pi,S,T
|K∩S|,|K∩T | depends only on whether i ∈ S

or i ∈ T .

Proof of Proposition 7: Under Lin, Null, Mon, Eff and IntraSym

φS,T
i (v) =

∑
K⊆(S∪T )\{i}

pεi,S,T
|K∩S|,|K∩T |[V (K ∪ {i}) − V (K)] .

Let δv0 and δv1 be any two bi-cooperative games on (S ∪ T ) \ {i, j}. Let
vi and vj be two bi-cooperative games on N . Assume that vi can take any
value on Q((S ∪ T ) \ {i}). Then define vi on Q(S ∪ T ) \Q((S ∪ T ) \ {i}) by

vi(S′ ∪ {i}, T ′) = vi(S′, T ′) + δv|T ′∩{j}|(S′, T ′ \ {j}) .

for all (S′, T ′) ∈ Q((S ∪T ) \ {i}) Similarly vj can take any value on Q((S ∪
T ) \ {j}). Then define vj on Q(S ∪ T ) \ Q((S ∪ T ) \ {j}) by

vj(S′, T ′ ∪ {j}) = vj(S′, T ′) − δv|S′∩{i}|(S′ \ {i}, T ′) .
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for all (S′, T ′) ∈ Q((S∪T )\{j}) One has for all (S′, T ′) ∈ Q((S∪T )\{i, j})

vi(S′ ∪ {i}, T ′) − vi(S′, T ′) = δv0(S′, T ′) = vj(S′, T ′) − vj(S′, T ′ ∪ {j})
vi(S′ ∪ {i}, T ′ ∪ {j}) − vi(S′, T ′ ∪ {j})

= δv1(S′, T ′) = vj(S′ ∪ {i}, T ′) − vj(S′ ∪ {i}, T ′ ∪ {j})

One has

φS,T
i (vi) =

∑
K⊆(S∪T )\{i,j}

p+,S,T
|K∩S|,|K∩T |δv0(K ∩ S,K ∩ T )

+
∑

K⊆(S∪T )\{i,j}
p+,S,T
|K∩S|,|K∩T |+1δv1(K ∩ S,K ∩ T )

and

φS,T
j (vj) = −

∑
K⊆(S∪T )\{i,j}

p−,S,T
|K∩S|,|K∩T |δv0(K ∩ S,K ∩ T )

−
∑

K⊆(S∪T )\{i,j}
p−,S,T
|K∩S|+1,|K∩T |δv1(K ∩ S,K ∩ T )

Since this holds for all δv0 and δv1, we have, by InterSym, for all a ∈
{0, . . . , s− 1}, b ∈ {0, . . . , t− 1}

p+,S,T
a,b = p−,S,T

a,b

p+,S,T
a,b+1 = p−,S,T

a+1,b

Thus if a+ b ≤ s+ t− 2

p+,S,T
a,b = p−,S,T

a,b = p+,S,T
a−1,b+1 = · · · = p−,S,T

1,a+b−1 = p+,S,T
0,a+b

We set thus
pS,T

a+b := p+,S,T
a,b = p−,S,T

a,b .

Moreover, we set for a+ b = s+ t− 1

pS,T
s+t−1 := p+,S,T

s−1,t = p−,S,T
s,t−1 .

Hence for any v,

φS,T
i (v) =

∑
K⊆(S∪T )\{i}

pS,T
|K∩S|+|K∩T |[V (K ∪ {i}) − V (K)]

=
∑

K⊆(S∪T )\{i}
pS,T

k [V (K ∪ {i}) − V (K)]

Proof of Theorem 1: The “if” part is straightforward and left to the
reader.
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Under the above axioms,∑
i∈N

φS,T
i (v) =

∑
i∈N

∑
K⊆(S∪T )\{i}

pS,T
k [V (K ∪ {i})− V (K)]

=
∑

L⊆S∪T

V (L) ×

⎧⎪⎨
⎪⎩

∑
i∈N, K⊆(S∪T )\{i}

L=K∪{i},i∈L

pS,T
k −

∑
i∈N, K⊆(S∪T )\{i}

L=K,i�∈L

pS,T
k

⎫⎪⎬
⎪⎭

=
∑

L⊆S∪T

V (L) ×

⎧⎨
⎩∑

i∈L

pS,T
l−1 −

∑
i∈(S∪T )\L

pS,T
l

⎫⎬
⎭

=
∑

L⊆S∪T

[
l × pS,T

l−1 − (s+ t− l) × pS,T
l

]
V (L)

Axiom (E) implies that the coefficient of V (S∪T ) should be 1, that of V (∅)
should be -1, and all others being 0. This yields the following relations:

(s+ t) × pS,T
s+t−1 = 1

l× pS,T
l−1 − (s+ t− l) × pS,T

l = 0 for all l ∈ {1, . . . , s+ t− 1}

Hence

pS,T
l =

l!(s+ t− l − 1)!
(s+ t)!

.

Proof of Property 1: If all players of T are null, then for (S′, T ′) ∈
QS,T (N), T ′ = {i1, . . . , it′}

v(S′, T ′) = v(S′, {i1, . . . , it′}) = v(S′, {i1, . . . , it′−1})
= · · · = v(S′, {i1}) = v(S′, ∅) =: w(S′)


