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A VARIATIONAL APPROACH FOR ALMOST PERIODIC SOLUTIONS

IN RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS

MOEZ AYACHI AND JÖEL BLOT

(communicated by R. L. Pouso)

Abstract. To study the a.p. (almost periodic) solutions of retarded functional differential equa-
tions in the form u′′(t) =

∫ 0
−r D1 f (u(t),u(t +θ ))dθ +

∫ 0
−r D2 f (u(t −θ ),u(t))dθ + e(t) , we in-

troduce variational formalisms to characterize the a.p. solutions as a critical points of functionals
defined on Banach spaces of a.p. functions. We obtain an existence result of weak a.p. solutions
and a result of density of the a.p. forcing termes e(.) for which the equation possesses usual a.p.
solutions.

1. Introduction

From a function f : E×E → R , where E is a finite-dimensional real Euclidean
space, and from r ∈ (0,∞) we consider the following (second order) retarded functional
differential equation

u′′(t) =
∫ 0

−r
D1 f (u(t),u(t +θ ))dθ +

∫ 0

−r
D2 f (u(t −θ ),u(t))dθ + e(t) (1.1)

where Dj , j = 1,2, denotes the partial gradient and where e : R → E is a forcing term.
We study the a.p. (almost periodic) solutions of (1.1) where e is an a.p. function.
A strong a.p. solution of (1.1) is a function u : R→E which is twice differentiable

(in ordinary sense) with u,u′ and u′′ which are a.p. in the sense of Bohr [3, 6, 14]; the
equality in (1.1) being satisfied for all t ∈ R .

A weak a.p. solution of (1.1) is a function u : R → E which is a.p. in the sense
of Besicovitch [5, 18], which possesses a first-order and a second-order gerneralized
derivative; the equality in (1.1) means that the difference between the two members has
a quadratic mean value equal to zero.

For the ordinary differential equations, this kind of weak a.p. solutions was con-
sidered in [8]. For neutral delay differential equations, this kind of weak a.p. solutions
is considered in [4].

Mathematics subject classification (2000): 43A60, 34K99, 26E15.
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68 MOEZ AYACHI AND JÖEL BLOT

Our approach uses a variational method. The a.p. solutions (strong or weak) of
(1.1) are characterized as critical points of functionals in the form

u �→ lim
T→∞

1
2T

∫ T

−T

(
1
2

∣∣u′(t)∣∣2 +
∫ 0

−r
f (u(t),u(t +θ ))dθ +u(t).e(t)

)
dt

on Banach spaces of a.p. functions. And so (1.1) appears as an Euler-Lagrange equa-
tion.

Now we briefly describe the contents of the paper. After Section 2 devoted to
precise our notations, in Section 3 we build a variational formalism to characterize the
strong (also called usual) a.p. solutions of (1.1) (Theorem (3.3)), for which we can
deduce a result on the structure of the set of strong a.p. solutions of (1.1) (Theorem
(3.4)). In Section 4 we build a variational formalism to characterize the weak a.p.
solutions of (1.1) (Theorem (4.5)), and to establish an existence result of weak a.p.
solutions (Theorem (4.6)); we obtain also a result of the structure of the set of the weak
a.p. solutions of (1.1).

In Section 5 we establish a result on the density of the a.p. forcing term for which
(1.1) possesses a strong a.p. solutions (Theorem (5.3)); this result uses the weak a.p.
solutions.

2. Notations

When X is a Banach space, AP0(X) denotes the space of the Bohr-a.p. functions
from R in X [3, 6, 14]. It is a Banach space for the norm ‖u‖∞ := sup{|u(t)| : t ∈ R} .
When u ∈ AP0(X) , its mean value exists in X :

M{u} = Mt {u(t)} := lim
T→∞

1
2T

∫ T

−T
u(t)dt,

[3, 6, 14]. When k∈N , k � 1, APk(X) denotes the space of the u∈C k(R,X)∩AP0(X)
such that u j = d ju

dt j ∈ AP0(X) for all j = 1, . . . ,k . It is a Banach space for the norm
‖u‖C k := ‖u‖∞+∑1� j�k

∥∥u j
∥∥
∞ .

B1(X) denotes the completion of AP0(X) with respect to the norm ‖u‖B1 :=
M{|u|} . It is a quotient space to transform the semi-norm u �→ M{|u|} into a norm.
When X is a Hilbert space, B2(X) denotes the completion of AP0(X) with respect to

the norm ‖u‖B2 := M
{
|u|2

} 1
2
. It is also a quotient space and it is a Hilbert space for

the inner product (u|v)B2 := M{(u|v)X} .
The generelized derivative of u ∈ B2(X) (when it exists) is ∇u ∈ B2(X) such that

Mt

{∣∣∇u(t)− 1
τ (u(t + τ)−u(t))

∣∣2} → 0 (τ → 0) [8, 12]. We consider B1,2(X) :={
u ∈ B2(X) : ∇u ∈ B2(X)

}
and B2,2(X) :=

{
u ∈ B1,2(X) : ∇2u := ∇(∇u) ∈ B2(X)

}
.

They are Hilbert spaces for the respective norms

‖u‖B1,2 :=
(
‖u‖2

B2 +‖∇u‖2
B2

) 1
2
, ‖u‖B2,2 :=

(
‖u‖2

B1,2 +
∥∥∇2u

∥∥2
B2

) 1
2
.



A VARIATIONAL APPROACH 69

When u : R → E is a continuous function, it is usual, in the theory of retarded
functional differential equations, to consider, for all t ∈ R , ut ∈ C 0 ([−r,0] ,E) defined
by ut(θ ) := u(t +θ ) for all θ ∈ [−r,0] , [15].

When u∈ L2
loc(R,E) (Lebesgue space), we denote by ũ : R→ L2

loc ([−r,0] ,E) the
function defined by ũ(t)(θ ) := u(t +θ ) .

3. The Strong a.p. Solutions

We consider the following condition on f :

f ∈ C 1(E×E,R). (3.1)

LEMMA 3.1. Under (3.1) we consider the mapping F0 : E×C 0 ([−r,0] ,E) → R

defined by F0(x,ψ) :=
∫ 0
−r f (x,ψ(θ ))dθ . Then F0 is of class C 1 on E×C 0 ([−r,0] ,E)

and DF0(x,ψ)(y,ξ ) =
∫ 0
−r D1 f (x,ψ).ydθ +

∫ 0
−r D2 f (x,ψ(θ )).ξ (θ )dθ .

Proof. The following Nemytskii operator build on f :

N 0
f : C 0 ([−r,0] ,E)×C 0 ([−r,0] ,E) → C 0 ([−r,0] ,E) ,

N 0
f (φ ,ψ) := [θ �→ f (φ(θ ),ψ(θ ))] , is of class C 1 under (3.1), (see proposition 1 page

168, and proposition 2 page 170 in [1]).
The operator A0 : E×C 0 ([−r,0] ,E) → C 0 ([−r,0] ,E)×C 0 ([−r,0] ,E) defined

by A0(x,ψ) = (x,ψ) where the vector x ∈ E is considered as a (constant) continuous
function, is a linear continuous and therefore A0 is of class C 1 . The operator I0 :
C 0 ([−r,0] ,R) → R , I0(w) :=

∫ 0
−r w(t)dt , is linear continuous and therefore it is of

class C 1 .
Since F0 := I0 ◦N 0

f ◦A0 , F0 is of class C 1 as a composition of C 1 -mappings.
By using the chaine rule, we have

DF0(x,ψ).(y,ξ ) = I0
(
DN 0

f (A0(x,ψ)).A0(y,ξ )
)

We know that DN 0
f (A0(x,ψ)).A0(y,ξ )= [θ �→ D1 f (x,ψ(θ )).y+D2 f (x,ψ(θ )).ξ (θ )] ,

and so we obtain the announced formula.

LEMMA 3.2. The operator S0 : AP0(E) → AP0(R) , defined by

S0(u) :=
[
t �→

∫ 0

−r
f (u(t),u(t +θ ))dθ

]
,

is of class C 1 , and

DS0(u)h =
[
t �→

∫ 0

−r
D1 f (u(t),u(t +θ )).h(t)dθ +

∫ 0

−r
D2 f (u(t),u(t +θ )).h(t +θ )dθ

]
.
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Proof. The Nemytskii operator defined on the mapping F0 provided by Lemma
(3.1),

NF0 : AP0 (
E×C 0 ([−r,0] ,E)

) ≡ AP0(E)×AP0 (
C 0 ([−r,0] ,E)

) → AP0(R),

defined by

NF0(u,φ) :=
[
t �→ F0(u(t),φ(t)) =

∫ 0

−r
f (u(t),φ(t)(θ ))dθ

]

is of class C 1 , since F0 is of class C 1 . ([9], Corollary 5.3).
We introduce the operator T 0 : AP0(E)→AP0

(
C 0 ([−r,0] ,E)

)
by setting T 0(u) :=

[t �→ ut ] . Then T 0 is linear, T 0 is continuous since
∥∥T 0(u)

∥∥
∞ = ‖u‖∞ , and therefore

T 0 is of class C 1 .
Since S0 = NF0 ◦ (id,T 0) , S0 is of class C 1 as a composition of C 1 -operators.
By using the chain rule we have DS0(u).h = DNF0((id,T 0)(u)).D(id,T 0)(h) =

DNF0(u, ũ).(h, h̃) , and by using Lemma (3.1) we obtain

(DS0(u).h)(t) =
∫ 0
−r D1 f (u(t), ũ(t)(θ )).h(t)dθ +

∫ 0
−r D2 f (u(t), ũ(t)(θ )).h̃(t)(θ )dθ

=
∫ 0
−r D1 f (u(t),u(t +θ ).h(t)dθ +

∫ 0
−r D2 f (u(t),u(t +θ )).h(t +θ )dθ

THEOREM 3.3. Under (3.1) the functional J0 : AP1(E) → R , defined by

J0(u) := Mt

{
1
2

∣∣u′(t)∣∣2 +
∫ 0

−r
f (u(t),u(t +θ ))dθ +u(t).e(t)

}
,

is of class C 1 , and when u ∈ AP1(E) we have DJ0(u) = 0 if and only if u is a strong
solution of (1.1)

Proof. We consider the functional Q0 : AP1(E) → R defined by

Q0(u) := Mt

{
1
2

∣∣u′(t)∣∣2} .

The mapping q : E → R , q(x) := 1
2 |x|2 = 1

2x.x , is of class C 1 , therefore the Nemytskii

operator N 0
q : AP0(E) → AP0(R) , N 0

q (ϕ) :=
[
t �→ 1

2 |ϕ(t)|2
]
, is also of class C 1 ,

[7]. The operator d
dt : AP1(E) → AP0(E) , d

dt (u) := u′ , is linear continuous, therefore it
is of class C 1 . The functional M0 : AP0(R) → R , defined by M0(ϕ) := Mt {ϕ(t)} ,
is linear continuous, therefore it is of class C 1 . Since Q0 = M0 ◦N 0

q ◦ d
dt , Q0 is of

class C 1 as composition of C 1 -mappings, and by using the chain rule we have

DQ0(u).h = Mt
{
u′(t).h′(t)

}
(3.2)

We consider the functional Φ0 : AP1(E) → R defined by

Φ0(u) := Mt

{∫ 0

−r
f (u(t),u(t +θ ))dθ

}
.
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We consider the operator in0 : AP1(E) → AP0(E) , in0(u) := u , which is linear contin-
uous, and consequently in0 is of class C 1 .

We note that we have Φ0 is of class C 1 as a composition of C 1 -mappings. By
using Lemma (3.2) we obtain

DΦ0(u).h = Mt{
∫ 0

−r
D1 f (u(t),u(t +θ )).h(t)dθ

+
∫ 0

−r
D2 f (u(t),u(t +θ )).h(t +θ )dθ}

(3.3)

Now we want to improve this last formula.
Since (t,θ ) �→ D2 f (u(t),u(t + θ )).h(t + θ ) is continuous on R× [−r,0] , it is

Lebesgue-integrable and by using the Fubini theorem [2], we have

1
2T

∫ T

−T

(∫ 0

−r
D2 f (u(t),u(t +θ )).h(t +θ )dθ

)
dt

=
∫ 0

−r

(
1

2T

∫ T

−T
D2 f (u(t),u(t +θ )).h(t +θ )dt

)
dθ

(3.4)

We set gT (θ ) := 1
2T

∫ T
−T D2 f (u(t),u(t + θ )).h(t + θ )dt . We know that, for all

θ ∈ [−r,0] ,
lim
T→∞

gT (θ ) = Mt {D2 f (u(t),u(t +θ )).h(t +θ )}
since t �→ D2 f (u(t),u(t +θ )).h(t +θ ) bellongs to AP0(R) .

Furthermore, since u,h ∈ AP0(E) , u(R) and h(R) are compact, [3, 6, 14], and
since the mapping (x,y,z) �→ D2 f (x,y).z is continuous on the compact u(R)×u(R)×
h(R) , it is bounded, and consequently we have :

sup
θ∈[−r,0]

sup
t∈R

|D2 f (u(t),u(t +θ )).h(t +θ )| := σ < ∞,

that implies |gT (θ )| � σ for all T > 0, θ ∈ [−r,0] . And so the assumptions of the
dominated convergence theorem of Lebesgue are fulfilled, [2], and by using it we obtain

lim
T→∞

∫ 0

−r
gT (θ )dθ =

∫ 0

−r
lim
T→∞

gT (θ )dθ ,

and so by using (3.4) we obtain∫ 0
−r Mt {D2 f (u(t),u(t +θ )).h(t +θ )}dθ

= limT→∞
∫ 0
−r

(
1

2T

∫ T
−T D2 f (u(t),u(t +θ )).h(t +θ )

)
dθ

= limT→∞
1

2T

∫ T
−T

(∫ 0
−r D2 f (u(t),u(t +θ )).h(t +θ )dθ

)
dt

and so we have proven the following equality

Mt

{∫ 0

−r
D2 f (u(t),u(t +θ )).h(t +θ )dθ

}
=

∫ 0

−r
Mt {D2 f (u(t),u(t +θ )).h(t +θ )}dθ

(3.5)
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By using a similar reasoning we obtain

Mt

{∫ 0

−r
D2 f (u(t −θ ),u(t)).h(t)dθ

}
=

∫ 0

−r
Mt {D2 f (u(t−θ ),u(t)).h(t)}dθ (3.6)

Since the mean value is invariant by translation, [3, 6, 14], we have, for all θ ∈
[−r,0] , the following equality

Mt {D2 f (u(t),u(t +θ )).h(t +θ )} = Mt {D2 f (u(t −θ ),u(t)).h(t)} .

By using it with (3.5) and (3.6) we obtain

Mt

{∫ 0

−r
D2 f (u(t),u(t +θ )).h(t +θ )dθ

}
= Mt

{∫ 0

−r
D2 f (u(t −θ ),u(t)).h(t)dθ

}
.

And by using this last equality in (3.3) we obtain

DΦ0(u).h =Mt{(
∫ 0

−r
D1 f (u(t),u(t +θ ))dθ

+
∫ 0

−r
D2 f (u(t −θ ),u(t))dθ ).h(t)}

(3.7)

We consider the functional Λ0 : AP0(E)→R , defined by Λ0(u) :=Mt {u(t).e(t)} .
Note that Λ0 is linear continuous and consequently it is of class C 1 and we have

DΛ0(u).h = Mt {h(t).e(t)} . (3.8)

Since J0 = Q0 +Φ0 +Λ0 , J0 is of class C 1 as a sum of three C 1 -functionals, and
by using (3.2), (3.7) and (3.8) we obtain

DJ0(u).h =Mt{u′(t).h′(t)+ (
∫ 0

−r
D1 f (u(t),u(t +θ ))dθ

+
∫ 0

−r
D2 f (u(t −θ ),u(t))dθ + e(t)).h(t)}

(3.9)

for all u,h ∈ AP1(E)
We set p(t) :=

∫ 0
−r D1 f (u(t),u(t +θ ))dθ +

∫ 0
−r D2 f (u(t−θ ),u(t))dθ + e(t) , and

we have p ∈ AP0(E) .
When DJ0(u)= 0 then by using (3.9) we have Mt {u′(t).h′(t)}=−Mt {p(t).h(t)}

for all h ∈ AP1(E) and by using the same reasoning that this one of the proof of Theo-
rem 1 in [7] we obtain that u ∈ AP2(E) and u′′(t) = p(t) , that is exactly (1.1).

Conversely, if u is a strong a.p. solution of (1.1), then we have u′′ = p and so, for
all h ∈ AP1(E) , we have DJ0(u).h = M{u′.h′ + p.h}= M

{
d
dt (u

′.h)
}

= 0

THEOREM 3.4. Under (3.1), if we additionally assume that f is convex function,
then the set of the strong a.p. solutions of (1.1) is a convex subset of AP2(E) .
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Proof. When f is convex, it is easy to verify that J0 is convex, DJ0 = 0 is equiv-
alent to J0 = infJ0(AP1(E)) , [10], and

{
u ∈ AP1(E) : J0 = infJ0(AP1(E))

}
is convex.

And so
{
u ∈ AP1(E) : DJ0 = 0

}
is convex, and we obtain the conclusion by using The-

orem (3.3).
A consequence of Theorem (3.4) is the following one: when e = 0, if (1.1) possesses
a non-constant T1−periodic solution u1 and a non-constant T2−periodic solution u2

with T1/T2 /∈Q the 1
2u1+ 1

2u2 is a non-periodic a.p. solution of (1.1) since it is a convex
combination of a.p. solution.

4. The Weak a.p. solutions

We begin this section by giving a precise definition of the notion of weak a.p.
solution of (1.1). A weak a.p. solution of (1.1) is a function u ∈ B2,2(E) such that

∇2u =
∫ 0

−r
D1 f (u(t),u(t +θ ))dθ +

∫ 0

−r
D2 f (u(t−θ ),u(t))dθ + e(t),

this equality holding in B2(E) .
We begin by establishing two lemmas which contain general propreties of the

Besicovitch a.p. functions.

LEMMA 4.1. Let u ∈ B2(E) . Then the following equalities hold

Mt

{∫ 0

−r
|u(t +θ )|2 dθ

}
=

∫ 0

−r
Mt

{
|u(t +θ )|2

}
dθ

= r.Mt

{
|u(t)|2

}

Proof. Since Mt

{
|u(t)|2

}
= limT→∞

1
2T

∫ T
−T |u(t)|2 dt exists in R+ , we have

M := sup
T�1

1
2T

∫ T

−T
|u(t)|2 dt < ∞.

For all θ ∈ [−r,0] we have

1
2T

∫ T

−T
|u(t +θ )|2 dt =

1
2T

∫ T+θ

−T+θ
|u(s)|2 ds

� 1
2T

∫ T−r

−T−r
|u(t)|2 dt

� 1
2T

∫ T+r

−(T+r)
|u(t)|2 dt

=
1.2(T + r)

2T
.

1
2(T + r)

∫ T+r

−(T+r)
|u(t)|2 dt

� (1+
r
T

).M � (1+ r).M =: M1,
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and so we have proven

∃M1 > 0,∀θ ∈ [−r,0] ,∀T � 1,
1

2T

∫ T

−T
|u(t +θ )|2 dt � M1 < ∞ (4.1)

For all T � 1 we define ΦT : [−r,0] → R by setting ΦT (θ ) := 1
2T

∫ T
−T |u(t +θ )|2 dt .

Since ΦT (θ ) = 1
2T

∫ T+θ
−T+θ |u(s)|2 ds we see that ΦT is absolutely continuous on [−r,0] ,

and consequently we have ΦT ∈ L1 ([−r,0] ,R) .
If [a,b] is segment in R , for all θ ∈ [−r,0] , by using the Fubini theorem for the

non negative mesurable functions [2], we have

∫
[a,b]×[−r,0]

|u(t +θ )|2 dtdθ =
∫

[−r,0]

(∫
[a,b]

|u(t +θ )|2 dt

)
dθ

=
∫

[−r,0]

(∫
[a,b]+θ

|u(s)|2 ds

)
dθ

�
∫

[−r,0]

(∫
[a,b]+[−r,0]

|u(s)|2 ds

)
dθ

= r.
∫

[a,b]+[−r,0]
|u(s)|2 ds < ∞

since |u|2 ∈ L1
loc(R,R+) and since [a,b]+ [−r,0] is compact. And so we have proven:

(t,θ ) �→ |u(t +θ )|2 ∈ L1
loc (R× [−r,0] ,R) (4.2)

Then by using the Fubini theorem [2], for all T > 0 we obtain

1
2T

∫ T

−T

(∫ 0

−r
|u(t +θ )|2 dθ

)
dt =

∫ 0

−r

(
1

2T

∫ T

−T
|u(t +θ )|2 dt

)
dθ (4.3)

Since u ∈ B2(E) , we have limT→∞ΦT (θ ) = Mt

{
|u(t +θ )|2

}
= Mt

{
|u(t)|2

}
since the mean value is invariant by translation, for all θ ∈ [−r,0] . The constant M1 is
integrable on [−r,0] . And so by using (4.1), we can apply the dominated convergence
theorem of Lebesgue to obtain

∫ 0
−r limT→∞ΦT (θ )dθ = limT→∞

∫ 0
−rΦT (θ )dθ , that im-

plie by using (4.3) that
∫ 0
−r Mt

{
|u(t +θ )|2

}
dθ = Mt

{∫ 0
−r |u(t +θ )|2 dθ

}
. And since

Mt

{
|u(t +θ )|2

}
= Mt

{
|u(t)|2

}
for all θ , we have also

∫ 0

−r
Mt

{
|u(t +θ )|2

}
dθ = r.Mt

{
|u(t)|2

}
.

LEMMA 4.2. If u ∈ B2(E) then ũ ∈ B2
(
L2 ([−r,0] ,E)

)
and we have

‖ũ‖B2(L2([−r,0],E)) =
√

r.‖u‖B2(E)
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Proof. We fix u ∈ B2(E) , and ε > 0. We can choose qε ∈ AP0(E) such that
‖u−qε‖B2(E) < ε .

Since L2 ([−r,0] ,E) is separable, there exists a countable subset D in L2 ([−r,0] ,E)
which is dense, and consequently the set {B(ϕ ,ρ) : ϕ ∈ D,ρ ∈ Q∩ (0,∞)} is a gener-
ator of the Borel σ -field of L2 ([−r,0] ,E) , where

B(ϕ ,ρ) :=
{
ψ ∈ L2 ([−r,0] ,E) : ‖ψ−ϕ‖L2([−r,0],E) < ρ

}
.

We arbitrarily fix ϕ ∈ D and ρ ∈ Q∩ (0,∞) , and we set

α(t) :=
∫ 0

−r
|u(t +θ )−ϕ(θ )|2 dθ .

By using the same reasoning that this one used to establish (4.2) we obtain that (t,θ ) �→
|u(t +θ )−ϕ(θ )|2 ∈ L1

loc (R× [−r,0] ,R) and consequently by using the Fubini theo-
rem we know that α ∈ L1

loc (R,R) and then we necessarily have α measurable.
We note that t ∈ ũ−1 (B(ϕ ,ρ)) is equivalent to t ∈ α−1([0,ρ2[) . Since α is

measurable we have α−1([0,ρ2[) ∈ B(R) and consequently ũ−1 (B(ϕ ,ρ)) ∈ B(R) ,
and so we have proven:

ũ is measurable from (R,B (R)) in
(
L2 ([−r,0] ,E) ,B

(
L2 ([−r,0] ,E)

))
. (4.4)

By using (4.2) we know that (t,θ ) �→ |u(t +θ )|2 ∈ L1
loc (R× [−r,0] ,R) and conse-

quently, by using the Fubini theorem we obtain that t �→ ∫ 0
−r |u(t +θ )|2 dθ =

‖ũ(t)‖2
L2([−r,0],E) ∈ L1

loc(R,R).
Therefore we have obtained, [2] :

ũ ∈ L2
loc

(
R,L2 ([−r,0] ,E)

)
. (4.5)

By using Lemma (4.1) whith u−qε instead of u , we know that

Mt

{∫ 0

−r
|u(t +θ )−qε(t +θ )|2dθ

}

exists and that we have

Mt

{
‖ũ(t)− q̃(t)‖L2([−r,0],E)

}
= Mt

{∫ 0

−r
|u(t +θ )−qε(t +θ )|2 dθ

}

= r.Mt

{
|u(t)−qε(t)|2

}
< r.ε2.

Since q̃ε ∈ AP0
(
C 0 ([−r,0] ,E)

) ⊂ AP0
(
L2 ([−r,0] ,E)

)
, when ε → 0, we obtain that

ũ ∈ B2
(
L2 ([−r,0] ,E) ,E

)
.

The relation between the norms of u and ũ is a consequence of Lemma (4.1).
By modifying a function u ∈ B2(E) on a bounded interval of R we do not modify

the (class of the) function u , and so we can ask to use ũ(t) , defined as the restiction
of u on the interval [t − r,t] , possesses a meaning. Lemma (4.2) provides an answer



76 MOEZ AYACHI AND JÖEL BLOT

to this question, since if v ∈ B2(E) is different of u , then we have ũ �= ṽ . And so the
definition of ũ is consistent, and the notion of weak a.p. solution is also consistent.

Now we introduce the following condition on f :{
There exists a ∈ (0,∞) and b ∈ R such that

|Df (x,y)| � a(|x|+ |y|)+b for all x,y ∈ E.
(4.6)

LEMMA 4.3. Under (3.1) and (4.6), the operator S : B2(E) → B1(R) defined by

S(u) :=
[
t �→ ∫ 0

−r f (u(t),u(t +θ ))dθ
]

is of class C 1 and for all u,h∈ B2(E) , we have

DS(u).h =
[
t �→ ∫ 0

−r D1 f (u(t),u(t +θ )).h(t)+D2 f (u(t),u(t +θ )).h(t +θ )dθ
]

Proof. The Nemytskii operator build on f , N f : L2 ([−r,0] ,E)×L2 ([−r,0] ,E)→
L1 ([−r,0] ,R) , N f (ϕ ,ψ) := [θ �→ f (ϕ(θ ),ψ(θ ))] , under (3.1) and (4.6) is of class
C 1 , [11], and DN f (ϕ ,ψ).(ξ ,ζ ) = [θ �→ Df (ϕ(θ ),ψ(θ )).(ξ (θ ),ζ (θ ))]

The operator A : E× L2 ([−r,0] ,E) → (
L2 ([−r,0] ,E)

)2
defined by A(x,ψ) :=

(x,ψ) , where x is considered as a constant function, is linear continuous, therefore A
is of class C 1 and DA(x,ψ) = A .

The functional I : L1 ([−r,0] ,R) → R , I(w) :=
∫ 0
−r w(θ )dθ , is linear continuous,

therefore I is of class C 1 and DI(w) = I .
We consider the mapping F : E × L2 ([−r,0] ,E) → R , defined by F(x,ψ) :=∫ 0

−r f (x,ψ(θ ))dθ .

We note that F = I ◦N f ◦A , and so F is of class C 1 as a composition of C 1 -
mappings, and by using the chain rule we obtain, for all x,y ∈ E and for all ψ ,ξ ∈
L2 ([−r,0] ,E) , the following formula:

DF(x,ψ).(y,ξ ) =
∫ 0

−r
(D1 f (x,ψ(θ )).y+D2 f (x,ψ(θ )).ξ (θ ))dθ .

Let (y,ξ ) ∈ E×L2 ([−r,0] ,E) such that ‖(y,ξ )‖ � 1. Then we have

|DF(x,ψ).(y,ξ )| �
∫ 0

−r
|Df (x,ψ(θ ))| . |(y,ξ (θ ))|dθ

�
(∫ 0

−r
|Df (x,ψ(θ ))|2 dθ

) 1
2

.

(∫ 0

−r
|(y,ξ (θ ))|2 dθ

) 1
2

by using the Cauchy-Schwarz-Buniakovski inequality.
We note that

∫ 0

−r
|(y,ξ (θ ))|2 dθ =

∫ 0

−r

(
|y|2 + |ξ (θ )|2

)
dθ = r |y|2+

∫ 0

−r
|ξ (θ )|2 dθ � r1.‖(y,ξ )‖2 � r1,

where r1 := max{r,1} , and so we have:
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|DF(x,ψ).(y,ξ )| � √
r1.

(∫ 0

−r
|Df (x,ψ(θ ))|2 dθ

) 1
2

� √
r1.

(∫ 0

−r
(a. |x|+a. |ψ(θ )|+b)2 dθ

) 1
2

=
√

r1.‖a. |x|+a. |ψ |+ |b|‖L2([−r,0],E)

� √
r1.

(
a‖|x|‖L2([−r,0],R) +a‖|ψ |‖L2([−r,0],R) +‖|b|‖L2([−r,0],R)

)
.

Since ‖|x|‖L2([−r,0],R) =
√

r. |x| , ‖|b|‖L2([−r,0],R) =
√

r. |b| and ‖|ψ |‖L2([−r,0],R) =
‖ψ‖L2([−r,0],E) , we have

|DF(x,ψ).(y,ξ )| � a.
√

r1.
√

r
(
|x|+‖ψ‖L2([−r,0],E)

)
+
√

r1.
√

r. |b| .
We set a1 := a.

√
r1.

√
r and b1 :=

√
r1.

√
r |b| and so we obtain:

|DF(x,ψ)| � a1.
(
|x|+‖ψ‖L2([−r,0],E)

)
+b1.

And so the assumption of ([11], Theorem 2.6 page 14) are fulfilled and we can
assert that NF : B2(E)×B2(L2) → B1(R) is of class C 1 and that we have, for all
u,h ∈ B2(E) and for all V,K ∈ L2 ([−r,0] ,E) , the following formula

DNF(u,V ).(h,K) = [t �→ DF(u(t),V (t)).(h(t),K(t))

=
∫ 0

−r
(D1 f (u(t),V (t)(θ )).h(t)+D2 f (u(t),V (t)(θ )).K(t)(θ ))dθ ] (4.7)

We consider the linear operator T : B2(E)→B2
(
L2 ([−r,0] ,E)

)
defined by T (u) :=

ũ . By using Lemma (4.2) we know that T is continuous, and therefore T is of class
C 1 with DT (u) = T .

We note that we have S = N f ◦(id,T ) , and so S is of class C 1 as a composition of
C 1 -operators, and by using the chain rule and (4.7) we obtain the announced formula.

LEMMA 4.4. Under (3.1) and (4.6), if u and h belong to B2(E) then the follow-
ing equality holds :

Mt

{∫ 0

−r
D2 f (u(t),u(t +θ )).h(t +θ )dθ

}
= Mt

{(∫ 0

−r
D2 f (u(t −θ ),u(t))dθ

)
.h(t)

}

Proof. By using a reasoning similar to this one used to establish (4.2) we obtain
that (t,θ ) �→ D2 f (u(t),u(t + θ )).h(t + θ ) ∈ L1

loc(R× [−r,0] ,R) . And so we can use
the Fubini theorem to obtain

1
2T

∫ T

−T

(∫ 0

−r
D2 f (u(t),u(t +θ )).h(t +θ )dθ

)
dt

=
∫ 0

−r

(
1

2T

∫ T

−T
D2 f (u(t),u(t +θ )).h(t +θ )dt

)
dθ

(4.8)

for all T ∈ (0,∞) .
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For all T ∈ [1,∞) we introduce the function gT : [−r,0] → R defined by

gT (θ ) :=
1

2T

∫ T

−T
D2 f (u(t),u(t +θ )).h(t +θ )dt

Ever using the Fubini theorem we know that the gT are borelian.
Since t �→ D2 f (u(t),u(t + θ )).h(t + θ ) ∈ B1(R) we know that the mean value

exists in R and consequently we have

lim
T→∞

gT (θ ) = Mt {D2 f (u(t),u(t +θ )).h(t +θ )}
for all θ ∈ [−r,0] .

Since Mt

{
|u(t)|2

}
exists in R , we have supt�1

(
1

2T

∫ T
−T |u(t)|2 dt

)
=: M < ∞ .

For all θ ∈ [−r,0] and, for all T � 1+ r , we have

1
2T

∫ T

−T
|u(t +θ )|2 dt =

1
2T

∫ T+θ

−T+θ
|u(s)|2 ds

� 1
2T

∫ T−θ

−T+θ
|u(s)|2 ds

=
2(T −θ )

2T
.

1
2(T −θ )

.

∫ T−θ

−(T−θ)
|u(t)|2 dt

� (1+ r).M =: M0

And so we have proven the following assertation{
There exists M0 ∈ (0,∞) such that, for all

θ ∈ [−r,0] , supT�1+r
1

2T

∫ T
−T |u(t +θ )|2 dt � M0.

(4.9)

Replacing u by h we similarly obtain the following assertation.{
There exists M1 ∈ (0,∞) such that, for all

θ ∈ [−r,0] , supT�1+r
1

2T

∫ T
−T |h(t +θ )|2 dt � M1.

(4.10)

By using the equivalence of the norms of R2 and the usual inequality (A+B)2 �
2(A2 +B2) we obtain the existence of a2 ∈ (0,∞) such that

|D2 f (u(t),u(t +θ ))|2 �
(

a2

[
|u(t)|2 + |u(t +θ )|2

] 1
2
+b

)2

� 2.
(
a2 |u(t)|2 +a2 |u(t +θ )|2 +b2

)
that implies(

1
2T

∫ T

−T
|D2 f (u(t),u(t +θ ))|2 dt

) 1
2

�
√

2(a2.
1

2T

∫ T

−T
|u(t)|2 dt

+ a2.
1

2T

∫ T

−T
|u(t +θ )|2 dt +b2)

1
2

�
√

2
(
a2M0 +a2M0 +b2) 1

2 .
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Then by setting γ :=
√

2
(
2a2M0 +b2

) 1
2 M

1
2
1 we have proven the following assertation

(
1

2T

∫ T

−T
|D2 f (u(t),u(t +θ ))|2 dt

) 1
2

.

(
1

2T

∫ T

−T
|h(t +θ )|2 dt

) 1
2

� γ (4.11)

By using the Cauchy-Schwarz-Buniakovski inequality and (4.11) we obtain, for all
T � 1+ r and for θ ∈ [−r,0] ,

|gT (θ )| � 1
2T

∫ T

−T
|D2 f (u(t),u(t +θ ))| . |h(t +θ )|dt � σ

Since the Lebesgue measure of [−r,0] is finite, the constant σ is Lebesgue integrable
in [−r,0] , and consequently the assumptions of the Lebesgue Dominated Convergence
theroem are fulfilled and we can say :∫ 0

−r
lim
T→∞

gT (θ )dθ = lim
T→∞

∫ 0

−r
gT (θ )dθ ,

and we can conclude as in the proof of (3.5), (3.6), (3.7).

THEOREM 4.5. We assume (3.1) and (4.6) fulfilled. Then the functional J : B1,2(E)→
R , defined by

J(u) := Mt

{
1
2
|∇u(t)|2 +

∫ 0

−r
f (u(t),u(t +θ ))dθ +u(t).e(t)

}
,

is of class C 1 . And when u ∈ B1,2(E) , we have DJ(u).h = 0 if and only if u is a weak
a.p. solution of (1.1).

Proof. We consider the functional Q : B1,2(E) → R defined by

Q(u) := Mt

{
1
2
|∇u(t)|2

}
.

We set q(x) := 1
2 |x|2 ; q : E →R is a C 1 -function since E is euclidean. Since Dq(x) =

x , q satisfies the condition of ([11], Theorem 2.6 page 14) to ensure that the Nemytskii
operator Nq : B2(E) → B1(R) is of class C 1 and DNq(v).h = [t �→ v(t).h(t)] for all
v,h∈ B2(E) . Since the derivation operator ∇ : B1,2(E)→ B2(E) is linear continuous, it
is of class C 1 and since the operator M : B1(R)→R , M(v) := Mt {v(t)} is also linear
continuous, it is of class C 1 . And so Q := M◦Nq ◦∇ is of class C 1 as a composition
of C 1 -mappings. Moreover by using the chain rule we have

DQ(u).h = Mt {∇u(t).∇h(t)} (4.12)

for all u,h ∈ B1,2(E) .
We consider the functional Φ : B1,2(E) → R defined by

Φ(u) := Mt

{∫ 0

−r
f (u(t),u(t +θ ))dθ

}
.
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We note that the injection in : B1,2(E) → B2(E) , in(u) := u , is linear continuous and
consequently it is of class C 1 . We note that Φ= M◦S◦ in , and by using Lemma (4.3)
we know that S is of class C 1 . And so Φ is of class C 1 as a composition of C 1 -
mapping. Ever using Lemma (4.3) and the chain rule we obtain the following formula

DΦ(u).h = Mt{
∫ 0

−r
D1 f (u(t),u(t +θ )).h(t)dθ

+
∫ 0

−r
D2 f (u(t),u(t +θ )).h(t +θ )dθ},

and by using Lemma (4.4) we obtain

DΦ(u).h = Mt{(
∫ 0

−r
D1 f (u(t),u(t +θ ))dθ

+
∫ 0

−r
D2 f (u(t−θ ),u(t))dθ ).h(t)}.

(4.13)

We consider the linear functional Λ : B1,2(E) → R defined by

Λ(u) := Mt {u(t).e(t)} ,

and the linear functional L : B2(E)→R defined by L(u) := Mt {u(t).e(t)}= (u|e)B2(E) .
Since L is continuous (by using the Cauchy-Schwarz-Buniakovski inequality), Λ :=
L◦ in is also continuous as a composition of continuous mappings, and consequently Λ
is of class C 1 . Moreover, since DΛ(u) = 1 we obtain the following formula

DΛ(u).h = Mt {h(t).e(t)} , for all u,h ∈ B1,2(E). (4.14)

We note that J = Q+Φ+Λ , and so J is of class C 1 as a sum of C 1 -functionals.
Moreover, by using (4.12), (4.13), (4.14), we obtain

DJ(u).h =Mt{∇u(t).∇h(t)+ (
∫ 0

−r
D1 f (u(t),u(t +θ ))dθ

+
∫ 0

−r
D2 f (u(t −θ ),u(t))dθ + e(t)).h(t)}

(4.15)

for all u,h ∈ B1,2(E) .
We set p(t) :=

∫ 0
−r [D1 f (u(t),u(t +θ ))+D2 f (u(t −θ ),u(t))]dθ+e(t) (∈B2(E)) .

And so the condition DJ(u) = 0 can be writen as Mt {∇u(t).∇h(t)} =
−Mt {p(t).h(t)} for all h ∈ B1,2(E) . And so by using [8], this last condition implies
that ∇u∈ B1,2(E) , i.e. u∈ B2,2(E) , and ∇2u = p which exactly means that u is a weak
a.p. solutions of (1.1).

Conversely, since M{∇v} = 0 for all v ∈ B1,2(R) , we have 0 = M{∇(∇u.h)} =
M

{
∇2u.h)

}
+M{∇u.∇h} = M{p.h}+M{∇u.∇h} for all h ∈ B1,2(E) , that implies

DJ(u) = 0.
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Now we introduce an assumption of convexity :

f is a convex function on E×E (4.16)

and an assumption of coerciveness :{
There exists c ∈ (0,∞) and d ∈ R such that

f (x,y) � c |x|2 +d for all (x,y) ∈ E×E.
(4.17)

THEOREM 4.6. Under (3.1), (4.6), (4.16), (4.17), for all e ∈ B2(E) , there exists
u ∈ B2,2(E) which is a weak a.p. solution of (1.1). Moreover the set of the weak a.p.
solutions of (1.1) is a convex set.

Proof. After Theorem (4.5) we know that the functional J is of class C 1 on
B1,2(E) . By using (4.16) we deduce that J is a convex functional. Then J is weakly
lower semi-continuous on the Hilbert space B1,2(E) , [16]. From (4.17) we deduce that,
for all u ∈ B1,2(E) , we have

J(u) � 1
2
‖∇u‖2

B2(E) + c‖u‖2
B2(E)−‖u‖B2(E) .‖e‖B2(E)

� c1.‖u‖2
B1,2(E)−‖e‖B2(E) .‖u‖B1,2(E)

where c1 := min
{ 1

2 ,c
} ∈ (0,∞) . Consequently J is coercive, i.e. J(u) → ∞ when

‖u‖2
B1,2(E) →∞ . Then, [10], we can assert that there exists u∈B1,2(E) such that J(u) =

infJ
(
B1,2(E)

)
, and since J is of class C 1 we have DJ(u) = 0, and then, by using

Theorem (4.5), we know that u is a weak a.p. solution of (1.1).
Ever using Theorem (4.5), we know that the set of the weak a.p. solutions of (1.1)

is equal to the following set:
{
u ∈ B1,2(E) : DJ(u) = 0

}
, and since J is convex this last

it is equal to the set
{
u ∈ B1,2(E) : J(u) = infJ

(
B1,2(E)

)}
. Since J is convex this last

set is a convex set. And so the set of the weak a.p. solutions of (1.1)is convex.

5. Density

LEMMA 5.1. Under (3.1) and (4.16) we consider the operator Γ1 : B2(E) →
B2(E) defined by

Γ1(u) :=
[
t �→

∫ 0

−r
D1 f (u(t),u(t +θ ))dθ

]
.

Then Γ1 is continuous.

Proof. Under (3.1) and (4.6) we know that we have |D1 f (x,y)| � a(|x|+ |y|)+b
for all x,y ∈ E . Then ([11], Theorem 2.5 page 9), the Nemytskii operator ND1 f :
L2 ([−r,0] ,E) × L2 ([−r,0] ,E) → L2 ([−r,0] ,E) , ND1 f (ϕ ,ψ) := [θ �→ D1 f (ϕ(θ ),



82 MOEZ AYACHI AND JÖEL BLOT

ψ(θ ))] , is continuous. We know that the operator A , A(x,ψ) = (x,ψ) , used in the proof
of Lemma (4.3), is continuous from E×L2 ([−r,0] ,E) in L2 ([−r,0] ,E)×L2 ([−r,0] ,E) .
The functional I used in the proof of Lemma (4.3) is continuous.

We define F1 : E×L2 ([−r,0] ,E) → R by setting

F1(x,ψ) := I ◦ND1 f ◦A(x,ψ) =
∫ 0

−r
D1 f (u(t),u(t +θ ))dθ .

Then F1 is continuous as a composition of continuous mappings.
For all x ∈ E and ψ ∈ L2 ([−r,0] ,E) we have

|F1(x,ψ)| �
∫ 0

−r
|D1 f (x,ψ(θ ))|dθ

�
∫ 0

−r
(a |x|+a |ψ(θ )|+b)dθ

= r.a. |x|+a.

∫ 0

−r
|ψ(θ )|dθ + r.b

� r.a. |x|+a.
√

r‖ψ‖L2([−r,0],E) + r.b

� a3.
(
|x|+‖ψ‖L2([−r,0],E)

)
+ r.b,

where a3 := a.max{r,√r} . And so the assumptions of ([18], Remark 2.7 page 54) are
fulfilled that ensure that the Nemytskii operator

NF1 : B2(E)×B2 (
L2 ([−r,0] ,E)

) → B2(E),

NF1(u,ξ ) :=
[
t �→ F1 (u(t),ξ (t)) =

∫ 0

−r
D1 f (u(t),ξ (t)(θ ))dθ

]

is continuous.
We note that Γ1 = NF1 ◦ (id,T ) , where T (u) = ũ , and so Γ1 is continuous as a

composition of continuous mappings.

LEMMA 5.2. Under (3.1) and (4.6) we consider the operator Γ2 : B2(E)→B2(E)
defined by

Γ2(u) :=
[
t �→

∫ 0

−r
D2 f (u(t −θ ),u(t))dθ

]
.

Then Γ2 is continuous.

Proof. By a reasoning similar to this one used in Lemma (5.1), the Nemytskii op-
erator ND2 f : L2 ([−r,0] ,E) × L2 ([−r,0] ,E) → L2 ([−r,0] ,E) , ND2 f (ϕ ,ψ) :=
[θ �→ D2 f (ϕ(θ ),ψ(θ ))] , is continuous.

We introduce the operator A1 : L2 ([−r,0] ,E)×E → L2 ([−r,0] ,E)L2 ([−r,0] ,E) ,
A1(ϕ ,y) := [θ (ϕ(θ ),y)] . A1 is linear continuous.

We consider also the functional I like in the proof of Lemma (5.1).
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We define F2 : L2 ([−r,0] ,E)×E → R by setting

F2(ϕ ,y) := I ◦ND2F ◦A1(ϕ ,y) =
∫ 0

−r
D2 f (ϕ(θ ),y)dθ .

And also F2 is continuous as composition of continuous functions. Like in the proof of
Lemma (5.1) we establish that

|F2(ϕ ,y)| � a3

(
‖ϕ‖L2([−r,0],E) + |y|

)
+ rb.

And so by using ([18], Remark 2.7 page 54) we know that the Nemytskii operator

NF2 : B2 (
L2 ([−r,0] ,E)

)×B2 (E) → B2 (E) ,

NF2(ξ ,u) :=
[
t �→

∫ 0

−r
D2 f (ξ (t)(θ ),u(t))dθ

]
,

is continuous.
For all u ∈ B2(E) and for all t ∈ R , we denote by ũ(t) := [θ �→ u(t−θ )] ∈

L2 ([−r,0] ,E) . Proceeding like in Lemma (4.2) we can establish that ũ∈B2(L2([−r,0],
E)) and that ‖ũ‖B2(L2([−r,0],E)) =

√
r.‖u‖B2(E) . And so the operator

T1 : B2(E) → B2 (
L2 ([−r,0] ,E)

)
, T1(u) := ũ,

is linear continuous.
We note that Γ2 = ND2 f ◦ (T1, id) that permits us to say that Γ2 is continuous as

a composition of continuous mappings.

THEOREM 5.3. Under (3.1), (4.6), (4.16), (4.17), for all e ∈ AP0(E) , and for all
ε ∈ (0,∞) , there exists eε ∈ AP0(E) such that ‖e− eε‖B2(E) � ε and such that there

exists uε ∈ AP2(E) wich is a strong a.p. solution of

u′′ε (t) =
∫ 0

−r
D1 f (u(t),u(t +θ ))dθ +

∫ 0

−r
D2 f (u(t −θ ),u(t))dθ + eε(t).

Proof. We set Γ := Γ1 +Γ2 where Γ1 comes from Lemma (5.1) and Γ2 comes
from Lemma (5.2). We consider the operator T : B2,2(E) → B2(E) , T (u) :=∇2(u)−
Γ(u) .The operator ∇2 : B2,2(E) → B2(E) is linear continuous and by using Lemma
(5.1) and Lemma (5.2), we see that T is continuous.

By using Theorem (4.6) we know that T (B2,2(E)) = B2(E) and consequently we
have AP0(E) ⊂ T (B2,2(E)) . Since AP2 is dense in B2,2(E) and since T is contin-
uous, for all e ∈ AP0(E) and for all ε ∈ (0,∞) , we obtain that there exists uε ∈ AP2

such that ‖T (uε)− e‖B2(E) < ε .
By proceeding like in the proof of Lemma (3.2), we obtain that Γ1(uε) and Γ2(uε)

belong to AP0(E) . Since ∇2(uε) = u′′ε , [8], we obtain that T (uε) ∈ AP0(E) . We set
eε := T (uε) , and so eε satisfies the announced conditions.



84 MOEZ AYACHI AND JÖEL BLOT
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