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Abstract

This paper proposes the use of optimal grouping methods for determining the
various age groups within a population. The cutoff ages for these groups, such
as the age from which an individual is considered to be an older person, are then
endogenous variables that depend on the entire population age distribution at
any given moment. This method is applied to the age distributions of some
industrialized countries, for which cutoff ages as well as the main indicators of
aging are calculated over the last 50 years.
Keywords: Population Aging, Age Distributions, Aging Indexes, Optimal
Grouping, Old Age, Demographic Measures.
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“The first part of life is childhood. The second is your child’s child-
hood. And then the third, old age.” Barbara Kingsolver, The Lacuna

1 Introduction

Population aging is often perceived as a very widespread phenomenon. Accord-

ing to the last United Nations “Population Aging Report” (2009), the propor-

tion of the global population aged over 60 years was 8% in 1950, 10% in 2000,

and is expected to reach 21% in 2050. In this report, the United Nations have

used a very specific, albeit very common, type of measurement for assessing the

population aging phenomenon, namely the proportion of population aged over

60. And yet, it is evident that today’s 60-year-olds are often very different from

their parents at the same age and have absolutely nothing in common with their

grandparents at the same age. The age at which one becomes an older person

is a notion that changes over time; thus, calculating the proportion of older

persons based on a fixed age only provides us with biased information. The use

of such an indicator is often justified on the ground that these fixed ages (60, 65

or 80, depending on the study) correspond to the eligibility ages of certain social

programs, most notably the pay–as–you–go pension system. However, recent

events, for example in Europe, show that these ages also undergo changes (see

notably Fenge et al., 2008, and references therein). Indicators, though simple,

are not neutral. While studying the history of social representation that defines

old age as starting from 60 years, Bourdelais (1994, 1999) showed that indicators

of aging based on fixed ages contributed to a dramatic portrayal of demographic

evolutions, some of which were associated with the myth of decline. The aim

of our paper is to propose a new means of determining the various age groups

in a population and to recalculate new indicators of aging based on the cutoff

ages of these groups.

The main difficulty in characterizing the relative size of older populations lies
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in the determination of the age at which an individual becomes an older person.

We propose to use all the statistical information contained in the population

age distribution to define this age. We proceed in the following manner: we

predefine a certain number of age groups, then “optimally” divide single age-

classes among these different groups. The optimal grouping rule, as proposed

by Aghevli and Mehran (1981), consists in selecting cutoff ages for groups such

that age differences are a minimum within each group and a maximum between

groups. The resulting age group–based representation is then optimal as it

gives the best portrayal of the initial distribution. Information loss arising

from the grouping of data is therefore minimal. This procedure leads to a

clear endogenous definition of an elderly individual: one classifies as elderly any

individual whose age is closer to the average age of the elderly group than to

the average of any other group. A direct implication of this grouping is that

the definition of old age fundamentally relies on the relative position of each

cohort in total population and thus depends on the entire shape of the age

distribution. Our concept of the stages of life is a relative one: the “age” of

individuals within a given cohort depends on the size of the other cohorts. This

is a statistical interpretation of the what is nicely characterized by B. Kingsolver

in the quotation we reproduced above.

Optimal grouping techniques were initially used by Aghevli and Mehran

(1981) and Davies and Shorrocks (1989) for income distribution issues, and ap-

plied by Esteban et al. (2007) to polarization measurements. In this paper, we

demonstrate in a formalized manner how to apply these techniques to age dis-

tributions in order to calculate cutoff ages. The latter then allow us to calculate

various indicators of aging, which are invariant with respect to proportional

rescaling of distributions. These calculations are no more complicated than

those proposed in related contributions, which will be described below. Most

2
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notably, in the extreme case where only two age groups are considered, our

indicator of aging becomes the proportion of individuals whose age is greater

than the mean age.

Applying this technique to total US population we find that the age at which

one becomes an older person has dramatically increased over the last century.

In our benchmark experiment involving 4 age groups, we find that the entry

age into oldness was 48.7 years in 1933 and skyrocketed to 57.6 years in 2005.

Most industrialized countries exhibit the same behavior of the entry age into

oldness. We then find that the share of the so-defined elderly in total population

remained stable over time and does not display a pronounced upward sloping

trend. We then compute the elder-child ratio and find that its time average

increased over the last 50 years by less than 6.5% in the US, and by less than

8% on average in a sample of 13 industrialized countries. These findings then

suggest that aging is less pronounced when a measure that takes evolutions in

the age distribution into account is used.

The remainder of the paper is organized as follows. Section 2 compares our

method to recent contributions in the field. Section 3 describes our approach

to defining endogenous age groups and defines our aging indicators. Section 4

revisits aging in the US and in 12 other industrialized countries in light of our

new indicators. A last section offers some concluding remarks.

2 Related Literature

Our work is part of continuing efforts in the latest research on the demographics

of aging. Two distinct bodies of work have led to the proposal of indicators of

aging that are not based on the constancy of the age at which one becomes an

older person. The first of these is founded on a simple idea, initially developed

by Ryder (1975), that defines an individual’s age not according to the number
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of years lived since birth, but according to the remaining number of years that

he or she is expected to live. Thus, Ryder proposes considering an individual as

an older person when his or her remaining life expectancy is less than ten years.

This type of characterization, which may be used to define the proportion of

older persons in a population, constitutes a major advancement as it enables

the distinction between individual and population aging. This idea has been

pursued by Sanderson and Scherbov (2005, 2010), who establish the mean age

of an age pyramid that is recalculated based on the life expectancy at each age.

However, such approaches have two drawbacks. First, at a given date, a

cohort’s life expectancy is unknown and its estimation using a period life ta-

ble is imperfect (Goldstein and Wachter, 2006), although the approximation

error is likely to be quantitatively small (Sanderson and Scherbov, 2007). To

nevertheless overcome this problem, Shoven (2010) proposes to determine the

beginning of old age by comparing the morbidity rate at each age at a given

threshold. The second disadvantage of Ryder’s indicator is that it is modified

through simple proportional rescaling. Figure 1 illustrates the effects of rescal-

ing. Let us consider two stationary populations made up of individuals whose

survival curve is rectangular; the age structure of these populations is there-

fore also rectangular. Let us assume that the only difference between the two

populations lies in the maximum age at death. In the initial population (left

panel of Figure 1), individuals live for 100 years and each cohort amounts to

1% of the total population. In the rescaled population (right panel of Figure

1), individuals live for 200 years and each cohort amounts for 0.5% of the total

population. Using the indicator based on over–60s, it would be tempting to

conclude that the youngest population is that whose life expectancy is 100: the

share of the oldest group is 40% in the initial population and 70% in the rescaled

population. On the contrary, Ryder’s criterion would suggest that the youngest
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population is that with the highest life expectancy: the share of those with life

expectancy is less than 10 years (the shaded surface in Figure 1) is 10% in the

initial population while it is 5% in the rescaled one.

Figure 1: No proportional rescaling with Ryder’s criterion
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As we will show later, by using our criterion, one would conclude that both

populations have the same proportion of older persons. In summary, our cri-

terion takes into account the phenomenon of individual aging and also has the

advantage of being invariant with respect to simple proportional rescaling.

Some other investigations have proposed other interesting indicators of ag-

ing, but these can only be applied to specific age distributions. Coulson (1968)

and Kii (1982) define an indicator based on a linear regression: they estimate, at

a given date, the frequency of each age class within the population as a function

of the age and a constant term. According to them, for a given population, an

increase over time of the regression coefficient indicates an aging process. Sim-

ilarly, comparing coefficients can be used to compare various populations at a

given date. However, this indicator only provides information on the first-order
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effects of a change in the age distribution of a population, and, importantly, is

only accurate when the age distribution is monotonic. Chu (1997) also develops

a new aging index, based on the age distribution and inspired by studies on

poverty measures developed by Foster and Shorrocks (1984), in order to take

into account the changes in age density within the right tail. Chu applies his

measure to eight industrialized countries while Nath and Islam (2009) used it

to assess the aging process in some Asian countries. However, this methods re-

quires that changes in the cumulative distribution of ages satisfy the first-order

stochastic dominance property, which may not be satisfied for some countries.

3 Endogenous Age Groups and the Measure-
ment of Population Aging

This section is devoted to presentation of the methodology used to define en-

dogenous age classes, from which we will derive population aging indicators. We

start with an example using the US age pyramids in 1950 and in 2000. Then,

we detail the optimal grouping technique.

3.1 An Example

Let us consider the share of population at each age in total US population in

1950 and 2000. Using data obtained from the Human Mortality Database (HMD

hereafter), Figure 2 reproduces those distributions.

The graph suggests that major changes took place in the last 50 years of

the twentieth century. First and foremost, the upper tail of the distribution

–that represented the oldest individuals– has widened quite substantially. This

is witnessed in the increase in the share of population above 60. For instance,

this share rose from 12.13% in 1950 to 16.31% in 2000 –a nearly 35% increase.

Over the same period, a second important phenomenon took place in the lower

tail, associated with the youngest individuals. The base of the pyramid nar-

6
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Figure 2: Age pyramids
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rowed drastically. The share of individuals below 15 decreased by 19% over this

period (28.14% in 1950, 22.22% in 2000). Otherwise stated, the two indicators

traditionally used to assess aging, namely the elder–child ratio and the share of

people above 60, increased.

The main information that Figure 2 provides is that the age distribution

of US population changed dramatically over the period. However, the relative

position of an individual of a given age within the distribution of ages may

have also changed. Otherwise stated, being 60 in 2000 may be totally different

from being 60 in 1950. An extra normalization is needed. We believe that

the examination of the Lorenz curve, depicting the cumulative distribution of

the total years lived by a population at a given date against the cumulative

distribution of the total population. Figure fig:lorenzus shows the Lorenz curves

of the US population for 1950 and 2000.

Strikingly, there is not much discrepancy between two Lorenz curves, al-

though the 2000 distribution is closer to the uniform distribution, which would
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Figure 3: Lorenz Curve
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be characteristic of a stationary population composed of individuals with rect-

angular survival curve. This reshaping of the age pyramid clearly appeared in

Figure 2 and can be quantified by the computation of the Gini coefficient. It

was 0.42 in 1950, it went down to 0.36 in 2000.

The Lorenz curve can also be used to compute some age groups. The idea

is the following: by defining age groups for a given age distribution, one builds

a new distribution. The grouping is said to be optimal if it minimizes loss of

information arising in grouping. For instance, to represent the age distribution

of the US population in four age groups, we find three cutoff ages, denoted x1, x2

and x3. Figure 4 reports a possible representation of the Lorenz curve derived

from this new distribution together with the initial Lorenz curve.

The three cutoff ages are said to be optimally chosen if the area between

the two curves is minimized. Figure 5 shows the optimal grouping of US age

distributions in 1950 and 2000. The shaded areas correspond to the histograms

that approximate age pyramid minimizing the loss of information.
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Figure 4: Lorenz curves of the initial and modified distributions

6

-
x1 x2 x3

Modified

Initial
N �

Figure 5: Optimal Grouping

0 0.5 1 1.5 2 2.5
0

50

100

1950

% of Total Population

A
ge

0 0.5 1 1.5 2 2.5
0

50

100

2000

% of Total Population

A
ge

9

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2012.81



3.2 Methodology

The problem of defining age groups amounts to approximating the age distri-

bution of population by a histogram that comprises a restricted number of age

classes, that all gather individuals of different ages within a uniform group.

There are two issues with such a process. The first one is to choose a number

of classes. We adopt, as explained in the next section, a pragmatic approach to

tackle this problem. A second issue regards setting the boundaries of each class.

There is general agreement that there does not exist a unique definition of an

age class. In particular, the boundaries of each group ought to be subjective.

As described previously, several criteria can be used to assess alternative defi-

nitions of age classes. Our approach is to define a grouping of single age-classes

that preserves the characteristics of the age distribution. In other words, age

groups are defined in such a way that they minimize the loss of information that

occurs when building a histogram of the age pyramid using a given number of

age classes. Aghevli and Mehran (1981) have developed a grouping technique

that precisely addresses this issue and applied it to income distributions.

We now describe how to apply Aghevli and Mehran’s method to age dis-

tribution. The optimal grouping aims at defining age groups that minimize

the average difference of age pairs within each group, where the dispersion is

measured with a Gini coefficient1. We first present the case where a continuous

distribution is discretized. Let us denote by f (·) the density of an age distribu-

tion on support [0, ω], such that
∫ ω

0
f (x) dx = 1. Also let α denote the mean

age of the population, such as α =
∫ ω

0
xf (x) dx. The Gini’s absolute pairwise

differences of f (·), denoted G (f), writes:

G (f) =
1

α

∫ ω

0

∫ ω

0

|x− z| f (x) f (z) dxdz.

1Gini coefficients are a scale independent measure of dispersion that has been applied to
mortality heterogeneity by Legrand (1987) notably. See Shkolnikov et al. (2003) for a general
presentation and some applications to demographic processes.
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For any integer n ≥ 2, we are looking for an n-cutoff representation of f (·).

This amounts to defining a finite collection of n + 1 real numbers, denoted

x = {x0, x1, ..., xn} and such that 0 = x0 < . . . < xn = ω, which induces

a partition of the support of f (·) into n non-overlapping intervals. For all

i = 1, . . . , n, let us define the integral of the density and the mean age for all

intervals [xi−1, xi]:

yi =

∫ xi

xi−1

f (x) dx, and αi =

∫ xi

xi−1

xf (x) dx.

The Gini coefficient associated with a given n−cutoff representation of f (·),

denoted G (f,x), write:

G (f,x) =
1

2α

∑
i

∑
j

∣∣∣∣αi

yi
− αj

yj

∣∣∣∣ yiyj .
Aghevli and Mehran (1981) suggest to choose the collection x that minimizes

the approximation error ε (f,x) as defined by the difference between the two

Gini coefficients:

ε (f,x) ≡ G (f)−G (f,x) .

This approximation error can be rewritten as follows:

ε (f,x) =
1

2α

n∑
i=1

∫ xi

xi−1

∫ xi

xi−1

|s− z| f (s) f (z) dsdz.

Aghevli and Mehran show that the optimal collection of cutoff ages, denoted

x? =
{

0, x?1, ..., x
?
n−1, ω

}
, satisfies:

x?i =

∫ x?
i+1

x?
i−1

xf (x) dx∫ x?
i+1

x?
i−1

f (x) dx
,

for all i = 1, ..., n − 1. The optimal collection is thus defined such that the

cutoff age x?i , which separates group i − 1 from group i, is the mean age of a

distribution truncated from age x?i−1 to age x?i+1.

In order to comment the optimal collection x?, let us consider two simple

examples. First, in the particular case of two groups (i.e. for n = 2), it can
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be immediately deduced that the optimal cutoff age, x?1, is the mean age of the

population. Second, let us assume a uniform distribution such as f (x) = 1/ω

for all x ∈ [0, ω). The cutoff ages are computed by solving a system of n − 1

equations that write: x?i+1 − 2x?i + x?i−1 = 0 for all i = 1, ..., n− 1, with x?0 = 0

and x?n = ω. The solution writes x?i = iω/n for all i.

The above method therefore transforms a continuous into a discrete distri-

bution. Population data are nevertheless provided through discrete age distri-

butions, with one-year or five-year age groups in most cases. Our method hence

consists in reducing the number of groups. Let us consider that the initial data

provide ω groups indexed by j = 0, 1, ..., ω− 1, that the frequency of group j in

the total population is given by the quantity pj such that
∑ω−1

j=0 pj = 1, and that

xj represents the mean age in group j. We are looking for an optimal partition

into n groups, with 2 ≤ n ≤ ω, indexed by i = 0, 1, .., n − 1 or, equivalently

for an optimal collection of cutoff ages, denoted x? =
{

0, x?1, ..., x
?
n−1, ω

}
. The

latter satisfies, for all i = 1, ..., n− 1, the following system of equations:

x?i =

∑j+i+1−1
j=j−i−1

xjpj +
(
j−i−1 − x?i−1

)
pj−i−1−1

xj−i−1−1
+
(
x?i+1 − j

+
i+1

)
pj+i+1

xj+i+1∑j+i+1−1
j=j−i−1

pj +
(
j−i−1 − x?i−1

)
pj−i−1−1

+
(
x?i+1 − j

+
i+1

)
pj+i+1

,

where j−i−1 = minj≥x?
i−1

{
j − x?i−1

}
is closest integer that is greater than x?i−1

and where j+i+1 = maxj≤x?
i+1

{
j − x?i+1

}
is the integer that is immediately lower

than x?i+1. The introduction of variables j− and j+ is necessary because optimal

cutoff ages are unlikely to be integers.

Let us illustrate this latter case with the same examples as above. The

simplest case is given for n = 2, where the optimal collection is x? = {0, x?1, ω}.

We deduce that j−0 = 0 and that j+2 = ω and thus: x?1 =
∑ω−1

j=0 xjpj/
∑ω−1

j=0 pj .

The case of a uniform distribution, which can also be studied analytically, is

presented in Appendix 6.1.

Once we obtain the optimal partition of the distribution, it is possible to

12

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2012.81



define simple aging indicators. In particular, we will consider two standard

indicators. The first reports the share of the oldest group in the total population.

It correspond to the share of people between ages x?n−1 and ω, where x?n−1 has

been defined above. More precisely, the share writes:∫ ω

x?
n−1

f (x) dx.

The second indicator is the so-called elder-child ratio, which is computed as the

ratio of the share of oldest group over the share of the youngest group:∫ ω

x?
n−1

f (x) dx∫ x?
1

0
f (x) dx

.

Our indicators have the nice property of being invariant to any proportional

rescaling of the age distribution accompanying an increase in life expectancy.

The formal proof of this property is proposed in Appendix 6.2.

4 The Dynamics of Population Aging in Indus-
trialized Countries

In this section, we evaluate the dynamics of aging in industrialized countries

using HMD data for the age structure of population. We first present the case

of the US population and then proceed to an international comparison.

4.1 Aging in the US

Our data document the size of the US population at each age between birth and

age 110 for the year 1933 through 2005. We choose to divide the population

age distribution into 4 groups. This choice is made for pragmatic reasons and

comparative purposes. It indeed leads to cutoff ages for the youngest and oldest

groups of about 15 and 60 in the end of the 1990s in the international comparison

we will carry out below. We will however assess the robustness of our results to

the number of groups in the next subsection.

13
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Figure 6 reports the evolution of the entry age into the oldest group (left

panel) and the share of that group (right panel) within total US population.

Figure 6: Share of Elderlies
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A first result that emerges from the left panel is that the entry age in the

oldest group has increased over time. For instance in 1933 the cutoff age was

48.7 while it raised to 56.6 in 2005 -a 16.22% increase. In order to make sense

of this result, let us consider an individual of age 55. In 1933, this individual

would have been classified as belonging to the group of the oldest. This is no

longer the case in the current US society. Otherwise stated, at age 55, a US

individual is younger in 2005 than in 1933. At first glance, this phenomenon can

be attributed to individual aging, as captured, for example, by life expectancy.

For instance, life expectancy at age 55 was 19.2 years in 1933. It was 26.7 years

in 2005. This idea of a time varying old age is already present in Ryder (1975)

and subsequent literature. However, as mentioned above, the optimal grouping

approach makes use of the entire distribution, which implies that this increase

in the cutoff age does not solely reflect changes at the individual level but any

change in the shape of the distribution.

Once we allow for the time varying cutoff age, the share of the oldest group in

total US population can be computed. This share can be seen as an alternative

measure of aging that corrects for a time varying entry age into the oldest

14
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group. Its evolution is reported in the right panel of Figure 6. It appears

that the share of the oldest group has exhibited variations over time around an

average value of 20.48%. These movements are quite significant as reflected by

a standard deviation of about 0.5 points. More importantly, there is no trend in

the evolution of this ratio over the considered time window.2 According to this

indicator, the US has not aged. In other words, the US simply experienced an

upward translation in the age pyramid for the oldest ages over the time window

that has been compensated by an increase in the age when an individual becomes

old.

It is however important to note that most of the changes in the US age

pyramid took place in the young ages (as it can be seen in Figure 2). The

significant narrowing in the bottom of the pyramid suggests that the ratio of

old to young individuals ought to have increased markedly over the last 50 years.

This fact is usually interpreted as aging. We now investigate this issue. Figure

7 reports the evolution of the age at which an individual exits the group of the

youngest (left panel), and the share of that group in total US population (right

panel).

Figure 7: Share of the Young
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2A Student test on the rate of growth yields to reject significance at the 95% confidence
level.
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Over the entire time window, the cutoff age has increased by 27% (15 in

1933, 19 in 2005). This increase can also be attributed to the evolution of life

expectancy: in a society where life is longer on average, so is youth. It however

displays swings in its evolution, which can be related to the post WWII baby-

boom. With our measure, the first and direct effect of a baby-boom is to reduce

the average age of the youngest group. Consequently, the oldest former members

of this group will be excluded and reassigned to the next group. Hence, the cutoff

age will decrease. This is exactly what we observe until the early sixties. As

baby boomers grow older, there is an upward pressure on the average age of

the youngest group and the direct effect of the increase in the life expectancy

comes into play. When baby boomers start to have children, there is an echo

effect that dampens the increase in the cutoff age. This can be seen in the

deceleration in the evolution of that age which took place in the late seventies.

This evolution translated to that of the share of the youngest group in total US

population. Just like the evolution of the share of the oldest group, the share

of young individuals does not display any significant trend. It however exhibits

large fluctuations around its mean (27.6%) with a standard deviation of 1.22

points. The share of the young population increased during the baby-boom,

despite the diminishing cutoff age.

We are now in a position to compute the elder-child ratio, which, in our

case, is computed as the ratio of the size of the group of the oldest to that of

the youngest individuals. This ratio is shown in Figure 8.

Interestingly, this ratio varies a lot over the time window. In particular,

between the late fifties and the mid seventies, the ratio decreased significantly,

reflecting a nontrivial rejuvenation of the US population which is in line with

some common wisdom. However, over the considered time window, the ratio ex-

hibits a significant upward sloping trend. But, the average growth rate remains
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Figure 8: Elder-Child Ratio
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small and reaches 0.13% per year. In other words aging is less pronounced than

usually claimed.

4.2 On the Number of Groups

We now assess the robustness of our results to the choice of the number of

groups. We consider 4 alternative values for the number of groups, n, ranging

from 3 to 6.3 Figure 9 reports the evolution of the share of the oldest group (top-

right panel), the share of the youngest group (top-left panel) and the elder-child

ratio (lower panel).

As should be expected, the level of the shares crucially depends on the num-

ber of groups: the larger the number of groups, the lower the share. However,

the overall evolution of the shares is quite similar. In particular, the evolution

of the share of the oldest group indicates that, no matter the number of groups,

aging is very limited. The elder-child ratio should provide us with a way to

3We will not consider the case n = 2, as the elder–child ratio does not correspond to a
dependency ratio.
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Figure 9: Robustness to the Number of Groups
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assess the robustness of our approach, as it should be level invariant. As seen

from the lower panel of Figure 9, the elder-child ratio lies within the same range

of values for all values of n. It is nevertheless true that the dynamics are not

exactly the same, and, most notably, the ratio computed in the 4 groups models

features an opposite trend in the 1960’s and the early 2000’s. Nevertheless, as

reported in Table 1, the ratios, as computed with different numbers of groups,

are highly positively correlated.

Table 1: Correlation of Elder–Child Ratios

n 3 4 5 6

3 1.00 0.71 0.75 0.73
4 – 1.00 0.77 0.74
5 – – 1.00 0.89
6 – – – 1.00

This indicates that the properties of the aging indicator, as derived from

optimal grouping, is rather robust to the choice of the number of groups when
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the time window is sufficiently long. However, for short run assessments, the

number of groups may be an issue.

4.3 An international perspective

The previous section has shown for the US economy that aging may not be

as pronounced as soon as we take into account that the age of entry into old

age varies over time. We now investigate whether this result extends to other

industrialized economies. We use annual data from the HMD for Australia,

Austria, Canada, Denmark, France, Iceland, Italy, Netherlands, Norway, Spain,

Sweden, Switzerland, England & Wales. The time period covered by the HMD

runs from 1751 (for Sweden only) to 2005. However, for comparison purpose

and for data quality reasons, we are going to focus on the last 50 years of the

time window, i.e. from 1955 to 2005. As in the case of the US, we choose to

split the population into 4 groups for practical reasons.

For each country and each year, we computed the cutoff ages for old and

young and, on the left panel, the shares of the old and young groups in total

population, and the share of old to that of young individuals.

According to our computations, international aging, as measured by the

share of old people in total population, is mitigated. The share exhibits fluc-

tuations in all the countries, with standard deviations ranging from a low 0.49

points in the US to a high 1.63 points in England & Wales. However, the share

appears to be remarkably stable over time and remains close to 20% in most

countries of our sample. Patterns for the age below which an individual is clas-

sified as young are very similar to those obtained in the US case. The cutoff

age increased in all countries. At low frequencies, this can be related to the

increase in life expectancy at birth. In particular, we observe the same acceler-

ation in the cutoff age as the one we observed in the threshold determining old

age. Interestingly, we recover the same effects of baby–booms in all countries
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that experienced them. In all these countries, the cutoff age decreased in the

mid–sixties.

In order to investigate this issue more precisely, we compute the average

annual rate of growth of the share by fitting a linear trend to the logarithm of

the share. This is done for the last 50 years in each country and the results are

presented in Table 2.

Table 2: Aging indicators’ trends

Country Share of the oldest Share of the youngest Elder-child ratio

Australia 0.0429 -0.2846 0.3275
[0.0422] [0.0000] [0.0000]

Austria -0.0963 -0.2393 0.1430
[0.0311] [0.0000] [0.0452]

Canada 0.1652 -0.4264 0.5916
[0.0000] [0.0000] [0.0000]

Denmark -0.0414 -0.2835 0.2421
[0.1676] [0.0000] [0.0000]

France 0.0383 -0.2212 0.2595
[0.4493] [0.0000] [0.0010]

Iceland 0.0547 -0.3203 0.3750
[0.0057] [0.0000] [0.0000]

Italy 0.2323 -0.3575 0.5898
[0.0000] [0.0000] [0.0000]

Norway -0.0619 -0.2157 0.1538
[0.1486] [0.0000] [0.0266]

Sweden -0.0210 -0.1464 0.1254
[0.6051] [0.0002] [0.0867]

Switzerland -0.0440 -0.2335 0.1895
[0.0404] [0.0000] [0.0001]

UK -0.0010 -0.1428 0.1418
[0.9756] [0.0001] [0.0158]

USA -0.0173 -0.2937 0.2764
[0.4646] [0.0000] [0.0000]

Note: Growth rate in % of a given indicator as obtained from an OLS regression of the log of
the indicator on a constant term and a linear trend. p-value of nullity test is in brackets.

The results mitigate population aging assessments, as the average annual

rate of growth of the share of old individuals is always less than 0.24% whatever

country we consider. As a matter of fact, Denmark, England & Wales, France,

Norway, Sweden, and the US have not experienced any statistically significant
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growth in the indicator over the last 50 years, therefore ruling out population ag-

ing during that period. Only Australia, Canada, Iceland and Italy significantly

aged in the period. Interestingly, Austria and Switzerland even experienced

negative growth in this share over the last 50 years, suggesting a rejuvenation

of their populations.

Unlike the share of the oldest group, the share of young individuals exhibits

a significant although small negative trend. Over the last 50 years, the rate

of decline in the share ranges from -0.14% in England & Wales to -0.43% in

Canada. Again, the share of the young population exhibits fluctuations, with

standard deviation between 1.10 points in Iceland and 1.74 points in England

& Wales. In particular, these fluctuations echo the evolution of the cutoff age

during the baby–boom.

Concerning the ratio of the share of old to that of young individuals, Table

2 indicates that most countries display a significant and positive trend. It is

however worth noting that the growth rates are all below 0.6%. Moreover, as

in the US case, this ratio displays much variability. In particular, baby-booms

all yield a rejuvenation of the population in their later phase. Likewise, in

continental Europe, wars lead to a rejuvenation in their aftermaths as many

middle–aged people are killed and the fertility rate drops. Therefore after wars,

there are more people with high age, and consequently the age below which

an individual is classified as young increases which leads to a decrease in the

corresponding share. Henceforth the elder–child ratio increases.

5 Conclusion

This paper proposes an alternative measure of aging that resorts to optimal

grouping techniques. This approach leads to an endogenous definition of old age

that depends on the entire distribution of ages within the population. Therefore
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the old age cutoff ought to depend on the type of population, the country and

the date at which it is evaluated. For instance, in the US this age at which one

is considered a senior has increased dramatically over last century. Despite the

potential high sensitivity of this old age cutoff to the distribution, most industri-

alized countries exhibit a very similar pattern. Likewise, we find that, contrary

to the common arguments of an aging population, the share of elderly individu-

als within the total population has not increased much and has remained stable

in these countries. Likewise, we find that, contrary to the common arguments

of an aging population, the share of elderly individuals within the total popula-

tion has not increased much and has remained stable in these countries. These

results complement an reinforce the earlier findings of Sanderson and Scherbov

(2005, 2007) who also reassessed the aging phenomenon.

The main advantage of the measure we propose is to offer a new method for

calculating the cutoff ages of major age groups such as adulthood and old age.

The weight we assigned to each age is proportional to its frequency in the age

distribution but one may consider other weights including economic, health or

productivity considerations. Hence, our approach could be applied to the study

of medical spendings as in Curtler and Sheiner (2001), dependency ratios as in

Oliveira Martins et al. (2005) and the labor force as in Shoven (2010). It could

also be used to evaluate the importance of forecasted population trends in terms

of aging and be extended to incorporate disability status as in Sanderson and

Scherbov (2005, 2007).

The main limitation of our approach lies in the fact that the main measure

of aging, the share of elderly in a given population, depends on the initial choice

of the number of groups. We have shown that over a sufficiently long interval of

time, our measure was not sensitive to choice the number of groups. However,

on the short run, this choice may have an impact. An interesting extension of
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our work would be to use the recent work of Poggi (2005) who propose a method

to determine optimally the number of groups.

6 Appendix

6.1 A toy-example of optimal grouping

Let us present an analytical example of optimal grouping applied to a discrete

age distribution, which is assumed to be uniform. This case is obtained by

assuming pj = 1/ω for all j, and thus, the optimal collection of cutoff ages

satisfies:

x?i
(
x?i+1 − x?i−1

)
=

j+i+1−1∑
j=j−i−1

xj +
(
j−i−1 − x

?
i−1
)
xj−i−1−1

+
(
x?i+1 − j+i+1

)
xj+i+1

,

for all i = 1, ..., n−1. One has also to define the mean age in a given group. Let

us suppose that xj = j + 0.5 for all j = 0, 1, ..., ω − 1. The previous equation

can be rewritten as follows:

(x?i − 0.5)
(
x?i+1 − x?i−1

)
=

j−i−1
(
j−i−1 − 1

)
− j+i+1

(
j+i+1 + 1

)
2

−x?i−1
(
j−i−1 − 1

)
+ x?i+1j

+
i+1.

As a numerical application, let us suppose that there are initially 10 groups and

that one wants a representation into 3 groups. Hence, one has ω = 10, n = 3,

j−0 = 0 and j+3 = 10 and the problem is to find
(
x?1, x

?
2, j
−
1 , j

+
2

)
that solves:

(x?1 − 0.5)x?2 = − j+2 (j+2 +1)
2 + x?2j

+
2

(x?2 − 0.5) (10− x?1) =
j−1 (j−1 −1)

2 − x?1
(
j−1 − 1

)
+ 45

j−1 = minj≥x?
1
{j − x?1}

j+2 = maxj≤x?
2
{j − x?2}

The solution is x?1 = 3.34 and x?2 = 6.66, while the corresponding integers are

j−1 = 4 and j+2 = 6.
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6.2 Proof of invariance to proportional rescaling

As defined by Lee and Goldstein (2003), proportional rescaling would appear

indistinguishable from the effect of a simple change in the units of measure-

ment of age/time. A population whose age distribution has been proportionally

rescaled should of course not be considered as older.

Consider the density of age distribution f (·) on support [0, ω] with cumula-

tive distribution function F (a) =
∫ a

0
f (x) dx. A distribution h (·) on support

[0, ω′] where ω′ > ω is a proportional rescaling of f if:

H

(
a
ω′

ω

)
= F (a) , ∀a ∈ [0, ω] ,

where H is the cumulative distribution function of h (·).

Using an aging index, with a fixed cutoff denoted a0, would misleadingly

indicate a aging of the population as H (a0) < F (a0) for all a0 ∈ [0, ω]. Using

Ryder’s (1975) index would also yield an unpleasant result. Let af and ah be

respectively the age at which an individual has a given life expectancy, e. g.

10 years, in distribution f (·) and h (·) respectively. af and ah define the cutoff

ages of entry in old age and since generically afω 6= ahω
′, the Ryder index

would assimilate the proportional rescaling as either a population aging or a

rejuvenation.

Let us now turn to our indicators built using the optimal cutoffs defined as

follows:

xi,f =

∫ xi+1,f

xi−1,f
xf (x) dx∫ xi+1,f

xi−1,f
f (x) dx

andxi,h =

∫ xi+1,h

xi−1,h
xh (x) dx∫ xi+1,h

xi−1,h
h (x) dx

,

where the ?’s are eliminated to simplify notation. After some simple algebra,

we obtain:

ω

ω′
xi,h =

∫ ω
ω′ xi+1,h
ω
ω′ xi−1,h

xf (x) dx∫ ω
ω′ xi+1,h
ω
ω′ xi−1,h

f (x) dx
,

which implies that xi,h = xi,fω
′/ω. Consequently, the share of the oldest group
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in the total population is left unaffected by a proportional rescaling:∫ ω

xn−1,f

f (x) dx =

∫ ω′

xn−1,h

h (x) dx.
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