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Regular economies with ambiguity aversion

Noé Biheng ∗ Jean-Marc Bonnisseau †

December 26, 2013

Abstract

We consider a family of exchange economies where consumers have
multiprior preferences representing their ambiguity aversion. Under a
linear independence assumption, we prove that regular economies are
generic. Regular economies exhibit enjoyable properties: odd finite
number of equilibrium prices, local constancy of this number and local
differentiable selections of the equilibrium prices.

Thus, even if ambiguity aversion is represented by non-differentia-
ble multiprior preferences, economies retain generically the properties
of the differentiable approach.

Keywords: demand function, general equilibrium, ambiguity
aversion, multiprior preferences, regular economies, Lipschitz behav-
ior.

JEL Classification: C6, D4, D5.

1 Introduction

Classically, the global analysis of the general economic equilibrium is based on
well known differential techniques. Basically, one requires the differentiability
of the demand functions. We refer the reader to Debreu [7], Mas Colell [12]
and Balasko [1] for much details.

This differentiability is often well derived from well known assumptions
on the utility functions. Indeed, the utility functions are supposed to be C2
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1 INTRODUCTION

to obtain C1 demand functions. This does not allow the presence of kinks
on indifference curves that arise in uncertainty context.

In the maxmin expected utility model due to Gilboa and Schmeidler
[11], the agents face ambiguity modeled by the multiplicity of the priors of
the agents. Each agent considers the minimum expected utility over his
set of priors. This ”minimum” generates kinks on the indifference curves
when more than one probability realize the minimum, this leads to the non-
differentiability of the demand functions. These kinks cannot be removed
since they are genuinely linked to uncertainty not to modelling issues. The
main objective of this paper is to get the genericity of regular economies
despite that the demand functions are non-differentiable.

In this paper, we consider an exchange economy with a finite number ℓ of
commodities and a finite number m of consumers. The preferences of a con-
sumer i are represented by a utility function ui from R

ℓ
++ to R. The function

ui is the minimum of a finite number ni of functions that satisfy the usual
differentiability requirements and a linear independence assumption on the
gradient vectors. This framework encompasses the case of multiprior prefer-
ences defined by a Bernoulli function and a finite set of linearly independent
probability vectors.

We first study the properties of the demand functions. This systematic
study constitutes in itself a new result concerning consumers with multiprior
preferences. We first prove that the demand functions are locally Lipschitz
continuous. We then prove that the demand functions are continuously dif-
ferentiable on an open set of full Lebesgue measure.

The first part of the proof relies on a result of Cornet and Vial [5] concern-
ing the Lipschitz behavior of the solution of a mathematical programming
problem. The second part of the proof is based on the following result: The
demand function is differentiable at some point if and only if it is continu-
ously differentiable on a neighborhood of this point.

In the second part of the paper, we follow Balasko’s program. We define
and parametrize the equilibrium manifold. We show that it is indeed a
smooth manifold at almost every point. As in the classical case, we can
propose a global parametrization from which we deduce that the equilibrium
manifold is lipeomorphic1 to an open connected subset of an Euclidean space
denoted by U using similar approach than Bonnisseau and Rivera-Cayupi [4].

We can define an extended natural projection using the parametrization.
This mapping is continuously differentiable almost everywhere and locally

1Two sets are lipeomorphic if it exists a one-to-one, onto and locally Lipschitz con-
tinuous mapping from the first set to the second one with a locally Lipschitz continuous
inverse.
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1 INTRODUCTION

Lipschitz continuous.
Contrary to the classical case, we have to take into account the kinks to

define regular economies. A singular economy is either the image of a point
where the differential mapping does not exist or the image of a point where
the differential mapping is not onto. A regular economy is, by definition, an
economy that is not singular. By Sard’s theorem since the set U and the space
of the economies are two manifolds of same dimension, the set of singular
economies is a set of Lebesgue measure zero2. By the Implicit Function
Theorem, each regular economy has a finite number of equilibria and, around
a regular economy, there exist continuously differentiable selections of the
equilibrium prices.

Computing the degree of the extended projection by an homotopy ar-
gument, we obtain that every regular economy has a finite odd number of
equilibrium prices.

We now mention earlier contributions. Rader [13] showed that, when
the consumers have demand functions a.e. differentiable satisfying property
(N): ”The image of a null set is a null set.”, almost every economy has a
finite number of equilibrium prices. In our paper, we prove that Rader’s
properties are satisfied by multiprior preferences but we get more with the
local continuously differentiable selections.

Shannon and Rigotti [14] study market implications of the presence of
ambiguity modelled by variational preferences. Variational preferences en-
compass multiprior preferences. They show that almost all economies are de-
terminate which means that there exist a finite number of equilibrium prices
and local continuous selections3. Note that regularity and determinacy are
two distinct concepts, the first one implying the second one. In particular,
the number of equilibria may not be constant around a determinate economy.
We need the linear independence of Assumption 2 to get regularity instead
of determinacy.

In [6], Dana study agents that are Choquet expected-utility maximizers.
She is interested in equilibrium welfare properties and indeterminacy of the
equilibrium. She provides a sufficient condition on equilibrium implying that
there exists a continuum of equilibrium prices. But, she does not address the
issue of genericity.

In [4], Bonnisseau and Rivera-Cayupi study a non-smooth model although
the failure of differentiability was not in the utility function. They obtain
demand functions with properties similar to ours.

In Section 2, we present the model, give the assumptions on the prefer-

2Actually, we also use that the image of a null set by a Lipschitz mapping is a null set.
3They also obtain a Lipschitz behavior in a particular case.
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2 MODEL AND ASSUMPTIONS

ences of the consumers. We also show how our model allows to deal with mul-
tiprior preferences. In Section 3, we study extensively the demand function
of a consumer with multiprior preferences. The fourth section is devoted to
the global analysis of the equilibrium manifold and to the genericity analysis.
Some concluding remarks are given in Section 5 and finally, some technical
proofs are given in Appendix.

2 Model and assumptions

We study a family of economies parametrized by strictly positive endowments
with m consumers and ℓ commodities. We denote respectively by M and L
the set of consumers and the set of commodities. Let M ≡ {1, . . . ,m} and
L ≡ {1, . . . , ℓ}.

We assume that the preferences of consumer i ∈ M are represented by a
utility function ui from R

ℓ
++ to R which is the minimum of ni functions:

ui = min{u1
i , u

2
i , . . . , u

ni

i }

with ni ∈ N
∗. Let us be more precise on the assumptions concerning the

utility functions.

Assumption 1 For all i ∈ M , for all k ∈ {1, .., ni},

1. uk
i is C2 on R

ℓ
++,

2. D2uk
i (x) is negative definite on ∇uk

i (x)
⊥ for all x ∈ R

ℓ
++,

3. uk
i satisfy ∇uk

i (x) ≫ 0 for all x ∈ R
ℓ
++.

For all x ∈ R
ℓ
++, Mi(x) denotes the set of the indices of the functions

realizing the minimum, i.e. Mi(x) := {k ∈ {1, . . . , ni} : uk
i (x) = ui(x)}.

Assumption 2 For all i ∈ M , for all x ∈ R
ℓ
++, the vectors (∇uk

i (x))k∈Mi(x)

are linearly independent.

Assumption 3 For all i ∈ M , for all k ∈ {1, . . . , ni}, for all x ∈ R
ℓ
++, the

closure in R
ℓ of the set {x′ ∈ R

ℓ
++|u

k
i (x

′) ≥ uk
i (x)} is contained in R

ℓ
++.

Remark 1 Assumption 1 tells us that the preferences are continuous, mono-
tone and strictly convex. Moreover, each commodity is desirable.

4
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2 MODEL AND ASSUMPTIONS

The demand of consumer i with respect to the price and to his initial
endowment is the solution of the following problem:

{

max ui(x)
subject to x ≫ 0 and p · x ≤ p · ei

(2.1)

In this paper, since the preferences of the consumers are fixed, we define
an economy as an element e := (ei)

m
i=1 of (Rℓ

++)
m. Therefore, the space of

the economies is Ω := (Rℓ
++)

m.

Multiprior preferences

The above framework encompasses the case of multiprior preferences used
to represent the ambiguity aversion of an agent facing uncertainty. Let us
present briefly the model. There are two dates t = 0 and t = 1. There is
uncertainty at date 0 about which state will occur at date 1. At date 1,
there are S states of nature. We denote by ∆(S) the set of probabilities on
{1, . . . , S}.

We model the ambiguity aversion by a multiplicity of probabilities. To
each agent i ∈ M , we associate a closed convex set P i ⊂ ∆(S). We suppose
that the set P i has ni extremal points (πk

i )1≤k≤ni
. We also suppose that the

set P i is contained in R
S
++ to get the strict monotony of preferences. This can

in particular correspond to the convex case of the C.E.U. (Choquet Expected
Utility) model of Schmeidler since the core of a convex capacity has at most
S! extremal points (Shapley [15]).

We assume that there is no consumption at date 0 and that the agent
choose a contingent consumption vector (xs)1≤s≤S. The utility of the agent
i is given by:

ui(x) = min
πi∈Pi

Eπi
[bi(x)] = min

1≤k≤ni

Eπk

i

[bi(x)] (2.2)

where bi :]0,+∞[−→ R is the Bernoulli function of agent i. We define, for
k ∈ {1, . . . , ni}, the function uk

i by:

uk
i (x) = Eπk

i

[bi(x)] for x ∈ R
S
++.

We need to add an assumption on the probability vectors (πk
i )1≤k≤ni

to
ensure that the functions (uk

i )1≤k≤ni
satisfy Assumption 2.

Assumption 4 For every i ∈ M , the probability vectors (πk
i )1≤k≤ni

are lin-
early independent.

5
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3 PROPERTIES OF THE INDIVIDUAL DEMAND

Note that his assumption holds true when P i is an ε-contamination of a
probability π̄. Indeed, the extremal points of P i are π̄+ επs for s = 1, . . . , S,
where πs is the probability such that πs(s) = 1. We now can present the
result of the section:

Proposition 1 Let i ∈ M . Suppose that the Bernoulli function bi is of class
C2 and satisfies: b′i > 0, b′′i < 0 and limy→0+ bi(y) = −∞. Under Assumption
4, the family of functions (uk

i )1≤k≤ni
satisfies Assumptions 1, 2 and 3.

The proof of Proposition 1 is given in Appendix.
Consequently, all results below apply to a general equilibrium model with

multiprior preferences satisfying Assumption 4. In particular, we get the
generic regularity of economies with multiprior preferences.

3 Properties of the individual demand

In this section, we study the individual demand of consumer i ∈ M defined
as the solution of the program:

{

max ui(x)
subject to x ≫ 0 and p · x ≤ w

(3.1)

where w ∈]0,+∞[ and p ∈ R
ℓ
++. Let us present the main result of the section:

Proposition 2 Under Assumptions 1, 2 and 3, fi(p, w) is a singleton for all
i ∈ M , p ∈ R

ℓ
++ and w > 0. The function fi is locally Lipschitz continuous on

R
ℓ
++×]0,+∞[. Furthermore, there exists an open subset Ω0

i of Rℓ
++×]0,+∞[

of full Lebesgue measure on which fi is C1.

Proof To simplify the notation, we skip the index i during the proof and
denote the function uk

i by uk. The set f(p, w) is nonempty by Weierstrass
Theorem and Assumption 3. f(p, w) is a singleton since the function u is
strictly quasi-concave.

The function f is continuous on R
ℓ
++×]0,+∞[ by Berge’s Theorem. We

use a result of Cornet and Vial [5] to obtain that the function f is locally
Lipschitz continuous on R

ℓ
++×]0,+∞[. By Rademacher’s Theorem [9], the

function f is differentiable almost everywhere. Details of the proofs are given
in Appendix.

Now, we show that the set on which the function f is differentiable is an
open set and that the function f is continuously differentiable on this set.

6
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3 PROPERTIES OF THE INDIVIDUAL DEMAND

We first remark that, for all (p, w) ∈ R
ℓ
++×]0,+∞[, f(p, w) is the solution

of the following problem:















min−t
subject to
t− uk(x) ≤ 0, k = 1, . . . , n
p · x− w ≤ 0

(3.2)

The first order conditions associated to this problem are the following:
there exists λ ∈ R

n+1
+ such that















t− uk(x) ≤ 0, λk(t− uk(x)) = 0, k = 1, . . . , n
p · x− w ≤ 0, λn+1(p · x− w) = 0
∑n

k=1 λk = 1
λn+1 p =

∑n

k=1 λk∇uk(x)

(3.3)

Note that this maximization problem is not necessarily convex since the
constraint t − uk(x) may not be quasi-convex. Nevertheless, the first or-
der conditions are necessary since the Mangasarian-Fromovitz qualification
condition is satisfied and sufficient as shown in Appendix in the proof of
Proposition 2.

We will show that the set Ω0 defined by:

Ω0 :=
{

(p, w) ∈ R
ℓ
++×]0; +∞[ ∀k ∈ M(f(p, w)), λk(p, w) > 0

}

is an open set on which the function f is continuously differentiable and that
the function f is not differentiable at any point outside Ω0.

The result is a consequence of the two following lemmas. �

For the remaining of the section, λ̄k := λk(p̄, w̄) for k ∈ {1, . . . , n+ 1}.

Lemma 1 If the multipliers (λ̄k)k∈M(f(p̄,w̄)) are all positive, then the function
f and the multipliers are continuously differentiable on an open neighborhood
of (p̄, w̄).

The proof of this lemma as a consequence of the Implicit Function The-
orem is quite standard borrowing ideas from Fiacco McCormick [10]. The
continuity of the multipliers implies that the set Ω0 is an open set. The proof
of Lemma 1 is given in Appendix.

Now we turn ourselves to the second lemma.

Lemma 2 If some multiplier λ̄k with k ∈ M(f(p̄, w̄)) is equal to zero then
the function f is not differentiable at (p̄, w̄).

7
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3 PROPERTIES OF THE INDIVIDUAL DEMAND

Note that these two lemmas imply that Ω0 is an open set and that the
function f is differentiable at (p̄, w̄) if and only if (p̄, w̄) belongs to Ω0 and is
continuously differentiable on Ω0. Furthermore Ω0 has full Lebesgue measure
in R

ℓ
++×]0,+∞[ since f is locally Lipschitz continuous.

Proof Let (p̄, w̄) ∈ R
ℓ
++×]0,+∞[ such that: M(f(p̄, w̄)) = K ∪K ′ with K

and K ′ subsets of {1, . . . , n}, λ̄k > 0 for k ∈ K, λ̄k = 0 for k ∈ K ′ and
K ′ 6= ∅. Note that we have: K 6= ∅ since p̄ 6= 0 and

∑

k∈K λ̄k = 1 since
∑

K∪K′ λ̄k = 1 and λ̄k = 0 for every k ∈ K ′.
Let x̄ := f(p̄, w̄) and v̄ = (v̄k)k∈K := (uk(x̄))k∈K . We define the function

f̄ on R
ℓ
++ by: f̄(p) := f(p, p · x̄). Let us first recall some results.

A generalized Hicksian demand and the related expenditure function:

For p ∈ R
ℓ
++ and (vk)k∈K ∈ R

K , let ∆K(p, (v
k)k∈K) be the solution4 of

the problem:







min p · x
subject to uk(x) ≥ vk ∀k ∈ K
x ≫ 0

(3.4)

The related expenditure function is defined by:

eK(p, v) := p ·∆K(p, v).

The map ∆K has been extensively studied in [3]. This map is continuously
differentiable with respect to (p, v) around the point (p̄, (uk(x̄))k∈K) whenever
the gradients (∇uk(x̄))k∈K are linearly independent which holds true thanks
to Assumption 2.

Note also that ∆K(p̄, v̄) = x̄. Indeed the necessary and sufficient first
order conditions are satisfied by x̄.

Like the classical expenditure function, the function eK is concave with
respect to p so a.e. twice differentiable and satisfies D2

peK = Dp∆K whenever
this expression makes sense5.

The next claim is a generalization of the well known result about the
negative definiteness of the Slutsky matrix.

Claim 1 The matrix Dp∆K(p̄, v̄) has rank ℓ−♯K6 and its kernel is the linear
space L

(

∇uk(x̄) , k ∈ K
)

spanned by the family
(

∇uk(x̄)
)

k∈K
.

4This solution exists and is unique because the functions uk for k ∈ K are strictly
quasi-concave when there exists x ≫ 0 such that uk(x) ≥ vk for all k ∈ K.

5See [3].
6 ♯K denotes the cardinal of the set K.

8
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3 PROPERTIES OF THE INDIVIDUAL DEMAND

Proof We first recall thatDp∆(p̄, v̄) is the Hessian matrix of the expenditure
function eK(., v̄). Since the map eK(., v̄) is concave, Dp∆(p̄, v̄) defines a
symmetric negative semi-definite bilinear form.

For p ∈ R
ℓ
++ sufficiently near from p̄ , ∆K(p, v̄) is characterized by the

first order conditions:

• uk(∆K(p, v̄)) = v̄k, ∀k ∈ K,

• p =
∑

k∈K µk(p)∇uk(∆K(p, v̄)) with µk(p) > 0 ∀k ∈ K.

We differentiate the first condition with respect to p and obtain at p̄ for all
q ∈ R

ℓ:

∇uk(∆K(p̄, v̄)) ·Dp∆K(p̄, v̄)(q) = ∇uk(x̄) ·Dp∆K(p̄, v̄)(q) = 0 ∀k ∈ K.

These equalities tell us that the image ofDp∆K(p̄, v̄) is contained in the linear
subspace ∩k∈K∇uk(x̄)⊥ of dimension ℓ−♯K7. Furthermore, sinceDp∆K(p̄, v̄)
is negative semi-definite, ∇uk(x̄) belongs to the kernel of Dp∆K(p̄, v̄) for all
k ∈ K. Thus, the dimension of the image of Dp∆K(p̄, v̄) is at most ℓ − ♯K.
We differentiate the second condition with respect to p. We have for q ∈ R

ℓ:

q =
∑

k∈K

µk(p)D
2uk(∆K(p, v̄))Dp∆K(p, v̄)(q)+

∑

k∈K

(∇µk(p) ·q)∇uk(∆K(p, v̄)).

For all q ∈ ∩k∈K∇uk(x̄)⊥, we have:

q =

[

∑

k∈K

µk(p̄)D
2uk(x̄)

]

Dp∆K(p̄, v̄)(q).

So, we have for q ∈ ∩k∈K∇uk(x̄)⊥:

Dp∆K(p̄, v̄)(q) = 0 =⇒ q = 0.

So the kernel of the restriction on ∩k∈K∇uk(x̄)⊥ of Dp∆K(p̄, v̄) is reduced
to zero. So, the rank of Dp∆K(p̄, v̄) is at least ℓ − ♯K. Hence, the rank
of Dp∆K(p̄, v̄) is equal to ℓ − ♯K and the kernel of Dp∆K(p̄, v̄) is equal to
L
(

∇uk(x̄) , k ∈ K
)

.�

An auxiliary demand function:

7 This is a consequence of Assumption 2. Indeed, K ⊂ M(x̄) implies that the family
(∇uk(x̄))k∈K is linearly independent.

9
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3 PROPERTIES OF THE INDIVIDUAL DEMAND

We introduce the demand function fK associated to the utility functions
(uk)k∈K . fK(p, w) is the solution of the optimization problem:























min−t
subject to
t− uk(x) ≤ 0 k ∈ K
p · x− w ≤ 0
x ≫ 0

(3.5)

Note that we have: fK(p̄, w̄) = x̄ = f(p̄, w̄) since the necessary and sufficient
first order conditions are satisfied by x̄. Indeed, we have: λ̄k = 0 for all
k ∈ K ′. The function fK is continuously differentiable around (p̄, w̄) since
all the multipliers are positive. See Lemma 1.

Remark 2 In a neighborhood of (p̄, w̄), the binding constraints are the
same since the utility functions are continuous and the multipliers are all
positive and continuous with respect to (p, w). Thus, for all (k, k′) ∈ K2,
uk(fK(p, w)) = uk′(fK(p, w)).

We define on R
ℓ
++ the function f̄K by: f̄K(p) = fK(p, p · x̄). We also

define the function v̄ from R
ℓ
++ to R

K by v̄(p) = (v̄k(p) = uk[f̄K(p)])k∈K .
Note that, for (k, k′) ∈ K2, v̄k(p) = v̄k

′

(p) in a neighborhood of p̄, and from
the first order necessary and sufficient conditions, f̄K(p) = ∆K(p, v̄(p)).

We first prove the following claim:

Claim 2 For all k ∈ K, ∇v̄k(p̄) = 0.

Proof Indeed, p · f̄K(p) = p · x̄ by Walras law.
Differentiating with respect to p, we obtain for all q ∈ R

ℓ:

q · f̄K(p) + p ·Df̄K(p)(q) = q · x̄ .

Since x̄ = f̄K(p̄), this implies: p̄ ·Df̄K(p̄)(q) = 0. Let k ∈ K. By the chain
rule: ∇v̄k(p) · q = ∇uk(f̄K(p)) ·Df̄K(p)(q).

From the first order conditions of the utility maximization problem, we
have:

∑

k∈K

λ̄k∇uk(x̄) = λ̄n+1p̄ .

Recalling that f̄(p̄) = x̄, we have:

∑

k∈K λ̄k∇v̄k(p̄) · q =
(
∑

k∈K λ̄k∇uk(x̄)
)

·Df̄K(p̄)(q)
= λ̄n+1p̄ ·Df̄K(p̄)(q) = 0

Since the equality is true for all q ∈ R
ℓ, we conclude that

∑

k∈K λ̄k∇v̄k(p̄) =
0. Recalling that

∑

k∈K λ̄k = 1, since the functions (v̄k)k∈K coincide on a
neighborhood of p̄, one concludes ∇v̄k(p̄) = 0 for all k ∈ K. �

10
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3 PROPERTIES OF THE INDIVIDUAL DEMAND

The following result states the equality of the differentials with respect
to p of the compensated demand and the demand at the price p̄.

Claim 3
Df̄K(p̄) = Dp∆K(p̄, v̄).

Proof Since f̄K(p) = ∆K(p, v̄(p)) in an open neighborhood of p̄, it suffices to
use the chain rule for differential mappings and the above claim to conclude.
Indeed, let q ∈ R

ℓ,

Df̄K(p̄)(q) = Dp∆K(p̄, v̄)(q) +

(

∑

k∈K

∇v̄k(p̄) · q

)

Dv∆K(p̄, v̄).

�

Recall that we have: M(f(p̄, w̄)) = K ∪ K ′ with K and K ′ subsets of
{1, . . . , n} such that λ̄k > 0 for k ∈ K and λ̄k = 0 for k ∈ K ′.

We will now consider a particular price path to get the desired result. For
all t ∈ I :=]− a, a[8, let :

p(t) :=
∑

k∈K

λ̄k∇uk(x̄) + t

(

∑

k∈K′

αk∇uk(x̄)

)

. (3.6)

for well chosen coefficients (αk)k∈K′ .
To choose the coefficients (αk)k∈K′ , we use the following linear algebra

result:

Proposition 3 Let E be a vector space and Φ be a symmetric positive defi-
nite bilinear form on E. Let (ξi)

k
i=1 be a linearly independent family of vectors

of E. There exists α ∈ Rk
++ such that for all i = 1, . . . k,

Φ(ξi,
k
∑

j=1

αjξj) > 0.

This result is proved in Appendix.
We apply this algebraic result to the vector space E spanned by the

family
(

∇uk(x̄)
)

k∈K′
. The matrix Dp∆K(p̄, v̄) is negative semi-definite on

R
ℓ. Moreover, we have:

8The number a is a positive number sufficiently small to ensure that p(t) belongs to
R

ℓ
++ for all t ∈ I.
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3 PROPERTIES OF THE INDIVIDUAL DEMAND

KerDp∆K(p̄, v̄) = L
(

∇uk(x̄) , k ∈ K
)

. The family (∇uk(x̄))k∈K∪K′ is
linearly independent. Hence Dp∆K(p̄, v̄) is negative definite on E since
KerDp∆K(p̄, v̄) ∩ E = {0}.

Thanks to Proposition 3, there exists (αk)k∈K′ in R
K′

++ such that, for all
k′ ∈ K ′,

∇uk′(x̄) ·Dp∆K(p̄, v̄)

(

∑

k∈K′

αk∇uk(x̄)

)

< 0. (3.7)

For k ∈ K, we introduce the function defined on I by: v̂k(t) := vk(p(t)). For
k ∈ K ′, we define the functions ϕk and ϕ̃k on I by: ϕk(t) := uk(f̄(p(t))) and
ϕ̃k(t) := uk(f̄K(p(t)))

9.

Claim 4 If t > 0 is small enough, f̄(p(t)) = f(p(t), p(t) · x̄) = x̄ so ϕ′
k(t) = 0

for all k ∈ K ′.

Proof For t > 0 small enough, thanks to the formula 3.6, one remarks that
x̄ satisfies the necessary and sufficient first order conditions associated to the
problem:







max u(x)
s.t. x ≫ 0
p(t) · x ≤ p(t) · x̄

with the associated multipliers

λ̄k
∑

κ∈K λ̄κ + t(
∑

κ∈K′ ακ)
for k ∈ K,

tαk
∑

κ∈K λ̄κ + t(
∑

κ∈K′ ακ)
for k ∈ K ′,

0 for k /∈ M(x̄) ∪ {n + 1} and
1

∑

κ∈K λ̄κ + t(
∑

κ∈K′ ακ)
for the budget con-

straint10. Therefore we can conclude that x̄ is a solution of the problem, that
is: f(p(t), p(t) · x̄) = f̄(p(t)) = x̄. �

From Claim 3 and the choice of the family (αk)k∈K′ , we obtain the fol-
lowing lemma:

Claim 5 For k ∈ K ′, we have:

ϕ̃k
′(0) < 0.

9To avoid any confusion, we denote with“ϕ”s the functions for k ∈ K ′ and with“v”s
the functions for k ∈ K.

10 See (5.1).
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4 THE EQUILIBRIUM MANIFOLD

Proof By the chain rule, Claim 3 and 3.7, we have for k ∈ K ′:

ϕ̃k
′(0) = ∇uk(x̄) ·Df̄K(p̄)

(
∑

k∈K′ αk′∇uk(x̄)
)

= ∇uk(x̄) ·Dp∆K(p̄)
(
∑

k∈K′ αk′∇uk(x̄)
)

< 0.

�

To complete the proof of Lemma 2, let us summarize the above results:

• (v̂k)′(0) = 0 for k ∈ K,

• ϕ̃′
k(0) < 0 for k ∈ K ′,

• v̂k(0) = ϕ̃k(0) for k ∈ K ′.

The last equality comes from the following equalities: for all (k, k′) ∈
K ×K ′,

p(0) = p̄, fK(p̄, w̄) = fK(p̄, p̄ · x̄) = f(p̄, w̄) = x̄, uk(x̄) = uk′(x̄).

Now, we get: ϕ̃k′(t) > v̂k(t) for all (k, k′) ∈ K × K ′ and t < 0 sufficiently
near from zero. From the necessary and sufficient first order conditions, since
the constraints corresponding to K are the only binding constraints, we can
conclude: f̄K(p(t)) = f̄(p(t)) for t < 0 sufficiently near from zero. Therefore,
we have: ϕk(t) = ϕ̃k(t) for all k ∈ K ′ and t < 0 sufficiently near from
zero. Finally, for every k ∈ K ′, from Claim 5, the left derivative of ϕk at
0 is negative and the right derivative of ϕk at 0 is equal to zero by Claim
4. So the functions ϕk are not differentiable, hence the function f is not
differentiable. To conclude, when some multiplier λ̄k (for k ∈ M(f(p̄, w̄))) is
equal to zero, the function f is not differentiable at (p̄, w̄).�

4 The equilibrium manifold

In this section, we study the equilibrium price vectors from a global point
of view following Balasko [1]. The monotony of the utility functions implies
that the equilibrium prices are always strictly positive. Moreover they are
defined up to a normalization. We use the simplex normalization, i.e., we

take prices in S with S :=
{

p ∈ R
ℓ
++ ,

∑ℓ

h=1 ph = 1
}

. We now define the

equilibrium manifold and the natural projection.

13

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2013.83
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Definition 1 (i) p ∈ S is an equilibrium price of the economy e = (ei)i∈M
if:

m
∑

i=1

fi(p, p.ei) =
m
∑

i=1

ei.

(ii) The equilibrium manifold Eeq is the set of the pairs (p, e) ∈ S × Ω with
p equilibrium price for the economy e. An element (p, e) of the set Eeq is
called an equilibrium point.

In our framework, the equilibrium manifold11 is not necessarily smooth
and we cannot directly apply the classical arguments of differential topology.
Nevertheless, we parametrize the equilibrium manifold and exploit the results
of the previous section.

We denote by 1 the vector whose coordinates are all equal to 1 and by
1⊥ the vector space orthogonal to the vector 1. We define the mapping θ2

from S× R
m × (1⊥)m−1 to (Rℓ)m as follows: for ξ = (p, (wi)

m
i=1, (ηi)

m−1
i=1 ),

{

θ2i (ξ) := ηi + (wi − p · ηi)1 ∀i = 1, . . . ,m− 1

θ2m(ξ) := fm(p, wm) +
∑m−1

i=1 (fi(p, wi)− θ2i (ξ))
(4.1)

Let us define the sets: X := S× R
m
++ × (1⊥)m−1 and the set U by

U :=
{

ξ ∈ X | θ2(ξ) ∈ (Rℓ
++)

m
}

.

Now we define the subset V of U , as follows: an element (p, (wi)
m
i=1, (ηi)

m−1
i=1 )

of U belongs to V if and only if (p, wi) belongs to Ω0
i for all i = 1, . . . ,m, Ω0

i

is given by Proposition 2.

Proposition 4 The set U is an open connected subset of S×R
m× (1⊥)m−1.

Proof The set U is clearly open in S × R
m × (1⊥)m−1 as θ2 is continuous.

For the remaining of the proof, we will use extensively the following result.
For all ǫ ∈ R

ℓ and all p ∈ S, we have:

ǫ = proj
1⊥ǫ+ (p · ǫ− p · proj

1⊥ǫ)1. (4.2)

We show that the set U is arcconnected. Let ξk := (pk, (wk
i )

m
i=1, (η

k
i )

m−1
i=1 ),

k = 1, 2, two elements of U . Our goal is to connect ξ1 to ξ2. We introduce
two intermediate points: χk := (pk, (wk

i )
m
i=1, (proj1⊥fi(p

k, wk
i ))

m−1
i=1 ), k = 1, 2.

We show that we can construct a continuous path between ξk and χk,
k = 1, 2 and another one between χ1 and χ2, theses paths taking values in

11We prove that it is indeed a smooth manifold at almost every point.
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4 THE EQUILIBRIUM MANIFOLD

U which gives us the result. We first remark that Formula 4.2 implies that
θ2(χk) = (fi(p

k, wk
i ))

m
i=1 for k = 1, 2.

Paths between ξk and χk

For k = 1, 2, for all t ∈ [0, 1], let ζkt := (1 − t)ξk + tχk. This defines
a continuous path between ξk and χk. ζkt belongs to U for all t since θ2 is
linear with respect to the variables (ηi)

m−1
i=1 and (Rℓ

++)
m is convex.

Path between χ1 and χ2

For all t ∈ [0, 1], we define pt := (1− t)p1 + tp2 and wt
i := (1− t)w1

i + tw2
i

for all i = 1, . . . ,m. The vector χt+1 := (pt, (wt
i)

m
i=1, (proj1⊥fi(p

t, wt
i))

m−1
i=1 )

defines a continuous path between χ1 and χ2 thanks to the continuity of
the demand functions and belongs to U since θ2(χt+1) = (fi(p

t, wt
i))

m
i=1 ∈

(Rℓ
++)

m.
We conclude that the set U is arcconnected.�

Now, we introduce the map θ from U to Eeq to parametrize the equilib-
rium manifold. For ξ = (p, (wi)

m
i=1, (ηi)

m−1
i=1 ) ∈ U ,

θ(ξ) =
(

p, θ2(ξ)
)

. (4.3)

Note that the range of the map θ is contained in Eeq. Let ei = θ2i (ξ).
From the formula defining θ2, one has p · ei = wi, from the definition of U ,
ei ≫ 0 for all i in M and from the formula for θ2m,

∑m

i=1 fi(p, p ·ei) =
∑m

i=1 ei.
The other map that we consider is the following:

φ : Eeq −→ U

(p, (ei)
m
i=1) 7−→ (p, (p.ei)

m
i=1, (proj1⊥ei)

m−1
i=1 ).

(4.4)

Note that the range of the map φ is contained in U . Indeed, from Formula
4.2, θ2(p, (p · ei)

m
i=1, (proj1⊥ei)

m−1
i=1 ) = (ei)

m
i=1 belongs to (Rℓ

++)
m.

We now state the properties of θ and φ, which imply that Eeq is a manifold
parametrized by θ.

Proposition 5

1. The maps θ and φ are one-to-one, onto and θ−1 = φ.

2. The maps θ and φ are locally Lipschitz and continuous.

3. The set U \ V is closed in U and has Lebesgue measure zero.

4. θ is continuously differentiable on V.

5. Eeq is lipeomorphic to U .

15
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Proof The proof is based on the properties of the demand functions.
1. As already noticed above, from Formula 4.2, for all (p, (ei)

m
i=1) ∈ Eeq,

θ ◦ φ(p, (ei)
m
i=1) = (p, (ei)

m
i=1).

Conversely, for all ξ = (p, (wi)
m
i=1, (ηi)

m−1
i=1 ) ∈ U , the definition of θ2 and

Walras law imply that p · θ2i (ξ) = wi for i = 1, . . . ,m, and proj
1⊥θ2i (ξ) = ηi

for i = 1, . . . ,m− 1. So, φ ◦ θ(ξ) = ξ.
Hence, φ = θ−1 and φ and θ are one-to-one and onto.
2. θ and φ are locally Lipschitz and continuous since the demand functions

fi are so.
3. Since the set (S×R)\Ω0

i ∩ (S×R) is a closed set of Lebesgue measure
zero for each i ∈ M , the set U \ V is closed in U and has Lebesgue measure
zero from Fubini’s Theorem.

4. The map θ is C1 on V from the definition of V and the properties of
the demand function fi on Ω0

i .
5. This is a consequence of 1. and 2.�

Let us write e := (ei)
m
i=1. Following Balasko [1], let us introduce the

natural projection as well as the extended natural projection.

Definition 2 (The natural projection) The natural projection π is the
map from Eeq to Ω defined by:

π :
Eeq −→ Ω

(p, e) 7−→ e
(4.5)

The map Π := π ◦ θ is called the extended natural projection.
Π : U −→ Ω is defined by: Π(p, (wi)

m
i=1, (ηi)

m−1
i=1 ) := θ2(p, (wi)

m
i=1, (ηi)

m−1
i=1 ).

Proposition 6 The mapping Π is proper, locally Lipschitz continuous. Mo-
reover the mapping Π is continuously differentiable on V. Π(U \ V) is closed
and has Lebesgue measure zero in Ω.

Proof The mapping Π is locally Lipschitz continuous and continuously dif-
ferentiable on the set V by the properties of θ. The properness of Π is a
particular case of the properness of F , the proof of which is given below as
part of the proof of Theorem 3.

The set Π(U \ V) is closed in Ω because the set U \ V is closed in U and
the map Π is proper on U . The set Π(U \ V) has Lebesgue measure zero
because the map Π is locally Lipschitz continuous12 and the set U \ V is a
null set. �

12The image of a null set by a locally Lipschitz map is a null set. See Federer [9].
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A regular economy is a regular value of the natural projection. There are
different concepts of regularity for non-smooth mappings. In this paper, a
regular point is a point where the mapping is differentiable and the differential
mapping is onto. A value is regular if all pre-images are regular points. A
value is singular, by definition, if it is not regular.

Definition 3 The economy e := (ei)i∈M is called regular if e /∈ Π(U\V) and
if the differential of Π at all the pre-images of e is onto. An economy which
is not regular is called singular. Er denotes the set of regular economies and
Es the set of singular economies.

The following result is the extension of one of the cornerstones of the
differentiable approach of general equilibrium theory.

Theorem 1 The set of regular economies Er is an open dense subset of Ω
of full Lebesgue measure.

Proof Er is open and has full Lebesgue measure. We have already seen that
Π(U \ V) is a closed null set. The set of the critical points of Π|V is closed in
V , hence this set has the form V ∩ C where C is a set closed in U . Remark
that we have the equalities: Es = Π(C ∩ V) ∪Π(U \ V) = Π(C) ∪Π(U \ V).
We deduce that the set Es is a closed set since the map Π is proper. This
set has Lebesgue measure zero by Sard’s Theorem and the previous theorem.
Hence, Er is an open set of full Lebesgue measure.

Er is dense. Indeed, the set Es is a set of Lebesgue measure zero, so its
complement Er is dense. �

The following result summarizes the properties of regular economies. It
is a direct consequence of the Implicit Function Theorem.

Theorem 2

1. For e ∈ Er, there exists a finite number n of equilibrium prices.

2. For e ∈ Er, there exists an open neighborhood U ⊂ Er of e such that
the inverse image of U is the union of a finite number of pairwise
disjoint subsets (Vk)

n
k=1 of V and such that the restriction of Π to Vk is

a diffeomorphism for all k = 1, . . . , n.

3. For e ∈ Er, there exist an open neighborhood U ⊂ Er of e and a finite
number n of continuously differentiable maps sk : U −→ S such that
the union ∪n

k=1sk(e
′) is the set of equilibrium price vectors associated

with the economy e′ ∈ U .

17
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Remark 3 Note that, around a regular economy e, the number of equilib-
rium prices is constant by the previous theorem.

We now turn ourselves to the computation of the degree of Π. We first
remark that the mapping Π is not continuously differentiable. So we cannot
use the classical definition of the degree. Therefore we consider the degree
for continuous mappings13. Since the set U is unbounded, the definition of
the degree needs some properness assumption14.

Theorem 3

1. The map Π is of degree one and onto.

2. For all e ∈ Ω, there exists an equilibrium.

3. For all e ∈ Er, there exists a finite odd number of equilibrium prices.

Proof We consider the natural projection Π1 associated with consumers
having as utility functions the functions u1

i .
15

The map16 F from S × R
m
++ × (1⊥)m−1 × [0, 1] to R

ℓm is defined for all
(ξ, t) = ((p, (wi)

m
i=1, (ηi)

m−1
i=1 ), t) ∈ S× R

m
++ × (1⊥)m−1 × [0, 1] by:

F (ξ, t) := tΠ(ξ) + (1− t)Π1(ξ).

We first show that the inverse image of every compact subset of Ω is a
compact subset of S×R

m
++×(1⊥)m−1×[0, 1]. Let us consider a compact subset

of (Rℓ
++)

m denoted by K and a sequence
(

ξν :=
(

pν , (wν
i )

m
i=1, (η

ν
i )

m−1
i=1

)

, tν
)

ν≥0

of F−1(K). We denote by (eν)ν≥0 the sequence ofK defined by eν := F (ξν , tν)
for ν ≥ 0. The sequence (ξν , tν)ν≥0 remains in a compact set of S̄ × R

m ×

(1⊥)m−1 × [0, 1]. Indeed, the first and the last components lie in a compact
set by definition. Moreover, the set A := {(p · ei)

m
i=1|(ei)

m
i=1 ∈ K , p ∈ S̄}

is a compact set. Since p ∈ S̄ and since the set K is contained in Ω, every
element a ∈ A is positive i.e. a ∈ R

m
++. By Walras law and the definition

of F , wν
i = pν · eνi for all i = 1, . . . ,m and all ν ≥ 0. Hence, the sequence

((wν
i )

m
i=1)ν≥0 lies in the compact set A.

13A good reference is Deimling [8] for example.
14See Deimling [8] p.27.
15As it can be easily understood, the definitions of Π1, f1

i
and θ1 are analogous to those

of Π, fi and θ. The main difference is that those maps are smooth.
16By a slight abuse of notation, we denote by Π and Π1 the extensions of those maps

to X . Both are defined with the same formulas as Π (respectively Π1). Nevertheless, note
that these extensions are not proper, that is why we only consider here the inverse images
of compact subsets of Ω. At the end, we obtain the existence of an equilibrium only for
positive endowments.
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The compactness of the set K and the continuity of the projection map
imply that the sequence (ηνi = proj

1⊥eνi )ν≥0 lies in a compact subset of 1⊥.
To conclude, up to a subsequence, the sequence (ξν , tν)ν≥0 converges to a

vector (ξ̄ := (p̄, (w̄i)
m
i=1, (η̄i)

m−1
i=1 ), t̄) ∈ S̄×R

m× (1⊥)m−1× [0, 1]. Remark that
(w̄i)

m
i=1 belongs to A so the real number w̄i is positive for all i = 1, . . . ,m.
Now, we have to prove that this vector belongs to F−1(K). Thanks to

the continuity of F and to the closedness of K, it suffices to prove that
the price p̄ belongs to S. Otherwise it would have a component equal to
zero. By definition of F , Π and Π1, the m-th component of F , Fm(ξ

ν , tν)
is equal to (1 − tν)[f 1

m(p
ν , wν

m) +
∑m−1

i=1 (f 1
i (p

ν , wν
i ) − eνi )] + tν [fm(p

ν , wν
m) +

∑m−1
i=1 (fi(p

ν , wν
i )− eνi )] for ν ≥ 0.

We first remark that, for all i = 1, . . . ,m, (eνi )ν≥0 is bounded since (eν)ν≥0

belongs to the compact set K. We also remark that fi(p
ν , wν

i ) and f 1
i (p

ν , wν
i )

are positive. If (pν)ν≥0 converged to p̄ in ∂S and (wν
i )i∈M,ν≥0 converged to

some element (w̄i)i∈M ∈ R
m
++ then ‖f 1

i (p
ν , wν

i )‖ and ‖fi(p
ν , wν

i )‖ would go
to +∞ as ν goes to infinity for all i ∈ M by monotony of the functions
(ui)i∈M and (u1

i )i∈M . So ‖Fm(ξ
ν , tν)‖ would go to +∞, which contradicts

that F (ξν , tν) belongs to the compact set K for all ν ≥ 0.
Since Ω is connected, the degree does not depend on the choice of the

element where it is computed. Let ē ∈ Ω defined , for i ∈ M , by ēi :=
f 1
i (p, wi) for some (p, (wi)

m
i=1) ∈ S × R

m
++. Let B̄ := Bc(ē, r) be a closed

ball17 of center ē contained in Ω18 and B := Bo(ē, r) the open ball of same
center and same radius. We know that the set F−1(B̄) is a compact set. The
set F−1(B) contains F−1({ē}) and is an open set, by the continuity of F ,
contained in F−1(B̄). Hence F−1({ē}) is contained in the interior of F−1(B̄).

We now define the set ϑ := projS×Rm
++

×(1⊥)m−1F−1(B). This set is an open

set19. The mapping F is obviously continuous on ϑ̄ × [0, 1]. Let F̂ be the
restriction of F to ϑ̄ × [0, 1]. From Balasko[1], the degree modulo 2 at ē of
F0 is equal to 120. Since F−1

0 ({ē}) is contained in ϑ, the degree of F̂0 is also
equal to the degree of F0 by Property (d2) of the degree (See Deimling [8].).
The degree of F̂1 at ē is also equal to 1 since F̂ is a continuous homotopy.
Since F−1

1 ({ē}) is contained in ϑ, the degree of Π at ē is equal to the degree
of F̂1. In conclusion, the degree of Π is equal to 1.

Hence, for all e ∈ Ω, Π−1({e}) 6= ∅, which means that there exists an
equilibrium for every economy e ∈ Ω. The third point is a consequence of

17Bo(a, r) (respectively Bc(a, r)) denotes the open (resp. closed) ball of center a and of
radius r.

18The radius r has to be sufficiently small.
19The image of an open set by a projection map is open.
20See [1] pp 103-106.
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the fact that Π is locally C1 around all the pre-images of a regular economy
using that the degree of Π is equal to 1. �

5 Concluding remarks

This paper provides a contribution in the analysis of the individual behavior
and in the global analysis of the equilibrium with multiprior preferences.
The first main result is that, under an assumption of linear independence of
the priors, the demand of a consumer with multiprior preferences is locally
Lipschitz and continuously differentiable on an open set of full Lebesgue
measure. Using Rader [13] and this result, we derive that almost every
economy has a finite number of equilibrium prices.

The second main result concerns the genericity of regular economies. We
have recovered the usual results of the global analysis of economic equilib-
rium. Contrary to most of the previous contributions in non-smooth cases,
we have obtained not only that almost every economy has a finite number of
equilibrium prices but that there exists an open set of full Lebesgue measure
on which the result holds true. Moreover, we have proven that the equilib-
rium price selections are continuously differentiable. Furthermore, regular
economies enjoy good properties like the local constancy of the number of
equilibrium prices.

The only restriction is the requirement of linear independence of the gra-
dients. First note that this requirement is easy to check. Then, remark that
this requirement is always satisfied when the agents have at most two “ex-
tremal” priors. It remains open to study cases where not all but just some
of the “extremal” priors are linearly independent.

Appendix: Proofs

Proof of Proposition 1

The assumptions on the function bi imply straightforwardly that the func-
tions (uk

i )1≤k≤ni
satisfy Assumption 1.

Let us prove that Assumption 2 is satisfied. Let x̄ ∈ R
S
++.

If
∑

k∈M(x̄) γk∇uk
i (x̄) = 0 for some (γk)k∈M(x̄), then, for all s ∈ {1, . . . , S},

∑

k∈M(x̄)

γkπ
k
i (s)b

′
i(x̄s) = 0.
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Dividing by b′i(x̄s) for s ∈ {1, . . . , S}, we get for s ∈ {1, . . . , S}:

∑

k∈M(x̄)

γkπ
k
i (s) = 0

By Assumption 4, we conclude that γk = 0 for k ∈ M(x̄). Hence, the gradient
vectors (∇uk

i (x̄))k∈M(x̄) are linearly independent. So, the functions (uk
i )1≤k≤ni

satisfy Assumption 2.
It is straightforward that: limy→0+ bi(y) = −∞ implies that Assumption

3 is satisfied for the function uk
i for k ∈ {1, . . . , ni}.�

Proof of Proposition 2

Step 1: The set f(p, w) is a singleton and the function f is continuous.
Let us first prove that f(p, w) is a singleton. Indeed, f(p, w) is the solution

of the following optimization problem:

{

max u(x)
subject to x ≫ 0 and p · x ≤ w

The condition defines the budget set B(p, w) with respect to the price p
and the wealth w. Since this budget set is not a compact set, let us introduce
the set:

B̃(p, w) := {x ∈ R
ℓ|x ≫ 0, p · x ≤ w, u(x) ≥ u(x(p, w))}

where x(p, w) :=

(

w

2p1
, . . . ,

w

2pℓ

)

. As usual, we remark that maximizing u

on the set B(p, w) is equivalent to maximizing u on the set B̃(p, w). From
Assumption 1 and Assumption 3, the set B̃(p, w) is a compact set. Then, by
Weierstrass Theorem, the set f(p, w) is not empty. By strict quasi-concavity
of the function u21, the set f(p, w) is a singleton.

We now prove that the function (p, w) 7−→ f(p, w) is continuous. We
use Berge’s Theorem and remark that the set B̃(p, w) is nonempty for every
p ≫ 0 and every w > 0. We have to show that the correspondence B̃ is both
upper semi-continuous and lower semi-continuous.

First, let us show that the correspondence B̃ is upper semi-continuous.
Let (p̄, w̄) ∈ R

ℓ
++×]0,+∞[. For every (p, w) in a neighborhood of (p̄, w̄),

21 Indeed a differentiably strictly quasi-concave function is strictly quasi-concave (See
Balasko [2].). And the minimum of strictly quasi-concave functions is strictly quasi-
concave.
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the set B̃(p, w) remains in a fixed compact set K. Hence the upper semi-
continuity of B̃ is equivalent to the closedness of its graph, which is a con-
sequence of the continuity of the utility function u, the mapping x and the
budget constraint.

We now have to show that the correspondence B̃ is lower semi-continuous.
Let us first introduce the correspondence B̂ defined on R

ℓ
++×]0,+∞[ by:

B̂(p, w) := {x ∈ R
ℓ|x ≫ 0, p·x < w, u(x) > u(x(p, w))}. The correspondence

B̂ has an open graph by the continuity of the functions u and x and the
budget constraint. So B̂ is lower semi-continuous. From the monotony of u,
since p · x(p, w) < w, B̂(p, w) is nonempty for every (p, w) ∈ R

ℓ
++×]0,+∞[.

So, since the function u is strictly quasi-concave and continuous, the closure
of B̂(p, w) is B̃(p, w). Thus, the correspondence B̃ is lower semi-continuous
since the closure of a lower semi-continuous correspondence is lower semi-
continuous.

Berge’s Theorem implies that the function f is continuous on the set
R

ℓ
++×]0,+∞[.

Step 2: The function f is locally Lipschitz on R
ℓ
++×]0; +∞[.

Let us show that the function f is locally Lipschitz. The proof relies on
Cornet and Vial’s result [5]. To apply it, we rewrite the problem:

{

max u(x)
subject to x ≫ 0 and p · x ≤ w

since the function u is not differentiable. For all (p, w) ∈ R
ℓ
++×]0,+∞[,

f(p, w) is the solution of the following problem:















min−t
subject to
t− uk(x) ≤ 0 k = 1, . . . , n
p · x− w ≤ 0

(5.1)

The function that we now minimize is C2 and we have modified the
constraints.

Let us introduce the functions τ : R× R
ℓ
++ × R

ℓ
++×]0,+∞[−→ R and

g : R× R
ℓ
++ × R

ℓ
++×]0,+∞[−→ R

n+1 defined by:

• τ(t, x, p, w) := −t,

• gk(t, x, p, w) := t− uk(x) for k ∈ {1, . . . , n},

• gn+1(t, x, p, w) := p · x− w.

22
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(t, x) are the variables and (p, w) the parameters. The gradients and the
Hessian matrix with respect to (t, x) are given for all (t, x, p, w) ∈ R×R

ℓ
++×

R
ℓ
++×]0,+∞[ by:

• ∇τ(t, x, p, w) =

(

−1
0

)

,

• ∇gk(t, x, p, w) =

(

1
−∇uk(x)

)

for k ∈ {1, . . . , n},

• ∇gn+1(t, x, p, w) =

(

0
p

)

,

• D2τ(t, x, p, w) ≡ 0,

• D2gk(t, x, p, w) =

[

0 0
0 −D2uk(x)

]

for k ∈ {1, . . . , n},

• D2gn+1(t, x, p, w) ≡ 0.

The function τ is linear, the constraint functions (gk)
n+1
k=1 are twice differen-

tiable and satisfy: ∇gk(t, x, p, w) 6= 0 for all k = 1, . . . , n+1 and (t, x, p, w) ∈
R× R

ℓ
++ × R

ℓ
++×]0,+∞[.

We remark that the Mangasarian-Fromovitz condition for the qualifi-
cation of the constraints is satisfied everywhere. Indeed, for α > 0 large
enough, (−α,−1) · ∇gk(t, x, p, w) < 0 for all k = 1, . . . , n + 1. So the first
order conditions are necessary. So if (t, x) is a solution of 5.1, there exists
λ = (λk)1≤k≤n+1 ∈ R

n+1
+ such that :



























∇τ(t, x, p, w) +
n+1
∑

k=1

λk∇gk(t, x, p, w) = 0

λkgk(t, x, p, w) = 0 ∀k ∈ {1, . . . , n+ 1}
gk(t, x, p, w) ≤ 0 ∀k ∈ {1, . . . , n+ 1}
(t, x, p, w) ∈ R× R

ℓ
++ × R

ℓ
++×]0,+∞[

(5.2)

Note that we have: {k ∈ {1, . . . , n}|gk(t, x, p, w) = 0} = M(x). Thus, the
multipliers λk are equal to zero for k /∈ M(x). From the above formula for
the gradients, these conditions can be rewritten as follows:































∑n

k=1 λk = 1
λk(t− uk(x)) = 0, k = 1, . . . , n
λn+1(p · x− w) = 0
t− uk(x) ≤ 0, k = 1, . . . , n
p · x− w ≤ 0
λn+1p =

∑

k∈M(x) λk∇uk(x)

(5.3)
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By the first equation and the fact that the vectors ∇uk
i (x) and p are elements

of Rℓ
++, we deduce that λn+1 is necessarily positive, which means that the

budget constraint is binding.
We now check that these conditions are sufficient. Let (t, x, λ) satisfying

these conditions. If (t, x) is not a solution of 5.1, there exists (t′, x′) such
that t′ > t, t′ ≤ uk(x′) for k = 1, . . . , n and p · x′ ≤ w. Since uk is strictly
quasi-concave with a non-vanishing gradient, for all k ∈ M(x), one has t =
uk(x) < t′ ≤ uk(x′), so ∇uk(x) · (x′ − x) > 0. Hence,

λn+1p · (x
′ − x) =





∑

k∈M(x)

λk∇uk(x)



 · (x′ − x) > 0

which implies that p · x′ > p · x = w in contradiction with p · x′ ≤ w. So, the
first order conditions are sufficient.

To show that the function f is locally Lipschitz, we check that Assump-
tions (A.0), (C.1) and (C.2) of Corollary 2.3. of [5] are satisfied.

Assumptions (A.0) are satisfied. We take U = R × R
ℓ
++ and P =

R
ℓ
++×]0,+∞[. The set U is open and obviously a metric space. So As-

sumption (A.0) (i) is satisfied. Assumptions (A.0) (ii), (iii), (iv) and (v) are
satisfied because the functions are C2 on the set U × P . Assumption (A.0)
(vi) is satisfied with Q = C = −R

n+1
+ .

Assumption (C.1) is satisfied. We show that, at a solution (t, x) of 5.1, the
vectors (∇gk(t, x, p, w))k∈M(x) and ∇gn+1(t, x, p, w) are linearly independent.
Let a vector

(

(γk)k∈M(x), γn+1

)

∈ R
♯M(x)+1 such that:

∑

k∈M(x)

γk∇gk(t, x, p, w) + γn+1∇gn+1(t, x, p, w) = 0

We obtain:






∑

k∈M(x) γk = 0

γn+1p =
∑

k∈M(x)

γk∇uk(x)

If γn+1 = 0, then γk = 0 for every k ∈ M(x) because the vectors
(∇uk(x))k∈M(x) are linearly independent by Assumption 2.

If γn+1 6= 0, we get by the first order conditions:

∑

k∈M(x)

(

λk

λn+1

−
γk
γn+1

)

∇uk(x) = 0.
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So we have:
λk

λn+1

=
γk
γn+1

for every k ∈ M(x) by Assumption 2. But we get

a contradiction since:

0 =
∑

k∈M(x)

γk
γn+1

=
∑

k∈M(x)

λk

λn+1

=
1

λn+1

> 0.

Assumption (C.2) is satisfied. Let (t, x) be a solution of 5.1 with an
associated multiplier λ := (λk)

n+1
k=1 . Let us introduce the set K(x) := {k ∈

M(x)|λk > 0}. We have to check that, for all h ∈ R
ℓ+1, h 6= 0 such that:

∇τ(t, x, p, w) · h = 0 and ∇gk(t, x, p, w) · h = 0 for k ∈ K(x) ∪ {n + 1}, we
have:



D2τ(t, x, p, w) +
∑

k∈K(x)∪{n+1}

λkD
2gk(t, x, p, w)



h · h > 0.

Since we have : D2τ ≡ 0 and D2gn+1 ≡ 0. It remains to show that22:
∑

k∈K(x)

λkD
2gk(t, x, p, w)h · h > 0.

This reduces to:
−
∑

k∈K(x)

λkD
2uk(x)h́ · h́ > 0

which is true because of Assumption 1 and because ∇uk(x) · h́ = 0 for k ∈
K(x). Indeed, since we have: ∇τ(t, x, p, w) · h = 0 and ∇gk(t, x, p, w) · h = 0
for every k ∈ K(x) ∪ {n+ 1}, one obtains h0 = 0 with the first equality and
it remains ∇uk(x) · h́ = 0 for k ∈ K(x).

From [5], the function f is locally Lipschitz on R
ℓ
++×]0,+∞[ and by

Rademacher’s Theorem, the function f is almost everywhere differentiable.�

Proof of Lemma 1. Recall that we have: ∀k ∈ M(f(p̄, w̄)), λk(p̄, w̄) > 0.
In this proof, we use the following notations: x̄ := f(p̄, w̄) and λ̄k := λk(p̄, w̄)
for k ∈ {1, . . . , n}. To simplify the notation, without loss of generality, we
suppose that we have: M(f(p̄, w̄)) = {1, . . . , r}. Then, locally around (p̄, w̄),
by the continuity of the demand function and of the functions (uk)1≤k≤n,
(u(f(p, w), f(p, w)) is the solution of the following problem:















min−t
subject to
t− uk(x) ≤ 0, k ∈ {1, . . . , r}
p · x− w ≤ 0

22We write h = (h0, h1, . . . , hℓ) and h́ = (h1, . . . , hℓ).
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As already shown, since the first order optimality conditions are nec-
essary and sufficient, the element (u(f(p, w)), f(p, w)) and the associated
multipliers (λ1(p, w), . . . , λr(p, w), λn+1(p, w)) are solution of the equation
G(t, x, λ, p, w) = 0 where G is defined by:

G(t, x, λ, p, w) =















(
∑r

k=1 λk)− 1
∑r

k=1 λk∇uk(x)− λn+1p
t− uk(x), k = 1, . . . , r
p · x− w

(5.4)

To show that the function f and the multipliers are continuously differen-
tiable on a neighborhood of (p̄, w̄), from the Implicit Function Theorem, it
suffices to show that the partial Jacobian matrix of G with respect to (t, x, λ)
has full column rank23.

A :=



















t x λ1 . . . λr λn+1

0 0 1 . . . 1 0
0
∑r

k=1 λ̄kD
2uk(x̄) ∇u1(x̄) . . . ∇ur(x̄) −p̄

1 −∇u1(x̄)T 0 . . . . . . 0
...

...
...

...
...

...
1 −∇ur(x̄)T 0 . . . . . . 0
0 p̄T 0 . . . . . . 0



















It is sufficient to prove that A(∆t,∆x,∆λ) = 0 implies: ∆t = 0, ∆x = 0 and
∆λ = 0. ∆t is a real number, ∆x is a column vector of dimension ℓ and ∆λ
is a column vector of dimension r + 1.

We obtain the system:

r
∑

k=1

∆λk = 0 (5.5)

r
∑

k=1

[λ̄kD
2uk(x̄)∆x+∆λk∇uk(x̄)]−∆λn+1p̄ = 0 (5.6)

∆t−∆x · ∇uk(x̄) = 0 ∀k ∈ {1, . . . , r} (5.7)

∆x · p̄ = 0 (5.8)

Using Equations 5.7 and 5.8, we get for all k ∈ {1, . . . , r}:

λ̄k∆t− λ̄k∆x · ∇uk(x̄) = 0

23The vectors are, by convention, column vectors and the transpose of a vector x is
denoted by xT .
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Summing, we obtain:

(

r
∑

k=1

λ̄k

)

∆t−∆x ·

(

r
∑

k=1

λ̄k∇uk(x̄)

)

= 0

We recall the equality: λ̄n+1p̄ =
∑r

k=1 λ̄k∇uk(x̄).
So, we have:

(

r
∑

k=1

λ̄k

)

∆t−∆x · λ̄n+1p̄ = 0

From 5.8 and the fact that
∑r

=1 λ̄k = 1, we deduce: ∆t = 0. Thanks to 5.7,

∆x · ∇uk(x̄) = 0 ∀k ∈ {1, . . . , r}

which implies p̄ ·∆x = 0 since λ̄n+1p̄ =
∑r

k=1 λ̄k∇uk(x̄) and λ̄n+1 > 0.
So if ∆x 6= 0,

∆x ·D2uk(x̄)∆x < 0 ∀k ∈ {1, . . . , r}.

Doing an inner product of 5.6 by ∆x, we get:

r
∑

k=1

λ̄k∆x ·D2uk(x̄)∆x+
r
∑

k=1

(∆λk∇uk(x̄) ·∆x)−∆λn+1p̄ ·∆x = 0

which becomes:
r
∑

k=1

λ̄k∆x ·D2uk(x̄)∆x = 0,

which is in contradiction with ∆x · D2uk(x̄)∆x < 0 for all k ∈ {1, . . . , r}
recalling that the multipliers λ̄k are all positive. Hence, we get ∆x = 0.

Since λ̄n+1p̄ =
∑r

k=1 λ̄k∇uk(x̄), 5.6 becomes:

r
∑

k=1

(

∆λk −
∆λn+1

λ̄n+1

λ̄k

)

∇uk(x̄) = 0.

By Assumption 2, for every k ∈ {1, . . . , r}, ∆λk =
∆λn+1

λ̄n+1

λ̄k. From 5.5, we

have:

0 =
r
∑

k=1

∆λk =
r
∑

k=1

∆λn+1

λ̄n+1

λ̄k =
∆λn+1

λ̄n+1

.

So ∆λn+1 = 0 and finally, ∆λk = 0 for k = 1, . . . , r.�
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Proof of Proposition 3

Let S be the simplex of Rk and C the subset of Rk defined by:

C = {(Φ(ξi,
k
∑

j=1

αjξj))
k
i=1 | α ∈ S}.

Since Φ is bilinear, its restriction to the space generated by the family (ξi)
k
i=1

is continuous, so C is a nonempty compact polyhedral subset of Rk.
Let us first show that the conclusion of the proposition holds true if

C ∩Rk
++ is nonempty. Indeed, if there exists c ∈ C ∩Rk

++, then there exists

α ∈ S such that for all i, ci = Φ(ξi,
∑k

j=1 αjξj) > 0. Since Φ is continuous

on the space generated by the family (ξi)
k
i=1, there exists t > 0 small enough

so that for all i, Φ(ξi,
∑k

j=1(αj + t)ξj) > 0, hence (αj + t)kj=1 ∈ Rk
++ and the

conclusion of the proposition holds true.
We now prove by contraposition that C ∩ Rk

++ is nonempty. If it is not
true, we apply a separation theorem between C and Rk

++, so there exists an
element λ ∈ Rk \ {0} such that for (c, d) ∈ C × Rk

++, λ · c ≤ λ · d. Using
usual arguments, one deduces that λ ∈ Rk

+ and λ · c ≤ 0 for all c ∈ C. Let

ᾱ = (1/
∑k

j=1 λj)λ. Then ᾱ ∈ S. Let c̄ = (Φ(ξi,
∑k

j=1 ᾱjξj))
k
i=1, then c̄ ∈ C.

We remark that:

λ · c̄ =
∑k

i=1 λiΦ(ξi,
∑k

j=1 ᾱjξj) = Φ(
∑k

i=1 λiξi,
∑k

j=1 ᾱjξj)

= (1/
∑k

j=1 λj)Φ(
∑k

i=1 λiξi,
∑k

j=1 λjξj).

So Φ(
∑k

i=1 λiξi,
∑k

j=1 λjξj) ≤ 0 and since Φ is positive definite, this implies

that
∑k

j=1 λjξj = 0. Hence, since the family (ξi)
k
i=1 is linearly independent,

one concludes that λj = 0 for j = 1, . . . , k, which contradicts λ 6= 0.�
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