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Abstract—Various real-world multi-objective optimization
problems are dynamic, requiring evolutionary algorithms to be
able to rapidly track the moving Pareto front of an optimization
problem once an environmental change occurs. To this end,
several methods have been developed to predict the new location
of the moving Pareto set so that the population can be reinitialized
around the predicted location. In this paper, we present a
multidirectional prediction strategy to enhance the performance
of evolutionary algorithms in solving a dynamic multi-objective
optimization problem. To more accurately predict the moving
location of the Pareto set, the population is clustered into a
number of representative groups by a proposed classification
strategy, where the number of clusters is adapted according
to the intensity of the environmental change. To examine the
performance of the developed algorithm, the proposed predic-
tion strategy is compared with four state-of-the-art prediction
methods under the framework of particle swarm optimization as
well as five popular evolutionary algorithms for dynamic multi-
objective optimization. Our experimental results demonstrate
that the proposed algorithm can effectively tackle dynamic multi-
objective optimization problems.

Index Terms—dynamic multi-objective optimization, multi-
direction prediction, representative individual, adaptation.

I. INTRODUCTION

DYnamic multi-objective optimization problems (DMOP-
s) has found an increasing number of applications in

both engineering [1]–[6] and science [7]–[9]. Compared with
dynamic single objective optimization problems [10], DMOPs
pose a bigger challenge to an optimizer in tracking the moving
Pareto set (PS) or Pareto front (PF) in a changing environment
[11]–[14].

Evolutionary algorithms (EAs) have been recognized as
one of the most powerful optimization algorithms [15], [16].
The first attempt to solve DMOPs using EAs can be traced
back to the 1960s and solving DMOPs has become popular
over the last decade [17]. Several surveys of dynamic multi-
objective evolutionary algorithms ((d)MOEAs) can be found
in the literature, e.g., [18]–[21].
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As the change of the environment may exhibit some pre-
dictable patterns [13], it is feasible to learn these patterns
based on historical information collected during the search
so as to predict the new location of the Pareto set [11].
Numerous studies have been reported following this idea
to exploit the predictability of dynamic environments [21].
In this paper, we focus on the prediction method with the
purpose of generating a new population around the predicted
PS due to its effectiveness evidenced in solving a variety
of DMOPs. First, a multiple-direction prediction approach
is proposed to deal with DMOPs. Second, a method to
adjust the number of representative individuals is developed to
strike a balance between convergence and the computational
complexity. Third, a framework for incorporating the multi-
direction prediction method into a particle swarm optimization
(PSO) algorithm is presented and its effectiveness is empiri-
cally verified. Finally, in the experimental part, the proposed
prediction method is compared with four commonly used
prediction strategies as well as four popular algorithms for
addressing DMOPs. Furthermore, to investigate the efficiency
of the proposed clustering strategy, the adaptive number of
clusters is compared with the fixed number under dynamic
environment. The assumption that two consecutive changes
are similar is taken into consideration. In comparison to the
previous work [22], we have adjusted the method, proposed
new test instances, enriched the comparison experiments, and
set three pairs of frequency and severity values in experiments
to investigate the performance of all compared algorithms.

The paper is organized as follows. Section II provides
a review of previous work on DMOPs, in particular those
predicting the center of the PS. The proposed prediction
strategy based on the representative individuals is detailed
in Section III. Section IV presents a general framework for
incorporating the proposed prediction strategy into a PSO
algorithm. The experimental settings are provided in Section V,
followed by the experimental results and discussions in Section
VI. Section VII concludes the paper.

II. RELATED WORK

DMOPs can be described in terms of various dynamisms,
like most research papers [16], [23] and Farina et al. ever
classified DMOPs with respect to the change in the decision
and the objective spaces over time [23]. In this paper, we
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mainly consider the following DMOP:
min
x∈Ω

F (x, t) = (f1 (x, t) , f2 (x, t) , ..., fM (x, t))
T

s. t. x ∈ Ω =
n∏

i=1

[ai, bi]
(1)

where x = (x1, ..., xn)
T is the decision variable in the deci-

sion space, Ω, and n is the dimension of Ω. t ∈ T = {1, 2, ...}
refers to the time scale. F (x, t) : Rn × T → RM consists of
M objectives varying over time with the i-th objective being
fi (x, t) , i = 1, ...,M . RM denotes the objective space.

A. Prediction-based Methods

A variety of prediction-based methods for tracking moving
optima have been proposed, which can be largely classified
into two categories, namely, individual-based prediction [24]
and population-based prediction [4], [25]–[27]. In the former
approach, the moving trajectory of each individual in the
population is predicted, whereas in the latter approach, one
single prediction model is employed for the entire population.
Linear regression models [24], [28], autoregressive models
(AR models) [26], [29], or Kalman Filter-based models [30]
have been used for prediction.

Zhou et al. [24] proposed an individual-based prediction
method, RPS, which builds up a prediction model for each in-
dividual at time t. The model is built by relating an individual
to its parent, defined to be the closest neighbouring individual
at t−1. Accordingly, once an environmental change has been
detected, a new location will be predicted for each individual
using its prediction model. As this method builds a prediction
model for each individual, it suffers from a large computational
complexity.

By contrast, a population-based prediction method, termed
PPS, was proposed in [26], where only one time series model,
an AR model, is employed for predicting the whole population.
This method assumes that the PS can be described by a PS
center (an abstract point) and a PS manifold, and a prediction
model is built for the PS center only. Once the new PS center
has been predicted, the PS manifold will be directly shifted to
the new PS model. This method exhibites a good convergence
performance and is computationally efficient. However, for an
optimization problem with a non-translational PS when the
environment changes, PPS does not work well.

Inspired by PPS, a few other methods have been proposed.
For example, Peng et al. [25] proposed a method combining
the prediction of the PS center with a memory strategy. Wu
et al. [27] proposed a directed search strategy (denoted as
PPS-Lin), which predicts the PS center using a linear model,
and creates new candidates between the predicted PS and the
current PS.

B. PS Center-based Prediction Methods

Due to its outstanding performances, the idea of predicting
the geometrical center of the PS of a DMOP has attracted in-
creasing interest. For example, in [4], [25]–[27], the positions
of the PS center in previous environments are employed to
predict the location of the PS center in the new environment.

Individuals are then generated around the predicted PS center
to initialize the population for the new environment. The PS
center at time t is defined as follows:

Ct
i =

1

|PSt|

|PSt|∑
i=1

xt
i (2)

where PSt is the PS at time t, |PSt| refers to the number
of solutions in PSt, and xt

i means the i-th solution in PSt.
Fig. 1 illustrates the change of the PS and its center of the
first two decision variables of FDA1 [13]. Since this problem
has a translational PS, the change of the PS center is able to
fully describe the variation of the PS, if a manifold and its
center is used to describe the PS as done in [26]. It works
well particularly for a class of DMOPs, where the change of
the PS can be captured by the center of the PS.

According to [31], Jiang and Yang has pointed out that the
dynamic nature in the decision variable space can be captured
by the function vector, S, in a DMOP model and S(xI) =
S(xII − g(xI)) . Therefore, if we make some modifications
of g(xI), we can obtain various changing patterns of the PS.
Fun7 in Table I exhibits such behavior whose PS changes over
time as follows:

PS : x1 ∈ [0, 1] , xi = G(t) · x1, i = 2, ..., n (3)

herein, n is the dimension of the variable space.
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Fig. 1. The change of the PS over time (left panel) and its center (right
panel) of the first two decision variables of FDA1 over time.

Fig. 2 depicts the change of the PS and its center of Fun7,
where the PS rotates along the origin of the coordinate system.
Although the PS center changes in a similar manner as that
of FDA1, the whole PS change is much different from that of
FDA1. As a result, predicting the PS center only is not able
to adequately capture the change of the PS and generating
individuals around the predicted PS center is not efficient in
approximating the whole PS in the new environment. It is of
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Fig. 2. The change of the PS (left panel) and its center (right panel) of the
first two decision variables of Fun7 over time.

great interest to note that xI in g(xI) is governed in the form

g(xI) = G(t) · (xI − l) (4)

herein, l is an array composed of nI real numbers (nI is the
dimension of xI ), and l is an adjustable parameter. Then the
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crossing locations of PSs at different time instances will vary.
To investigate the condition that PS rotates with not only the
origin of the coordinate system, we design another variant
(Fun8) of FDA1.

If a DMOP has an adjustable parameter of [0.5], its another
variant (Fun8 is such) in Fig. 3 (described in Table I), will
occur, whose PS rotates around the PS center over time as
follows:

PS : x1 ∈ [0, 1] , xi = G(t) · (x1 − 0.5) , i = 2, ..., n (5)
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Fig. 3. A PS rotating along the PS center.

Clearly, predicting the PS center will fail to predict the
change of the PS of such DMOPs.

To summarize, predicting the center of the PS for acceler-
ating convergence of an EA for solving DMOPs may become
inefficient or even completely fail when the change of the PS
cannot be sufficiently captured by the change of the PS center.
It is therefore necessary to develop new EAs that are able to
deal with a wide range of DMOPs.

III. THE PROPOSED MULTIDIRECTIONAL PREDICTION
STRATEGY

In this section, we propose a new evolutionary algorithm
for solving DMOPs, which aims to generate a population
close to the true PS, and to overcome the weaknesses of the
prediction approaches mentioned above. The main idea is to
introduce multiple models for predicting the new location of
the PS once an environmental change occurs. To achieve this
target, multiple representative individuals that can adequately
describe the shape and the diversity of the PS are first stored
at each time instant. Once an environmental change has been
detected, the evolutionary trajectories are estimated using these
representative individuals in the previous two time instants.
Finally, new candidates are generated along the predicted new
location of the PS, hoping to produce a good guess of the
position of the new PS, thereby speeding up convergence of
the algorithm responding to the environmental change.

A. Selection of the Representative Individuals by Adaptive
Clustering

In this section, we propose a computationally efficient clus-
tering method for selecting representative individuals. Unlike
the method proposed in [32], and that presented in [17]
targeting at evenly segmenting the PS by using adaptive and
K-means clustering methods, respectively, at the cost of a
high computational complexity, the proposed cluster strategy
selects a number of individuals which can describe the location
and the diversity of a Pareto set at different time instances,

recognized as representative individuals. The selection process
is inspired by the cell division. It first selects a number
of initial representative individuals, followed by classifying
individuals in the current approximated PS into a number of
clusters according to their distances to these representative
individuals.

If the representative individuals are not sufficient, the cluster
with the largest radius, which is defined as the largest distance
between individuals and the representative individual in this
cluster, will be selected, and the individual with the largest
distance is regarded as a newly added representative individual.
Following that, individuals in the current approximated PS are
re-classified into their corresponding clusters. This selection
and division process will continue until all the required repre-
sentative individuals have been found. The proposed strategy
saves computation as a result of avoiding repeatedly calculat-
ing and comparing distances between all the individuals.

Due to the high efficiency of employing the calculated PS
center to guide the evolution of a population, it is desirable to
retain the advantage of the PS center. Besides, since extreme
points are the farthest on one dimension in the decision space,
they can make a good description of the location of the PS. To
this end, we consider the PS center combined with extreme
points of the corresponding PF as the initial representative
individuals. Let the numbers of objectives and the required
representative individuals be M and K, respectively. The
current approximate PS is denoted as PSt with a size of N ,
whereas the true PS is labelled as pst. If M + 1 is less than
K, then the steps of the selection method can be described as
Algorithm 1.

During the selection and the division phases, after each new
representative individual is selected, all the other individuals
are re-categorized, leading to a number of uniform PS seg-
ments. Therefore, these representative individuals have good
performances in distribution and convergence to describe the
diversity and the location of the PS. The total computation
complexity of the above process is O(NK), which is very
computationally efficient. Herein, the number of representative
individuals, K, adapts with the severity of the environmental
change as discussed in Section IV-A. The analysis of the com-
plexity is presented in Section IV-C1. To easily understand the
above process, we also provide an example in supplementary
materials.

B. A Multidirectional Prediction Strategy

We term a multidirectional prediction strategy, which uses
multiple representative solutions for prediction, rather than the
PS center only, MDP strategy. The MDP strategy constructs
multiple time series models based on historical information
provided by the representative individuals in the previous two
environments to predict a number of evolutionary directions
(trajectories). In this way, the movement or dynamics of the
PS can be predicted sufficiently.

The details of the prediction method are given as
follows. Let Ct = {ct1, ct2 · · · , ctK′} and Ct−1 =
{ct−11 , ct−12 · · · , ct−1K′′ } be two representative individual sets at
time instances t and t − 1, respectively. For an individual
ci

t (i = 1, ...,K ′) in Ct, the proposed strategy first seeks its
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Algorithm 1 the pseudo code of selecting representative
individuals
Input: the current approximate PS, PSt; the number of representative individuals, K;

the number of objectives, M ;
Output: a set of representative individuals, C;
1: Label the center of PSt and all the M extreme solutions of the PF as the initial

representative individuals, and include them into a set, C;
2: Calculate the Euclidean distance between an individual, xi, in PSt and each of

the individuals in C, and categorize xi into its corresponding cluster, Lj(xi),
j = 1, 2, ..., |L| is the label of a category;

3: if |C| > K then
4: Output |C| representative individuals, and stop selecting;
5: else
6: for each cluster, Lj , j = 1, 2, ..., |L| do
7: Identify the furthest individual of Lj , denoted as hj ;
8: end for
9: Select the furthest individual among all hj , labelled as point, and include it

into C;
10: Go to Step 2;
11: end if
12: return C;

nearest representative individual in set Ct−1, denoted as cjt−1,
which is regarded as the parent of ci

t. Herein, the Euclidean
distance is measured. Then, the evolutionary direction of
individual cit is estimated based on the movement from cj

t−1

to the current position as follows.

∆cti = cti − ct−1j (6)

From (6), each representative individual has its own evolu-
tionary direction determined by the individual and its parent.
Furthermore, all these directions are beneficial to building the
scenario of the new PS. Since the representative individuals
obtained by the method proposed in Subsection III-A have a
good performance in depicting the PS, the multiple directions
are likely to precisely show the change trend of the PS.

C. Generation of the Predicted Individuals

We attempt to generate a number of individuals around the
predicted PS to achieve a rapid response to the environmental
change in the evolutionary search. These predicted individuals
are also expected to help the population converge to the new
true PF with good distribution. Once an environmental change
is detected, the following process is carried out.

Let the current population be P t of size NP , the current
optimal set be PSt of size N , the representative individual set
at time t be Ct = {ct1, ..., ctK}, and the predicted evolutionary
direction set be ∆c = {∆ct1, ...,∆ctK}. For an individual,
xt+1
i , which belongs to the j-th cluster, its new candidate, xt+1

i ,
can be generated as follows:

xt+1
i = xt

i +∆ctj + εt (7)

where i = 1, 2, · · · ,K, and εt ∼ N (0, σt) is a random
number created from a normal distribution of mean 0 and
variance σt, which is calculated according to the following
expression:

σt =
1

K

K∑
i=1

∣∣∆cti
∣∣ (8)

Following the above process, N new candidates can be
generated to predict the new location of the PS. To improve
the diversity of the population, the rest NP −N individuals are

randomly generated in the decision space. These solutions to-
gether constitute the initial population for evolutionary search
in the new environment, which are expected to help rapidly
locate a well-distributed PS in the new environment.

IV. AN MDP BASED PARTICLE SWARM OPTIMIZER

In principle, the MDP strategy can be embedded in any
population-based meta-heuristics for dynamic multi-objective
optimization problems. Without loss of generality, we embed
MDP into a PSO framework for dynamic multi-objective
optimization to verify the effectiveness of MDP for dynamic
optimization. Before giving the framework of the whole pro-
cedure, a strategy for adaptively determining the number of
representative individuals is first presented to further enhance
the performance.

A. Adaptive Election of Representative Individuals

The optimal number of representative solutions for predict-
ing the new locations of the Pareto optimal solutions in the PS
may depend on the shape of the Pareto front and the severity of
the change in the PS when there is an environmental change. In
the following, we propose a mechanism for adaptively deter-
mining the number of representative solutions. To this end, we
define a measure for reflecting the severity of environmental
changes, δ (t), which is indicated by the degree of the change
in the objective values of N individuals before and after the
environment change:

δ (t) =
1

M

1

N

M∑
j=1

N∑
i=1

|∆fj (Ari)− µj (g)| (9)

where ∆fj (Ari) =
fj(Ari,g)−fj(Ari,g−1)

uj(g)−lj(g) and µj (g) =

1
N

N∑
i=1

∣∣∣ fj(Ari,g)−fj(Ari,g−1)
uj(g)−lj(g)

∣∣∣. Herein, ∆fj (Ari) is the j-th

objective value of individual i in the archive at the g-th
iteration, uj (g) and lj (g) refer to the maximal and the
minimal values on the j-th objective at the g-th iteration,
respectively.

Based on the severity of the environmental change defined
above, the number of representative individuals, K, can be
calculated. The basic idea is that the more severe the environ-
ment change is, the more representative individuals should be
chosen, and vice versa. More specifically, the value of K is
determined as follows:

K = ⌈K1 + δ (t) ∗ (K2 −K1)⌉ (10)

where K1 and K2 are the lower and upper limits of K.
According to Section III-A, we set K1 = M + 1. A too large
or small value of K2 will both pose a negative influence on the
performance of the algorithm. By realizing some preliminary
experiments shown in the supplementary materials, we finally
set K2 = 3M .

B. The Proposed PSO Framework

The PSO framework incorporated with the MDP strategy for
dynamic multi-objective optimization is presented as Algorith-
m 2. First, the swarm is initialized by randomly generating NP
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particles in the search space (Lines 2 to 6). With respect to
change detection, according to [33], an environmental change
can be detected by reevaluating the location of p⃗g at each
iteration. When the current fitness value of p⃗g varies from
its stored one at the last iteration, it is recognized that an
environmental change occurs (Lines 11 to 12). If a change
occurs, recall the change response procedure described as
Algorithm 3, generate an initial swarm for the PSO optimizer
(Line 13), and the current time instance comes to t+1 (Line
14); otherwise, optimize the t-th MOP by using the PSO
optimizer for one generation, at the beginning of which period,
the personal best particle (Line 20), the global best particle
(Line 21) are updated. Then, the location and the velocity of
each particle are updated (Line 22). This process is described
in Appendix. If the number of non-dominated solutions is
larger than the size of archive N (Line 29), the crowding
distance [34] is calculated for all the |Ar| particles, and N
individuals with the largest crowding distance are retained.
Following that, include all individuals in Ar into pst. When
the stopping criterion has been met, the program is terminated
and the PS is output; otherwise, go to Line 10.

As shown in Algorithm 3, in case that there is an envi-
ronmental change, the fitness values of individuals at the last
iteration are reevaluated under the new environment, and the
degree of the change is obtained according to formula 9 (Line
4). Next, K representative individuals are chosen (Line 6) to
build up K evolutionary trajectories (Line 7), which are used
to generate N new candidates as a part of the initial population
for the new environment combined with (NP −N) individuals
randomly generated in the initial population (Line 8). Finally,
complete boundary checks for individuals in the swarm.

C. Complexity of the MDP Framework

1) Analysis of the Proposed Selection Process: Since the
complexity of calculating the distance between each pair of
individuals in the PS is much higher than that of comparing
these distances, the complexity of the proposed method is
determined by that of calculating all the distances. Taking the
worst case into consideration, only one individual is chosen
to generate a cluster each time. First, the calculation of the
distance between each of (N −M) individuals and each of
M representative individuals costs O((N −M)M). Then,
it takes O((N −M − 1) (M + 1)) to obtain the (M + 1)-th
cluster, and O((N −K)K) to achieve the K-th cluster.

The total computational complexity of the above process is
O((N −M) (K −M)). Since N ≫ K > M , the computa-
tional complexity of the proposed method can be simplified
as O(NK), which is very computationally efficient. This can
be attributed to the fact that it seeks representative individuals
with a good diversity resulting from the segmentation style of
a cluster.

2) Analysis of MDP framework over One Generation:
In Algorithm 2, the computing overhead is O

(
MNP

2
)

for
the first loop (Lines 2-5). For the second loop (Lines 7-
35), the computation complexity is mainly concerned with
fitness calculation. At the first stage (Lines 8-12), it takes
O(MND). Then (Line 14), it costs O(NK) for Change
Response as discussed in Section IV-C1. Following that (Lines

Algorithm 2 Framework of MDP
Input: the swarm size, NP ; the archive size, N ; the number of particles used for change

detection, ND ; the maximal number of iterations, gmax;
Output: an approximate Pareto optimal set Op;
1: t = 0, g = 0; %Initialize the swarm, pop
2: for i = 1 to NP do
3: initialize x⃗i, v⃗i;
4: calculate f (x⃗i);
5: p⃗i ← x⃗i; f (p⃗i)← f (x⃗i);
6: end for
7: repeat
8: Randomly Select ND individuals;
9: p⃗g ← arg min

p⃗i

{f (p⃗i) |i = 1, 2, ..., ND };

10: f (p⃗g)← min (f (p⃗i)) ; frecord ← f (p⃗g);
11: g ← g + 1; %Detect and respond to an environmental change
12: calculate f (p⃗g);
13: if f (p⃗g) ̸= frecord then %Re-initialize the swarm, pop
14: Change Response (Algorithm 3);
15: t← t + 1;
16: for i = 1 to NP do
17: x⃗i = popi;
18: end for
19: else
20: for i = 1 to NP do
21: pbesti ← get pbest();
22: gbesti ← get gbest();
23: x⃗i ← update;
24: end for
25: end if
26: for i = 1 to NP do
27: calculate f (x⃗i);
28: Ar ← nondominate (pop);
29: end for
30: if |Ar| > N then
31: Retain N individuals with the largest crowding distances;
32: pst ← Ar;
33: Update p⃗i and p⃗g ;
34: end if
35: until g > gmax

36: Op← ps and stop the algorithm; % Output the obtained PS
37: return Op;

Algorithm 3 Change Response in MDP
Input: the time instance, t; the approximate PS at t and t − 1, pst and pst−1,

respectively; the size of pst, N ; the swarm size, NP ;
Output: an initial swarm, pop;
1: for i = 1 to N do
2: calculate f (x⃗i);
3: end for
4: Calculate the degree of the change, δ, according to formula 9;
5: Calculate the number of representative individuals, K, according to formula 10;
6: Ct ← select

(
pst, K

)
;

7: ∆C ← predict(Ct, Ct−1, K);
8: pop = generate

(
pst,∆C , ε, N,NP

)
;

9: Do boundary check for individuals in pop;
10: return pop;

16-29), the searching process completed by the optimizer
spends O

(
MNP

2
)

on fitness computation and on average
O
(
N2 lgN

)
[35], [36] on elitist preservation. As a result,

the computational complexity of the MDP framework is
O
(
MNP

2
)

or O
(
N2 lgN

)
, depending on whichever is larg-

er. Jiang and Yang have pointed out that under fast-changing
environment, the complexity would reach O

(
N2 lgN

)
[36].

V. EXPERIMENTAL SETTINGS

A. Algorithms under Comparison

To evaluate the performances of the proposed MDP strategy
in dynamic multi-objective optimization, we compare it with
three popular dynamic multi-objective evolutionary algorithms
((d)MOEAs), dynamic nondominated sorting genetic algorith-
m II (dNSGA-II) [37], steady-state and generational evolu-
tionary algorithm (SGEA) [36], and dynamic multi-objective
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particle swarm optimization (DMOPSO) [38], and one classic
multiobjective evolutionary algorithm, MOEA based on de-
composition (MOEA/D) [39]. It should be emphasised that by
comparison between DMOPSO and MDP, we can see clearly
whether the proposed prediction strategy, MDP, or the standard
PSO, contribute more to the good performance since MDP
is incorporated into DMOPSO. Besides, to investigate the
efficiency of the proposed clustering method in Section III-A,
we also take a K-means clustering-based method (denoted as
Kmeans) proposed by Halder et al [17] into consideration for
comparative study. Moreover, four popular change response
methods, PPS [26], PPS-Lin(in Section II-A), RPS [24], and
RIS [24], are incorporated into PSO due to useful properties
that PSO has demonstrated in addressing DMOPs [40], [41]
to complete comparative of the proposed MDP. The settings
of those four strategies are presented in the supplementary
materials.

Similar to [16] and [36], the experiments are conducted for
various combinations of change severity levels and frequen-
cies, i.e., (nt, τt)=(5,10), (10,10), and (20,10), in order to study
the influence of the change frequency on algorithms’ ability in
dynamic environments. Each algorithm is run independently
20 times on each test instance, and the algorithm is stopped
when t > 200, t > 100, and t > 50 according to the above
settings of the frequency. At each generation, 5% solutions
randomly selected from the PS are re-evaluated for detecting
environment changes (i.e., ND = 5% ∗N ) [23], [30]. In this
work, the dimensionality of the decision space of the test
problems is set as n = 10 as Farina and Deb has done [23].
The swarm size is NP = 150, and the archive size (the PS
size) is N = 100 like the settings in [22] and [35].

B. Test Instances
We compare the algorithms on 11 test problems with two or

three objectives, among which there are three newly proposed
problems. They are FDA1-5 proposed by Farina et al. [23],
a variant of FDA1 without an adjustable parameter (Fun7),
a variant of FDA2 with the adjustable parameter of [0.5]
(Fun8), another variant of FDA2 (Fun9), F8 proposed by
Zhou et al. [26], JY5 proposed by Jiang and Yang [16], and
GTA1a proposed by Gee et al. [13]. The details of the three
proposed test problems are listed in Table I, whose types can
be analyzed according to [23]. The reason behind employing
the two variants of FDA1, Fun7, and Fun8, lies in that they
correspond to the two occasions, namely, rotating with the
origin of the coordinate system and the PS center. When
adding the adjustable parameter for g(xI), we can adjust the
cross location of PSs at different time and investigate the
usefulness of the developed method.

In Table I, both PF and PS of all the three test cases change
over time. A difference lies in that the PSs of Fun7 and
Fun9 rotate with the original center of the coordinate system,
whereas that of Fun8 rotates along the PS centroid. During
their changes, the shapes of the PSs remain unchanged.

C. The Performance Metric
For assessing the performance of convergence and diversity

of solutions obtained by different prediction strategies, Zhou

TABLE I
THREE NEWLY PROPOSED TEST INSTANCES

Instance Definition

Fun7
(Type II)



f1 = x1

f2 = g · h
g = 1 + H +

n∑
i=2

(xi −G(t) · x1)
2

h(f1, g) = 1−
√(

f1
g

)
G(t) = sin(t · π/12)
H(t) = 0.75 sin(0.5πt) + 1.25, t = 1

nt

⌊
τ
τt

⌋
where : xi ∈ [0, 1], ∀i = 1, 2, · · · , n

Fun8
(Type II)



f1 = x1

f2 = g · h
g = 1 +

n∑
i=2

(xi −G (t) · (x1 − 0.5))2

G (t) = sin(t · π/12)

h(f1, g) = 1−
(

f1
g

)
H(t)−1

H(t) = 0.75 + 0.7 sin(0.5πt), t = 1
nt

⌊
τ
τt

⌋
where : x1 ∈ [0, 1]; xi ∈ [−1, 1] , i = 2, ..., n

Fun9
(Type II)



f1 = x1

f2 = g · h
g = 1 +

n∑
i=2

(xi −G (t) · x1)
2

G (t) = sin(t · π/12)

h(f1, g) = 1−
(

f1
g

)
H(t)

H(t) = 1 + sin(0.5πt), t = 1
nt

⌊
τ
τt

⌋
where : x1 ∈ [0, 1]; xi ∈ [−1, 1] , i = 2, ..., n

et al. [26] introduced the MIGD metric, where the average
IGD value of a period of time is calculated. We present more
details of the MIGD metric in the supplementary material.

Since the IGD metric depends mainly on the closeness,
distribution, and coverage of an approximation to the true PF
, the SP and HVD metrics combined with MIGD can help us
deeply and comprehensively understand the performances of
each algorithm [36]. The Spacing Metric (SP) [42] is employed
to compare the distribution throughout the optima obtained by
all the six (d)MOEAs. The HVD metric [36] is the difference
between hypervolume of the obtained PS and the true PS to
measure the convergence of the obtained PS.

Furthermore, to qualify whether there is significance differ-
ence between solutions produced by the proposed prediction
method and the one such as [26], the t-test at the 0.05
significance level is engaged. If its value is smaller than 5%,
then one concludes that a significant difference between the
two exists; this observation is labeled as “+” after the value.
Otherwise, there is a “-” after the result value.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we first observe the SP, HVD, and MIGD
performances of all the five popular (d)MOEAs under all
three different pairs of frequency and severity, followed by
further discussions on the IGD values at each time instant
in the initial and final populations obtained by the proposed
prediction strategy and the other four compared strategies
with the frequency of 10. Due to limited space, the average
MIGD values of the initial populations and the final (after
30 generations) populations obtained for the four compared
prediction strategies over 20 runs are investigated in supple-
mentary materials. The reason for comparing the MIGD value
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obtained after 30 generations is to investigate whether the
prediction strategies can improve the optimizer, or whether
the given computational cost is enough to tackle a stationary
multi-objective optimization problem.

The SP, HVD, and MIGD values after 30 generations
obtained by the four compared (d)MOEAs and the Kmeans-
based clustering method (Kmeans) are presented in Tables
II, III, and IV. Since the initial populations obtained by the
other three algorithms are generated randomly, their initial
populations are no longer estimated.

A. Combined with Popular (d)MOEAs

Tables II, III, and IV list the mean and the standard deviation
values of SP, HVD, and MIGD metrics obtained by MDP and
the other five popular (d)MOEAs over 20 runs with 200, 100,
and 50 environmental changes, respectively.

Table II shows that, (1) MDP obtains the best results for the
majority of test instances in terms of the SP metric, indicating
that MDP achieves solutions with a better performance in
uniformly distributing along the true PF than the compared
algorithms. (2) MDP mainly loses good distribution for FDA2
and FDA3, when the environment changes rapidly (i.e., τt = 5
or 10), for which dNSGA-II shows a superior performance in
distribution. (3) The SP value of dNSGA-II for FDA3 when
τt = 10 is slightly smaller than that of MDP, the t-test value
indicates that there is no significant difference between these
two solution sets. (4) For Fun7, SGEA achieves slightly better
SP values than MDP when τt = 5 and 10, implying that for
an optimization problem with a rotating PS, strategies with
the aim of improving the performance of MDP in distribution
are expected. (5) For complex dynamic problems like F8,
JY5, and GTA1a, optima obtained by MOEAD usually exhibit
better diversity. Compared to that, our method, MDP, should
incorporate some strategy to improve the diversity of optimal
solutions when dealing with complex DMOPs.

It is worth noting that compared to K-means, whose number
of clustering centers is fixed with a large computational
complexity of O(NI

2k), where NI represents the number
of individuals to be clustered, and k means the number of
clusters. In this paper, NI = N and k = K. The proposed
clustering method with an adaptive number of representative
individuals is suitable for dynamic scenarios, even though it
shows a poor performance in distribution for FDA4, and Fun7
with a rapid environment change. For the other instances like
FDA2, FDA5, and GTA1a, MDP achieves solutions with a
remarkably better performance in distribution than Kmeans.
For complex problems such as F8, JY5, and GTA1a, MDP
obtains better HVD results than DMOPSO no matter what the
frequency is. For some complex cases with both changed PSs
and PFs, like FDA5, JY5, and GTA1a, when the environmental
changing speed is fast (the frequency value is 5), MDP always
achieves a set of optima with noticeably better convergence
than those produced by DMOPSO. This indicates that after
adding the strategy proposed in Section III, the convergence
speed of DMOPSO can be greatly improved. When the chang-
ing speed is low with the frequency value of 20, SGEA obtains
better results than MDP in some cases like FDA1, FDA5,

and F8, suggesting that for DMOPs with translational PSs,
when the changing speed is not high, the prediction method
employing only the centroid individual is sufficient to well
trace the change.

From Table III, (1) MDP performs well in terms of conver-
gence for most test instances, especially those with rotating
PSs, suggesting that the prediction strategy incorporated into
MDP is effective. (2) For Fun7 with all the frequencies of
the environment change, MDP achieves a better performance
in terms of the HVD indicator than the compared algorithms,
especially K-means. (3) SGEA outperforms MDP on FDA2
and FDA5, no matter what the change frequency is, suggesting
that improving the performance of MDP in convergence is of
necessity for DMOPs with changing PFs. (4) MDP greatly
improves the convergence of DMOPSO in almost all test cases
with any changing frequency, suggesting that by incorporating
the proposed prediction strategy into it, PSO can trace dynamic
environments with better convergence.

The MIGD metric measures the performance of a solution
set in terms of both convergence and distribution. As a result,
if an algorithm achieves solutions with a poor performance in
diversity, it is possible that it exhibits a good MIGD value
on account of a superior performance in convergence. For
example, SGEA has an average SP value of 3.5744E-2 for
FDA5 with 50 environment changes, which is worse than
2.9009E-2 obtained by MDP, whereas the former obtains an
average HVD value of 1.3933E+0, 10% smaller than MDP.
Under this circumstance, SEGA still achieves a better MIGD
value than MDP (2.3052E-1 versus 2.9917E-1). For FDA2,
SGEA obtains the best HVD value, and dNSGA-II, DMOPSO,
and MOEA/D also obtain better results than MDP when the
environment changes rapidly, implying that a large gap is left
to improve the performance of MDP when tackling DMOPs
with changing PFs.

The following observations are drawn from Table IV. (1)
MDP obtains the best results for the majority of test instances
in terms of the MIGD metric, and loses mainly for DMOPs
with either changing PFs or three objectives, like FDA2 and
FDA4, where SEGA and DMOPSO are the best, respectively.
(2) SEGA loses its superiority for FDA2 with the change
frequency of 5 due to its inferior performance in distribution.
Similarly, SEGA is drown by DMOPSO for FDA4 when
the change frequency is 10. (3) For FDA4, K-means with
τt = 5 achieves solutions with a better SP value than MDP,
MDP is still remarkably competitive in terms of the MIGD
metric resulted from its superb performance in convergence
(its HVD value under this scenario is extremely better than
that of K-means, 1.1303E+0 versus 3.3443E+0).The reason
lies in that MDP can make full use of historical information in
previous environments to predict new locations and initialize
the population with candidates generated around the predicted
locations.

From Tables III and IV, approximately consistent conclu-
sions can be drawn from the HVD and MIGD indicators.
Although MDP achieves comparatively good SP values for
FDA2, FDA4, and FDA5 at a small change frequency, like
dNSGA-II, SGEA, and DMOPSO, its MIGD values are slight-
ly worse than those of the three compared algorithms due to
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TABLE II
THE MEAN AND STANDARD DEVIATION VALUES OF SP OBTAINED BY SIX ALGORITHMS.

MOEAD dNSGA-II SGEA Kmeans DMOPSO MDP

FDA1 5,10 7.0675E-1(8.2266E-3)+ 3.2997E-2(3.6136E-3)+ 9.7019E-3(7.4175E-3)+ 8.7711E-2(7.7764E-3)+ 1.5757E-1(3.5951E-1)+ 6.5464E-3(9.3675E-4)
1010 6.7935E-1(8.4396E-3)+ 1.3263E-2(3.7334E-3)+ 7.0437E-3(7.7707E-3)- 5.9607E-2(7.4129E-3)+ 6.5079E-2(1.5608E-2)+ 4.1988E-3(7.9528E-4)
2010 3.1430E-2(9.8322E-3)+ 6.3180E-3(3.8221E-3)- 3.1796E-3(8.1414E-3) 3.6239E-2(9.3936E-3)+ 7.0969E-3(3.4293E-1)+ 3.4195E-3(6.9623E-4)-

FDA2 5,10 2.0975E-2(9.9283E-2)+ 8.0399E-3(8.2560E-3) 1.2019E-2(2.4161E-2)+ 8.1142E-2(9.9281E-2)+ 9.6236E-2(3.4584E-1)+ 8.7813E-3(1.2790E-2)-
10,10 1.5325E-2(9.2506E-2)+ 5.4151E-3(7.5477E-3) 8.2437E-3(2.2816E-2)- 6.6778E-2(9.3822E-2)+ 8.3304E-2(2.4298E-1)+ 6.9997E-3(9.2415E-3)-
20,10 1.1788E-2(9.4693E-2)+ 5.1621E-3(1.7778E-2)- 5.0835E-3(1.0215E-2) 4.0729E-2(1.0204E-1)+ 8.1830E-2(2.2150E-1)+ 5.5724E-3(1.2114E-2)-

FDA3 5,10 9.0322E-2(3.2991E-3)+ 1.8453E-2(5.9298E-3) 3.9870E-2(8.2666E-3)+ 3.8476E-2(3.1915E-3)+ 3.7810E-2(1.2650E-2)+ 2.0011E-2(3.8041E-4)-
10,10 4.5941E-2(5.6344E-3)+ 1.1454E-2(5.1407E-3) 2.2608E-2(1.4364E-2)+ 2.1323E-2(4.1214E-3)+ 2.7770E-2(1.2617E-2)+ 1.9295E-2(3.3045E-4)-
20,10 3.3888E-2(7.0476E-3)+ 8.9359E-3(4.9990E-3) 2.1213E-2(1.3160E-2)+ 2.7185E-2(5.5576E-3)+ 1.8156E-2(1.2900E-2)+ 9.0351E-3(4.6237E-4)-

FDA4 5,10 2.0322E-1(3.2991E-3)+ 1.1908E-1(1.8506E-2)+ 8.5146E-2(1.1478E-1)- 8.4027E-2(2.1295E-2) 2.1412E-3(9.9458E-3)+ 9.5668E-2(1.4632E-3)+
10,10 1.8223E-2(2.7133E-2)+ 8.9110E-2(3.4180E-2)+ 4.7341E-2(1.3894E-1)+ 5.1323E-2(4.1214E-3)+ 1.1577E-1(7.9568E-3)+ 4.5610E-2(1.6752E-3)
20,10 1.1887E-2(1.0413E-2)+ 6.2056E-2(1.9014E-2)+ 2.9553E-2(1.5676E-1)- 3.3840E-2(1.5310E-2)+ 8.2942E-2(9.0622E-3)+ 2.5597E-2(1.4760E-3)

FDA5 5,10 1.5655E-1(3.6627E-2)+ 2.1614E-1(3.8940E-2)+ 8.6090E-2(6.9641E-2)+ 9.0929E-2(4.1573E-2)+ 1.3294E-1(8.9648E-2)+ 6.9442E-2(1.1974E-2)
10,10 1.0596E-1(3.5620E-2)+ 1.2277E-1(5.8813E-2)+ 5.6581E-2(6.2166E-2)+ 6.0942E-1(4.1514E-2)+ 7.3193E-2(9.6022E-2)+ 4.0017E-2(1.1455E-2)
20,10 1.0573E-1(3.7701E-2)+ 8.1706E-2(3.4297E-2)+ 3.5744E-2(6.6338E-2)+ 5.0812E-1(3.7563E-2)+ 5.3761E-1(9.2300E-2)+ 2.9009E-2(1.2669E-2)

Fun7 5,10 9.1099E-3(6.1099E-3) 1.3464E-1(3.1762E-3)+ 1.8950E-2(1.0409E-2)+ 2.6114E-2(7.4638E-3)+ 7.5046E-2(8.4605E-3)+ 3.0537E-2(1.3476E-2)+
10,10 1.7154E-2(6.7154E-3) 9.3569E-2(2.7081E-3)+ 1.6876E-2(8.7322E-3)+ 1.5070E-2(6.3842E-3)+ 4.2393E-2(9.1089E-3)+ 1.9486E-2(1.3243E-3)-
20,10 1.1133E-2(9.1133E-3) 7.3804E-2(2.8826E-3)+ 1.3974E-2(7.8408E-3)+ 1.4449E-2(6.2017E-3)+ 1.2732E-2(8.0603E-3)+ 1.7994E-2(1.3450E-3)-

Fun9 5,10 1.2218E-2(2.2984E-2)- 7.1010E-2(2.1485E-3)+ 2.0538E-2(9.9990E-3)+ 3.1878E-2(1.2358E-1)+ 3.9826E-2(2.0048E-2)+ 1.0671E-2(1.1201E-2)
10,10 7.0620E-1(2.0741E-2)+ 4.0076E-2(1.7074E-3)+ 1.2210E-2(8.6199E-3)+ 1.1874E-2(3.7788E-2)+ 1.9323E-2(1.8874E-2)+ 8.4526E-3(8.9789E-3)
20,10 4.1834E-1(1.3987E-1)+ 9.1553E-3(1.7439E-3)+ 8.5274E-2(9.1854E-3)+ 1.1225E-2(6.8735E-1)+ 9.8958E-3(1.3706E-1)+ 6.3417E-3(8.8560E-3)

F8 5,10 4.5565E-2(2.4974E-3) 1.7870E-1(6.0491E-2)+ 4.2739E-1(2.9811E-1)+ 6.8712E-2(6.7253E-3)+ 1.9260E-1(3.6125E-2)+ 7.2244E-2(7.6814E-3)+
10,10 4.5713E-2(2.2674E-3) 1.7827E-1(5.6005E-2)+ 4.6281E-1(3.0678E-1)+ 7.0987E-2(8.1535E-3)+ 1.9395E-1(3.6902E-2)+ 7.3054E-2(7.3467E-3)+
20,10 4.5302E-2(2.5580E-3) 1.6414E-1(5.2122E-2)+ 4.7788E-1(2.9465E-1)+ 7.3657E-2(6.0413E-3)+ 1.9323E-1(3.6886E-2)+ 7.7193E-2(7.9189E-3)+

JY5 5,10 5.9601E-3(2.4516E-3) 2.5896E-2(7.3772E-3)+ 3.5657E-2(3.4906E-2)+ 3.4393E-2(4.7848E-3)+ 5.7412E-2(1.5631E-2)+ 2.9873E-2(6.2540E-3)+
10,10 5.6382E-3(5.1967E-3) 2.5985E-2(1.1630E-2)+ 3.3260E-2(3.7234E-2)+ 3.2543E-2(6.3022E-3)+ 5.7651E-2(1.7771E-2)+ 3.0142E-2 (5.9762E-3)+
20,10 5.9522E-3(2.1649E-3) 2.6677E-2(7.7950E-3)+ 3.5888E-2(2.5699E-2)+ 3.4519E-2(6.7784E-3)+ 5.3897E-2(1.6895E-2)+ 2.8607E-2(7.1675E-3)+

GTA1a 5,10 2.6962E-3(1.2747E-3) 1.0035E-2(3.8316E-3)+ 2.0420E-2(1.1369E-2)+ 1.3127E-2(3.4619E-3)+ 2.5565E-2(5.8286E-3)+ 1.7896E-2(4.4048E-3)+
10,10 2.6438E-3(8.0269E-4) 1.0034E-2(2.9576E-3)+ 1.9906E-2(1.1890E-2)+ 1.3704E-2(2.0954E-3)+ 2.5758E-2(3.8861E-3)+ 1.7188E-2(2.7120E-3)+
20,10 2.6170E-3(1.1258E-3) 1.0233E-2(3.8166E-3)+ 2.0136E-2(1.0811E-2)+ 1.4872E-2(4.2360E-3)+ 2.8270E-2(5.8707E-3)+ 1.9817E-2(4.3621E-3)+

TABLE III
THE MEAN AND STANDARD DEVIATION VALUES OF HVD OBTAINED BY SIX ALGORITHMS.

MOEAD dNSGA-II SGEA Kmeans DMOPSO MDP

FDA1 5,10 7.5968E-1(1.9934E-1)+ 9.0814E-1(1.0144E-1)+ 8.6303E-2(1.8776E-1) 7.6927E-1(1.8696E-1)+ 6.8303E-1(2.4698E-1)+ 9.9119E-2(3.8962E-2)-
1010 2.1766E-1(5.8494E-1)+ 1.6916E-1(2.8816E-1)+ 4.1653E-2(5.5150E-1) 1.1995E-1(5.4385E-1)+ 1.4024E-1(6.2680E-1)+ 5.0443E-2(1.1082E-1)-
2010 1.9104E-1(1.9362E-1)+ 4.3031E-2(1.0550E-1)+ 3.7108E-2(1.8176E-1) 6.9461E-2(1.8078E-1)+ 4.6297E-2(2.3765E-1)+ 4.4309E-2(4.6101E-2)+

FDA2 5,10 1.5672E-1(4.6104E-2)+ 4.3603E-2(1.1109E-1)+ 2.1468E-2(1.1811E-1) 2.4487E-1(1.7804E-1)+ 9.8441E-2(7.0174E-1)+ 1.8149E-1(1.6865E-1)+
10,10 6.3088E-2(1.2030E-1)+ 2.1588E-2(3.2266E-1)- 1.4051E-2(3.7220E-1) 7.4659E-2(5.2418E-1)+ 3.1763E-2(2.2898E-1)+ 6.4400E-2(5.0866E-1)+
20,10 2.8670E-2(1.7362E-1)+ 1.1884E-2(1.1062E-1)- 1.1633E-2(1.2295E-1) 5.5203E-2(1.7417E-1)+ 2.1546E-2(2.1821E-1)+ 2.0320E-2(5.3497E-2)+

FDA3 5,10 1.5832E+0(2.3557E-3)+ 2.4767E+0(1.7009E-2)+ 9.6924E-1(1.1737E-1)+ 6.4936E+0(1.6073E-2)+ 1.2979E+0(4.7163E-2)+ 7.6108E-1(1.4836E-1)
10,10 1.1745E+0(7.0309E-3)+ 1.9407E+0(5.7737E-2)+ 9.2047E-1(3.6284E-1)+ 1.9440E+0(5.7631E-2)+ 7.2690E-1(1.4187E-1)+ 4.8805E-1(4.3349E-1)
20,10 9.5840E-1(2.2629E-3)+ 1.4315E-1(2.6451E-2)+ 8.5400E-1(1.1795E-1)+ 6.4634E-1(2.4022E-2)+ 5.8829E-1(4.7095E-2)+ 1.5462E-1(1.4010E-1)

FDA4 5,10 3.9182E+0(1.0274E-2)+ 3.3928E+0(1.8614E-2)+ 1.3612E+0(2.9535E-2)+ 3.3443E+0(2.0847E-2)+ 1.4065E+0(2.5226E-2)+ 1.1303E+0(7.7483E-3)
10,10 1.1744E+0(3.1348E-2)+ 1.0128E+0(5.7983E-2)+ 2.7085E-1(8.8438E-2)+ 1.0044E+0(6.2143E-2)+ 1.0208E-1(7.4858E-2) 1.7601E-1(1.2580E-2)-
20,10 3.9147E-1(1.0132E-2)+ 3.3944E-1(1.9914E-2)+ 1.3657E-1(3.0204E-2)+ 7.3449E-1(2.1685E-2)+ 9.4177E-2(2.5979E-2)+ 7.5118E-2(5.7298E-3)

FDA5 5,10 7.3289E+0(9.8879E-2)+ 6.8257E+0(6.9449E-2)+ 3.2193E+0(2.8440E-2)+ 2.8164E+0(6.8993E-2)+ 3.2020E+0(4.4064E-03)+ 1.8004E+0(4.3710E-1)
10,10 4.9810E-2(3.4257E-3)+ 5.5465E+0(1.8732E-1)+ 1.7871E+0(7.7884E-2)+ 1.8847E+0(1.9409E-1)+ 1.6728E+0(6.0011E-2)+ 1.0939E+0(2.9737E-1)
20,10 2.7423E+0(1.0620E-1)+ 2.5700E+0(3.0409E-3)+ 1.3933E+0(2.1852E-2) 1.9456E+0(7.3062E-2)+ 1.9209E+0(3.0703E-2)+ 1.5340E+0(4.5271E-1)+

Fun7 5,10 1.9729E+0(1.0716E-1)+ 1.5002E+0(3.1154E-2)+ 1.8606E-1(5.8141E-2)+ 2.3362E-1(3.3504E-1)+ 7.9109E-1(4.3556E-1)+ 9.0934E-2(2.3664E-2)
10,10 9.9459E-1(3.0177E-1)+ 7.3634E-1(7.8159E-2)+ 1.0238E-1(1.5707E-1)+ 9.6628E-2(1.1651E-1)+ 2.3520E-1(2.1487E-1)+ 1.6863E-2(5.4031E-2)
20,10 5.6741E-1(9.6689E-2)+ 4.3392E-1(2.5036E-2)+ 8.3606E-2(4.1684E-2)+ 7.7918E-2(1.1248E-1)+ 5.3193E-2(4.4860E-1)+ 8.5055E-3(6.3925E-3)

Fun9 5,10 5.5298E+0(2.4027E-1)+ 4.3230E+0(2.9095E-1)+ 3.6045E+0(2.7870E-1)+ 3.6045E+0(4.3807E-1)+ 3.3855E+0(2.7632E-1)+ 1.3898E+0(3.1821E-1)
10,10 2.4755E+0(6.9599E-1)+ 2.0928E+0(8.0907E-1)+ 1.1510E+0(8.0658E-1)+ 1.4100E+0(2.6608E-1)+ 1.1934E+0(7.8625E-1)+ 6.0996E-1(8.6259E-1)
20,10 1.0798E+0(2.3246E-1)+ 1.6132E+0(2.7128E-1)+ 8.1772E-1(2.8174E-1)+ 8.3352E-1(2.8787E-1)+ 9.9938E-1(2.6373E-1)+ 3.6908E-1(2.8910E-1)

F8 5,10 3.6895E-1(1.5956E-2)+ 2.8519E-1(1.6455E-2)+ 2.6086E-1(1.3675E-2)+ 2.7616E-1(1.3311E-2)+ 3.4654E-1(1.8550E-2)+ 1.7343E-1(2.0783E-2)
10,10 3.6909E-1(1.5695E-2)+ 4.3888E-1(1.4509E-2)+ 1.6580E-1(2.9677E-2) 2.7426E-1(1.3396E-2)+ 3.5832E-1(1.8324E-2)+ 2.5545E-1(1.3630E-2)+
20,10 3.6821E-1(1.6520E-2)+ 3.9240E-1(9.5100E-2)+ 1.5300E-1(2.3014E-2) 2.6604E-1(1.4117E-2)+ 2.7160E-1(1.7954E-2)+ 2.4741E-1 (1.3402E-2)-

JY5 5,10 4.8505E-1(2.7207E-3)+ 2.4563E-1(3.8416E-2) 4.8453E-1(3.3356E-3)+ 4.8385E-1(3.3770E-3)+ 4.3804E-1(1.8012E-2)+ 3.4027E-1(1.7201E-2)+
10,10 4.8855E-1(2.8139E-3)+ 2.4859E-1(3.9808E-2) 4.8331E-1(6.1294E-3)+ 4.8277E-1(4.0807E-3)+ 4.3888E-1(1.4509E-2)+ 3.4324E-1 (1.5179E-2)-
20,10 5.3818E-1(2.7168E-3)+ 4.6510E-1(1.9445E-2)+ 5.1768E-1(1.0853E-2)+ 5.2292E-1(6.5555E-3)+ 3.8247E-1(1.8855E-2)+ 2.9595E-1(4.1440E-2)

GTA1a 5,10 5.3531E-1(6.8633E-2)+ 6.2578E-1(4.9125E-3)+ 3.4461E-1(4.8014E-2)+ 6.3820E-1(4.5327E-3)+ 5.7625E-1(8.1383E-3)+ 2.5932E-1(5.8162E-2)
10,10 5.3881E-1(6.9508E-2)+ 6.2568E-1(4.7690E-3)+ 3.0335E-1(3.1047E-2)+ 6.3644E-1(4.0251E-3)+ 5.7662E-1(6.9616E-3)+ 2.5968E-1(7.1441E-2)
20,10 5.3081E-1(6.6053E-2)+ 3.4511E-1(7.5111E-2)- 2.8542E-1(6.6295E-2) 6.3070E-1(5.5722E-3)+ 5.7126E-1 (7.6441E-3)+ 3.7126E-1(7.6441E-3)-

its inferior performance in convergence. Generally, MDP has
promising performances in both convergence and diversity for
almost all the test instances.

Note that neither MOEA/D nor any (d)MOEA is as good
as MDP for the two modified test instances, despite that some
optimizers indeed obtain solutions with a better performance
in distribution than MDP. Taking Fun7 as an example, when
τt = 5, MOEA/D achieves a smaller average SP value of
9.1099E-2, whereas its average HVD value is approximately
double that of MDP. This also corresponds to the results of
the last three complex cases, even though optima obtained by

MOEAD have good distribution in the variable space, their
convergence is inferior to other methods. This explains why
the MIGD values of MOEAD are not as good as the SP
values, suggesting that it is hard for MOEAD to tackle changes
well within limited number of generations. It is also worth
emphasizing that for Fun9, SGEA achieves a better average
MIGD value than MOEA/D, dNSGA-II, and K-means, since
both its SP and HVD values are better than those of the other
four algorithms. This might be attributed to the PS center-
based prediction strategy. However, most results assessed in
terms of these three metrics obtained by MDP outperform
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TABLE IV
THE MEAN AND STANDARD DEVIATION VALUES OF MIGD OBTAINED BY SIX ALGORITHMS.

MOEAD dNSGA-II SGEA Kmeans DMOPSO MDP

FDA1 5,10 5.8581E-1(1.2949E-1)+ 6.8087E-1(1.0458E-1)+ 4.3646E-2(1.1581E-1)+ 1.2149E-1(1.1839E-2)+ 5.6083E-1(1.4380E-2)+ 1.3309E-2(1.8065E-2)
1010 515295E-1(1.2962E-1)+ 5.7834E-2(1.1658E-1)+ 2.6032E-2(6.4880E-2)+ 5.1627E-2(1.7388E-2)+ 9.4374E-2(2.6460E-2)+ 1.0102E-2(1.3811E-2)
2010 5.2748E-2(1.2481E-1)+ 3.5542E-2(9.8937E-2)+ 8.0430E-3(2.0764E-2) 1.0156E-2(1.2238E-2)+ 4.8487E-2(3.3211E-2)+ 9.6083E-3(1.4380E-2)-

FDA2 5,10 9.6858E-2(2.5313E-2)+ 3.8301E-2(7.5366E-1)+ 2.6321E-2(1.0697E-1)- 6.1180E-2(1.0478E-1)+ 6.4186E-2(1.0210E-1)+ 1.6267E-2(1.1007E-1)
10,10 4.2270E-2(2.5447E-2)+ 2.5465E-2(7.6954E-1)+ 1.0040E-2(1.1254E-1) 2.7028E-2(1.4621E-2)+ 2.2537E-2(9.1265E-2)+ 1.3710E-2(3.5475E-2)-
20,10 2.3943E-2(1.0305E-1)+ 8.7558E-3(7.2101E-1)- 8.5996E-3(1.1138E-1) 1.0940E-2(1.0432E-1)+ 1.3527E-2(8.9855E-2)+ 8.8031E-3(1.0177E-2)-

FDA3 5,10 2.4296E-1(1.6177E-2)+ 7.3660E-1(5.1949E-1)+ 8.4503E-2(9.1298E-2)+ 1.9368E-1(9.9420E-3)+ 3.6439E-1(2.1745E-2)+ 5.1770E-2(1.4827E-3)
10,10 1.3910E-1(9.9393E-2)+ 7.3414E-1(5.1398E-1)+ 6.3653E-2(9.9025E-2)+ 6.0840E-2(1.0498E-1)+ 1.8321E-2(1.8549E-2)+ 3.1696E-2(1.3688E-3)
20,10 5.1476E-2(1.0821E-2)+ 7.1278E-2(5.0873E-2)+ 4.3336E-2(8.4422E-2)+ 4.9416E-2(1.2182E-2)+ 4.4914E-2(1.5001E-2)+ 2.1412E-2(1.5756E-3)

FDA4 5,10 9.4521E-1(3.1081E-3)+ 8.1086E-1(1.8507E-1)+ 4.7261E-1(3.8865E-2) 5.4260E-1(8.9028E-3)+ 5.5174E-1(2.2030E-2)+ 5.4178E-1(8.4546E-3)+
10,10 4.4506E-1(3.1627E-3)+ 7.9145E-1(1.6980E-1)+ 2.6989E-1(3.6746E-2)+ 2.4351E-1(1.1127E-2)+ 2.5114E-1(2.1645E-2)+ 1.4123E-1(1.1863E-2)
20,10 2.4400E-1(3.3575E-3)+ 3.8834E-1(2.0401E-1)+ 1.6530E-1(3.2698E-2)+ 1.4225E-1(8.8014E-3)+ 1.0056E-1(2.4897E-2) 1.1298E-1(7.7567E-3)-

FDA5 5,10 1.5598E+0(2.5792E-1)+ 1.5326E+0(5.0293E-1)+ 7.3654E-1(4.3482E-1)+ 8.5443E-1(2.5794E-1)+ 6.6165E-1(3.0073E-1)+ 6.0996E-1(2.4361E-1)
10,10 6.4232E-1(8.0181E-3)+ 1.0381E+0(5.4510E-1)+ 4.3562E-1(4.2892E-1)+ 5.4994E-1(2.6446E-1)+ 4.5288E-1(3.3488E-1)+ 4.0009E-1(2.5226E-1)
20,10 4.1842E-1(2.5212E-1)+ 6.5228E-1(5.2509E-1)+ 2.3052E-1(4.2109E-1) 4.8620E-1(2.6455E-1)+ 4.0866E-1(2.7541E-1)+ 2.9917E-1(2.4795E-1)+

Fun7 5,10 5.9886E-1(1.7818E-2)+ 7.0062E-1(1.5300E-1)+ 4.2209E-1(2.2319E-1)+ 1.0693E-1(7.5694E-2)+ 9.0566E-2(2.0221E-2)+ 5.6661E-2(1.4004E-2)
10,10 2.9253E-1(2.5704E-1)+ 3.9641E-1(1.4028E-1)+ 1.9102E-1(2.1256E-1)+ 7.8384E-2(7.6385E-2)+ 8.9923E-2(1.7468E-2)+ 2.6506E-2(2.0049E-2)
20,10 9.4915E-2(1.1028E-2)+ 1.9391E-1(1.4463E-1)+ 6.5790E-2(2.0155E-1)+ 7.4637E-2(7.6830E-2)+ 8.1126E-2(1.7814E-2)+ 2.0589E-2(1.0728E-2)

Fun9 5,10 6.1981E-2(7.8512E-2)+ 3.5107E-1(7.1842E-2)+ 2.0712E-1(8.3201E-2)+ 3.8651E-1(5.6648E-3)+ 3.3505E-1(3.2251E-2)+ 3.9669E-2(2.3494E-2)
10,10 4.0313E-2(7.1148E-2)+ 1.4431E-1(7.0747E-2)+ 1.5215E-1(8.2641E-2)+ 2.3255E-1(1.2278E-1)+ 8.5539E-2(3.2620E-2)+ 2.6285E-2(1.8475E-2)
20,10 3.8392E-2(7.1122E-2)+ 8.3988E-2(7.7106E-2)+ 5.2842E-2(3.3549E-2)+ 8.2127E-2(6.3344E-1)+ 6.2891E-2(8.8536E-2)+ 2.0917E-2(1.5688E-2)

F8 5,10 9.9896E-1(3.1972E-4)+ 1.2536E+0(2.8063E-1)+ 1.0280E+0(1.1875E-2)+ 1.0157E+0(5.4602E-3)+ 1.1304E+0(3.4385E-2)+ 4.3596E-1(1.1911E-2)
10,10 9.9896E-1(3.2497E-4)+ 1.9053E+0(2.9657E-1)+ 1.0453E+0(2.2877E-2)+ 1.0184E+0(7.4097E-3)+ 1.1312E+0(3.9520E-2)+ 4.3658E-1(1.5001E-2)
20,10 9.9893E-1(3.0033E-4)+ 1.2305E+0(2.7107E-1)+ 1.0668E+0(2.8077E-2)+ 1.0208E+0(6.0626E-3)+ 1.1356E+0(4.2817E-2)+ 4.3791E-1(1.4093E-2)

JY5 5,10 9.7839E-3(1.6861E-3) 2.8854E-1(6.3592E-2)+ 1.0448E-2(1.7678E-3)+ 1.1486E-2(1.7421E-3)+ 1.0759E-1 (1.6447E-2)+ 3.9897E-2(1.1302E-2)+
10,10 4.1506E-2(9.9728E-3)+ 2.8772E-1(6.7315E-2)+ 1.3526E-2(3.4434E-3)+ 1.4320E-1(2.1600E-2)+ 1.1197E-1(1.2995E-2)+ 1.0030E-2(1.7344E-3)
20,10 1.9534E-1(1.6341E-3)+ 2.6910E-1(6.4125E-2)+ 2.1987E-2(6.7049E-3) 9.9190E-2(4.0730E-2)+ 1.1480E-1(1.4819E-2)+ 5.6271E-2 (1.2810E-2)+

GTA1a 5,10 1.3396E-1(2.9993E-3)- 3.3313E-1(6.4633E-2)+ 2.3788E-1(4.6759E-2)+ 1.9554E-1(5.7502E-3)+ 2.4135E-2(5.4884E-3)+ 1.1372E-1(6.6791E-2)
10,10 3.0828E-1(6.6984E-2)+ 3.3821E-1(8.0017E-2)+ 2.7473E-1(3.0984E-2)+ 1.9071E-1(4.6416E-3)+ 2.5209E-1(5.2024E-3)+ 1.3798E-1(3.4731E-3)
20,10 2.3385E-1(6.9262E-2)+ 3.1203E-1(7.1881E-2)+ 1.1785E-1(6.5354E-2)+ 1.5280E-1(3.9476E-3)+ 1.7302E-1(3.9531E-3)+ 9.6270E-2(6.3600E-3)

those obtained by SGEA, implying the superiority and the
adaptability of MDP for various changes of the PS.

Finally, since the SP, HVD, and MIGD values obtained by
MDP are smaller than those of K-means for most scenarios,
we can conclude that the strategy of adaptively adjusting the
number of clusters is more suitable for DMOPs than that of
the fixed number of clusters.

B. Further Discussion

To further understand the performances of the proposed
MDP, we take a closer look into the tracking dynamics of
the prediction strategies under comparisons. We first compare
the IGD values obtained at each time by all the five prediction
strategies. Then, some initial populations obtained by all the
compared strategies, as well as the final populations after 30
generations by MDP for each newly designed DMOP are
presented.

Fig.4 depicts the IGD profile averaged over 20 runs of
MDP, PPS-Lin, RPS, RIS, and PPS for the eight test problems
designed in this work. We can make the following observations
from Fig.4.

First, when t ≥ 21, MDP considerably outperforms the
other four strategies for almost all the test instances in terms
of the IGD value. In addition, when t ≥ 21, the IGD values
of solutions obtained by MDP slightly fluctuate at a low
level, indicating that the proposed method is able to track the
environmental change efficiently and effectively.

Second, prediction strategies based on the PS center perform
unsatisfactory since their average IGD values are much larger
than those of the other three prediction methods, and are
even larger than the values obtained by RIS under some
circumstances. These results indicate that the PS center-based
prediction strategies are unsuitable for a DMOP whose PS
rotates. For Fun7 with a PS rotating around the origin of

the coordinate system, RPS achieves better results than RIS.
However, for Fun8, RPS achieves as poor results as RIS,
suggesting that for a DMOP whose PS rotates around the
PS center, a prediction strategy in which each individual
seeks its own evolutionary direction according to the direction
of its nearest neighbor in the previous environments cannot
accurately predict.

Similar conclusions can be drawn from Figures 5 and 6,
which present the initial populations at some time instants
with the lowest IGD values among 20 runs obtained by MDP
and compared prediction strategies with the frequency of 10.
Moreover, Fig. 7 depicts the final populations on some classic
test cases and the newly designed DMOPs with the lowest IGD
values obtained by MDP among 20 runs when the frequency
is 10.

The results indicate that the proposed MDP has achieved
consistently better results than the compared state-of-the-art
methods for a DMOP with a rotating PS as the environment
changes and is not worse than any compared prediction
strategy. Overall, MDP, RPS, PPS-Lin and PPS have better
performances than RIS for DMOPs with linearly correlated
decision variables. Therefore, the proposed strategy, MDP, is
highly competitive when tackling both simple and complex
problems, especially those with the rotating PSs.

VII. CONCLUSIONS

We have proposed a multi-directional prediction strategy to
enhance the performances of population-based metaheuristics
in solving dynamic multi-objective optimization problems.
Every time when an environmental change occurs, a part of
the population is re-initialized by the prediction strategy, and
the rest will be filled with randomly generated individuals.
The proposed strategy uses multiple directions determined by
multiple representative solutions coming from the previous
environments to predict the new location of Pareto optimal
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Fig. 4. The average IGD values over 20 runs versus the time scale when the frequency is 10.
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Fig. 5. The initial populations with the lowest IGD values among 20 runs on Fun7 at t=51, 61, and 71, respectively when the frequency is 10.
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Fig. 6. The initial populations with the lowest IGD values among 20 runs on Fun8 at t=25, 33, 41, and 50, respectively when the frequency is 10.

solutions in the decision space, around which candidates are
generated to re-initialize the population whenever there is
an environmental change. To best describe the shape of the
Pareto set in the new environment, the number of predicted
individuals is adjusted according to an estimated dynamic
changes of the environment. Additionally, a new clustering
method is presented in MDP, with the purpose of describing
the shape of the PS with a low computing overhead.

To test the effectiveness of the proposed strategy, three new
test functions are designed by modifying existing test problems
for dynamic multi-objective optimization. As demonstrated
in the experimental studies, the proposed strategy is very
competitive compared to the number of the existing state-of-
the-art prediction strategies, as well as five popular (d)MOEAs,
and clearly outperforms its peers especially for those having
rotating PSs when the environment changes. To better un-
derstand the usefulness of the proposed prediction strategy,
the results obtained by standard PSO are investigated and
compared. The results reveal that MDP greatly improves the

performance of standard PSO in addressing DMOPs. It should
also be pointed out that even though MDP can obtain a set
of dominated optima, the distribution of these optima are
expected to be increased when dealing with complex DMOPs.

It is worth noting that various environmental changes in
real-world applications are irregular, which makes the pro-
posed method difficult to predict the new location of the
Pareto set when the environment changes. With this regard,
as suggested in [43], it might be desirable to seek solutions
with slowly changing for an environmental change, which are
known as robust solutions over time. It is of great interest
to strike a good balance between tracking a changing Pareto
front as fast as possible and seeking optimal solutions with
slow changes when the environment changes.

Moreover, we only consider the situations when two con-
secutive changes are similar and linear in the decision space
in this paper. More investigations are required in the future to
make the proposed method applicable to more practical cases.
What if we combine online learning methods with prediction
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Fig. 7. The final populations obtained by MDP with the lowest IGD values among 20 runs on some classic and the newly designed scenarios when the
frequency is 10.

for dealing with complex dynamic optimization problems?
Herein, online learning methods aim at investigating the
fundamental changing shapes rooted in history and providing
useful guidance for prediction. The prediction models and
the optimizers are selected automatically corresponding to the
changing shapes with purpose of making a more accurate
estimation for further evolutions. From the perspective of
dynamic optimization, an initial population which is close to or
even covers the true optimal set under the new environment is
expected to be obtained. Additionally, the complexity may lie
in the step change of the PS, discontinuous points existing on
the PS, multiple changing ways of the PS with time (more than
translation or rotation), with missing information in history,
changes in the dimension of the variable space, or with varying
number of objectives. These aspects are not rare in practice.
Furthermore, for practical dynamic problems, how to provide
an optimal solution based on a set of optimal ones should be
taken into account. The decision makers’ priorities should also
be considered.
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