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Abstract

An important problem in statistics is to determine a joint probability distri-
bution from its marginals and an important problem in Computed Tomog-
raphy (CT) is to reconstruct an image from its projections. In the bivariate
case, the marginal probability density functions f1(x) and f2(y) are related
to their joint distribution f(x, y) via horizontal and vertical line integrals.
Interestingly, this is also the case of a very limited angle X ray CT problem
where f(x, y) is an image representing the distribution of the material density
and f1(x), f2(y) are the horizontal and vertical line integrals. The problem of
determining f(x, y) from f1(x) and f2(y) is an ill-posed undetermined inverse
problem. In statistics the notion of copula is exactly introduced to charac-
terize all the possible solutions to the problem of reconstructing a bivariate
density from its marginals. In this paper, we elaborate on the possible link
between Copula and CT and try to see whether we can use the methods used
in one domain into the other.

Key words: Copula, Tomography, Joint and marginal distributions, Image
reconstruction, Additive and Multiplicative Backprojection, Maximum
Entropy, Archimedian Copulas.

1. Introduction1

The word copula originates from the Latin meaning link, chain, union.2

In statistical literature, according to the seminal result in the copula’s the-3

ory stated by Abe Sklar [1] in 1959, a copula is a function that connects4

a multivariate distribution function to its univariate marginal distributions.5

There is an increasing interest concerning copulas, widely used in Financial6
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Mathematics and in modelling of Environmental Data [2, 3]. Recently, in7

Computational Biology, copulas were used for DNA analysis [4]. Copula8

appears to be a powerful tool to model the structure of dependence [5, 6].9

Copulas are useful for constructing joint distributions, particularly with non-10

Gaussian random variables [7].11

In 2D case, interpreting the joint probability density function f(x, y) as12

an image and its marginal probability densities f1(x) and f2(y) as horizontal13

and vertical line integrals:14

f1(x) =

∫
f(x, y)dy and f2(y) =

∫
f(x, y)dx (1)

we see that the problem of determining f(x, y) from f1(x) and f2(y) is an15

ill-posed (inverse) problem [8–10]. It is a well known fact that while a dis-16

tribution has a unique set of marginals, the converse is not necessarily true.17

That is, many distributions may share a common subset of marginals. In18

general, it is not possible to uniquely reconstruct a distribution from its19

marginals. This is illustrated in Figure 1: Figure 1 (a) shows the forward20

problem given by (1), whereas Figure 1 (b) illustrates the inverse problem.21

As we will see later, all functions in the form of22

f(x, y) = f1(x) f2(y) c(F1(x), F2(y)) (2)

where F1(x) , F2(y) are the marginal cumulative distributions functions (cdf’s)23

and c is any copula density function, are solutions of this problem. Interest-24

ingly, this is very similar to the probability density function (pdf) reconstruc-25

tion problem considered in [11], where a special copula was designed. The26

approach in [11] could certainly be interpreted using the results presented27

here.28

In 1917, Johann Radon introduced the Radon transform (RT) [12, 13]29

which was later used in CT [14]. Indeed, if we denote by f(x, y), the spatial30

distribution of the material density in a section of the body, a very simple31

model that relates a line of the radiography image p(r, θ) at direction θ to32

f(x, y) is given by the Radon transform:33

p(r, θ) =

∫

Lr,θ

f(x, y)dl =

∫ ∫

R2

f(x, y)δ(r − x cos θ − y sin θ)dx dy , (3)

where Lr,θ = {(x, y) : r = x cos θ + y sin θ} and δ is the Dirac’s delta func-34

tion. The experimental setup is presented in Figure 2.35

If now we consider only the horizontal θ = 0 projection and the vertical36

θ = π/2 projection, we see easily the connexion between these two problems.37
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Forward problem: Inverse problem:
Given f(x, y) compute Given f1(x) and f2(y)

f1(x) and f2(y) determine f(x, y)
(a) (b)

Figure 1: Forward and inverse problems

Source

y

x

f(x, y)

θ

r

rp(r, θ)

dl

Figure 2: X ray Computed Tomography: 2D parallel geometry.

The main object of this paper is to explore in more details these relations,38

and exploit the similarity between the two problems as a new approach to39

image reconstruction in Computed Tomography.40

The rest of this paper is organized as follows: In section 2, we present a41

summary of the necessary definitions and properties of copulas and highlight42

methods to generate a copula. In section 3, we present the main tomographic43

image reconstruction methods based on the Radon inversion formula. In sec-44
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tion 4, we will be in the heart of the link and relations between the notions45

of these two previous sections. Section 5 and 6 are devoted to details con-46

cerning our method. Some preliminary results from our Copula-Tomography47

Matlab package are shown.48

2. Copula49

In this section, we give a few definitions and properties of copulas that we50

need in the rest of the paper. For more details about this section we refer to51

[15]. First, we note by F (x, y) a bivariate cumulative distribution function52

(cdf), by f(x, y) its bivariate probability density function (pdf), by F1(x),53

F2(y) its marginal cdf’s and f1(x), f2(y) their corresponding pdf’s with their54

classical relations :55

F (x, y) =

∫ x

−∞

∫ y

−∞

f(s, t) ds dt, f(x, y) =
∂2F (x, y)

∂x ∂y
,

F1(x) =

∫ x

−∞

f1(s) ds = F (x,∞), F2(y) =

∫ y

−∞

f2(t) dt = F (∞, y),

f1(x) =
dF1(x)

dx
=

∫
f(x, y) dy, f2(y) =

dF2(y)

dy
=

∫
f(x, y) dx.

Definition Bivariate Copula: A bivariate copula, or shortly a copula is a56

function C from [0, 1]2 to [0, 1] with the following properties:57

• ∀u, v ∈ [0, 1], C(u, 0) = 0 = C(0, v),58

• ∀u, v ∈ [0, 1], C(u, 1) = u and C(1, v) = v and59

• C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 060

for all u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 , v1 ≤ v2.61

Theorem 2.1. Sklar’s Theorem (for proof, see [16]): Let F be a two-dimensional62

distribution function with marginal distributions functions F1 and F2. Then63

there exists a copula C such that:64

F (x, y) = C(F1(x), F2(y)). (4)

Conversely, for any univariate distribution functions F1 and F2 and any65

copula C, the function F is a two-dimensional distribution function with66

marginals F1 and F2, given by (4).67

Lemma 2.2. If the marginal functions are continuous, then the copula C is68

unique, and is given by69

C(u, v) = F (F−1
1 (u), F−1

2 (v)). (5)
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Definition Copula Density: From (4) and differentiating (5) gives the den-70

sity of a copula71

c(u, v) =
∂2C

∂u ∂v
=

f
(
F−1

1 (u), F−1
2 (v)

)

f1

(
F−1

1 (u)
)

f2

(
F−1

2 (v)
) , (6)

and thus72

f(x, y) = f1(x) f2(y) c(F1(x), F2(y)). (7)

An usual simple example is the product or independent copula:73

Π(u, v) = u v −→ c(u, v) = 1, (u, v) ∈ [0, 1]2 . (8)

Property 2.3. Any copula C(u, v), satisfies the inequality74

W (u, v) ≤ C(u, v) ≤ M(u, v), (9)

where the Fréchet-Hoeffding upper bound copula M(u, v) (or comono-75

tonicity copula) is :76

77

M(u, v) = min(u, v), (10)

and the Fréchet-Hoeffding lower bound W (u, v) (or countermonotonic-78

ity copula) is:79

W (u, v) = max {u + v − 1, 0} , (u, v) ∈ [0, 1]2 . (11)

Generating Copulas by the Inversion Method: A straightforward80

method is based directly on Sklar’s theorem. Given F (x, y) the joint cdf of81

two random variables X, Y and F1(x) and F2(y) their marginal cdf’s, all82

assumed to be continuous. The corresponding copula can be constructed by83

using the unique inverse transformations (Quantile transform) x = F−1
1 (u),84

y = F−1
2 (v), and the equation (5) where u, v are uniform on [0, 1].85

2.1. Archimedean Copulas86

The Archimedean copulas (see [15] page 109) form an important class of87

copulas which generalise the usual copulas.88

Theorem 2.4. Let ϕ be a continuous, strictly decreasing function from [0, 1]89

to [0,∞] such that ϕ(1) = 0, and let ϕ[−1] be the pseudo-inverse 1 of ϕ. Let90

C be the function from [0, 1]2 to [0, 1] given by91

C(u, v) = ϕ[−1] (ϕ(u) + ϕ(v)) . (12)

Then C is a copula if and only if ϕ is convex.92

1ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0)

0, ϕ(0) ≤ t ≤ ∞.
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Archimedean copulas are in the form (12) and the function ϕ is called the93

generator of the copula. ϕ is a strict generator if ϕ(0) = ∞, then ϕ[−1] = ϕ−1
94

and95

C(u, v) = ϕ−1 (ϕ(u) + ϕ(v)) . (13)

Property 2.5. Any Archimedean copula C satisfies the following algebraic96

properties:97

• C(u, v) = C(v, u) meaning that C is symmetric;98

• C(C(u, v), w) = C(u, C(v, w));99

• If a > 0, then aϕ is again a generator of C.100

There are many families of Archimedean copulas constructed from differ-101

ent generators ϕα with a suitable parameter α.102

For example ϕα(t) = 1
α
(t−α − 1) and ϕα(t) = ln(1 − α ln t) yield succes-103

sively to Clayton copula Cα(u, v) = [max(u−α + v−α − 1, 0)]
−1/α

and Gumbel-104

Hougaard copula Cα(u, v) = u v exp(−α ln u ln v).105

3. Tomography106

In 2D, the mathematical problem of tomography is to determine the bi-107

variate function f(x, y) from its line integrals p(r, θ) (see Eq.(3)). Radon108

has shown that this problem has a unique solution if we know p(r, θ) for all109

θ ∈ [0, π] and all r ∈ R, then f(x, y) can be computed by the inverse Radon110

transform (for details, see [17] ) :111

f(x, y) =

(
−

1

2π2

)∫ π

0

∫ +∞

−∞

∂p(r, θ)

∂r
r − x cos θ − y sin θ

dr dθ (14)

However, if the number of projections is limited, then the problem is ill-posed112

and the problem has an infinite number of solutions.113

To present briefly the main classical methods in CT, we start by decom-114

posing the inverse RT in the following parts:115

Derivative D: pθ(r) =
∂p(r, θ)

∂r
, (15)

116

Hilbert Transform H: p̃(r′, θ) =
1

π
p.v.

∫ +∞

−∞

p(r, θ)

r − r′
dr (16)

where p.v. is the Cauchy principal value.117

Backprojection B: f(x, y) =
1

2π

∫ π

0

p̃(r′ = x cos θ + y sin θ, θ) dθ. (17)
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Then defining the one dimensional inverse Fourier transform F−1
1 by118

Inverse Fourier F−1
1 : P (Ω, θ) =

∫
p(r, θ) exp [jΩr] dr.

Using the properties of the Fourier transform F1 and the derivative D, from119

(15) we have:120

P̄ (Ω, θ) = ΩP (Ω, θ),

the relation between H and F1 yields :121

˜̄P (Ω, θ) = sgn (Ω)P̄ (Ω, θ) = sgn (Ω)ΩP (Ω, θ) = |Ω|P (Ω, θ).

Finally the filtered backprojection which is currently the most used recon-122

struction method is performed by the following formula :123

f(x, y) = B HD p(r, θ) = B F−1
1 |Ω| F1 p(r, θ) (18)

that is124

p(r,θ)
−→

FT

F1
−→

Filter
|Ω|

−→
IFT

F−1
1

ep(r,θ)
−→

Backprojection
B

f(x,y)
−→

In X-ray CT, if we have a great number of projections uniformly dis-125

tributed over the angles interval [0, π] , the filtered backprojection (FBP) or126

even the simple backprojection (BP) image are good solutions to the inverse127

CT problem [18]. But, when we are restricted to only two projections, the128

FBP or BP images are not correct reconstruction [19–21].129

4. Link between Copula and Tomography130

Now, let consider the particular case where we have only two projections131

θ = 0 and θ = π/2. Then132

p0(r) =

∫ ∫
f(x, y)δ(r − x) dx dy =

∫
f(r, y) dy,

pπ/2(r) =

∫ ∫
f(x, y)δ(r − y) dx dy =

∫
f(x, r) dx

and if we let f1 = p0 and f2 = pπ/2 we can deduce the following new methods,133

inspired by the reconstruction approaches in CT, for the inverse problem that134

consists in determining the probability density f(x, y) from its marginals135

f1(x) and f2(y):136
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Backprojection:137

f(x, y) =
1

2
(f1(x) + f2(y)). (19)

Filtered Backprojection:138

f(x, y) =
1

2

(∫ ∂f1

∂x
(x′)

x′ − x
dx′ +

∫ ∂f2

∂y
(y′)

y′ − y
dy′

)
(20)

which can also be implemented in the Fourier domain as it follows139

f(x, y) = 1
2

∫
e+jξx|ξ|

(∫
e−jξx′

f1(x
′) dx′

)
dξ

+1
2

∫
e+jνy|ν|

(∫
e−jνy′

f2(y
′) dy′

)
dν.

5. How to use Copula in Tomography140

The definition and the notion of copula give us the possibility to propose141

new X ray CT methods. Let first consider the case of two projections. In this142

case, immediately, we can propose a first use which corresponds to the case143

of independent copula, as given in (8). We call this method Multiplicative144

Backprojection (MBP)(see [22])145

MBP:146

f(x, y) = f1(x) f2(y) (21)

If we compare the equation (19) to (21) instead of the classical BP which147

is an additive operation or Additive Backprojection, the name MBP comes148

naturally. In Figure 3 we give comparisons of BP and MBP. As we can see149

on the image original 1, at least the image obtained by MBP is better than150

the one obtained by BP and it satisfies exactly the marginals.151

We may still do better if we choose another copula rather than the in-152

dependent copula, by proposing the following method that we call Copula153

Backprojection (CopBP).154

CopBP:155

f(x, y) = f1(x) f2(y) c (F1(x), F2(y)) (22)

where c(u, v) is a parametrized copula.156

Here the main question is how to choose an appropriate copula for the157

particular application. This problem can be thought as a way to introduce158

some prior information, just enough to choose an appropriate family of cop-159

ula. For example if we know that the joint density has only one mode, and160
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can be approximated by a bivariate Gaussian, Φ−1 denoting the inverse of the161

standard Gaussian cdf, then we can use a Gaussian copula whose expression162

is given by163

Cρ(u, v) =
A

2π

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

exp

{
−(s2 − 2ρst + t2)

2(1 − ρ2)

}
ds dt

where A = (1 − ρ2)
−1/2

and ρ = 0 correspond to copulas Π(u, v) in Eq.(8)164

and where ρ = −1, +1 give respectively the copulas W (u, v) and M(u, v) in165

Equations (11) and (10). The corresponding Gaussian copula density is :166

cρ(u, v) = A exp

{
−A2

2

(
(ρΦ−1(u))2 − 2ρΦ−1(u)Φ−1(v) + (ρΦ−1(v))2

)}
.

Finally, the function f(x, y) we are looking for, can be written as :167

f(x, y) = Af1(x)f2(y) exp

{
−

(ρ2x2 − 2ρxy + ρ2y2)

2(1 − ρ2)

}
(23)

where Φ−1(u) = x and Φ−1(v) = y.168

Figure 3 presents CopBP reconstructions obtained using this Gaussian169

copula. We see the interest of such an approach compared to standard BP.170

The particular reconstruction (23) is parametrized by the correlation co-171

efficient ρ which is an hyperparameter of the reconstruction process. With172

a value ρ = 0, that is with no correlations, the CopBP method reduces to173

the multiplicative MBP method. The specification of ρ corresponds to the174

encoding of some prior information in the reconstruction procedure which175

helps to improve the quality of the reconstruction. For example, from physi-176

cal or physiological knowledge, or from the experimental setting, the general177

orientation of the underlying object is known. Another situation is the case178

where a mean template for the object is available, for example as a result of179

previous experiments.180

The hyperparameter ρ may also be estimated from additional data. For181

instance, using some additional measurements, e.g. a third (may be partial)182

projection, it is easy to select the best value of ρ which minimizes the distance183

between the actual projection and the one computed according to the model.184

The general incorporation of prior information or additional data, with185

the automatic determination of the hyperparameters is a work in progress186

which is out of the scope of this Letter. What we want to emphasize through187

this simple example is the interest of the CopBP approach for including a188

such simple prior as the main orientation of the object, that leads to an189

noticeable improvement of the reconstruction. This suggests that copula-190

based approaches have a potential in the field of image reconstruction from191

projections.192

9



Example 1: One Gaussian

Original 1 BP f̂(x, y) FBP f̂(x, y)

MBP f̂(x, y) CopBP f̂(x, y)

Example 2: Four Gaussians

Original 2 BP f̂(x, y) FBP f̂(x, y)

MBP f̂(x, y) CopBP f̂(x, y)

Figure 3: Comparison between BP, FBP, MBP and CopBP on two synthetic exam-
ples. This shows the improvement obtained with MBP and CopBP methods compared
to standard Back Projection (BP) or Filtered Back Projections (FBP). It is noted that
marginals of the BP and FBP reconstructions differ from the original data while marginals
of MBP/CopBP perfectly agree with initial data.
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6. Maximum Entropy Copulas193

The selection of a particular copula is a difficult task. We propose here194

to look at this ill-posed inverse problem using the maximum entropy (ME)195

method. The principle of ME was first expounded by E.T. Jaynes in two196

seminal papers in 1957 ([23, 24]). It is the way to assign a probability dis-197

tribution to a quantity on which we have partial information. The classical198

ME problem is to assign a probability law to a quantity on which we only199

know a few moments. Here, the problem is a bit different, because the par-200

tial information we have is not in terms of moments but in the form of the201

following constraints:202





C1 :

∫
f(x, y) dy = f1(x), ∀x

C2 :

∫
f(x, y) dx = f2(y), ∀y

C3 :

∫ ∫
f(x, y) dx dy = 1.

(24)

Hence, the goal is to find the most general copula, in the ME sense, com-203

patible with available information, that is, with the marginals/projections at204

hands.205

6.1. Problem’s formulation206

Among all possible f(x, y) satisfying the constraints (24) choose the one207

which optimizes a criterion J(f), i.e :208

f̂ := maximize {J(f)} subject to (24).

Since the constraints are linear, if we choose a criterion which is a concave209

function, then there is a unique solution to the problem. Many entropies210

functional can serve as an objective function, e.g. [25–30] :211

1. J1(f) = −

∫ ∫
| f(x, y) |2 dx dy, (-Energy or L2-norm)212

2. J2(f) = −

∫ ∫
f(x, y) ln f(x, y) dx dy, (Shannon Entropy)213

3. J3(f) =

∫ ∫
ln f(x, y) dx dy, (Burg Entropy)214

4. J4(f) =
1

1 − α

(
1 −

∫ ∫
fα(x, y)dx dy

)
, (Tsallis Entropy)215

5. J5(f) =
1

1 − α
ln

∫ ∫
fα(x, y) dx dy, (Rényi Entropy).216
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Our main contribution here is to find the generic expression for the solution of217

these criteria. The main tool is the classical Lagrange multipliers technique218

which consists in defining the Lagrangian functional219

Lg(f, λ0, λ1, λ2) = J(f) + λ0

(
1 −

∫ ∫
f(x, y)dxdy

)

+

∫
λ1(x)

(
f1(x) −

∫
f(x, y)dy

)
dx

+

∫
λ2(y)

(
f2(y) −

∫
f(x, y)dx

)
dy,

and find its stationnary point which is defined as the solution of the following
system of equations:






∂Lg(f, λ0, λ1, λ2)

∂f
= 0,

∂Lg(f, λ0, λ1, λ2)

∂λi

= 0.

Here, we give the final expression, assuming that the integrals converge:220

1. f̂(x, y) = −1
2
(λ1(x) + λ2(y) + λ0) , (-Energy )221

2. f̂(x, y) = exp(−λ1(x) − λ2(y) − λ0), (Shannon entropy)222

3. f̂(x, y) =
1

λ1(x) + λ2(y) + λ0
, (Burg entropy)223

4. f̂(x, y) =
1 − α

α
(λ1(x) + λ2(y) + λ0)

1

α−1 , (Tsallis and Renyi entropies).224

Where λ1(x), λ2(y) and λ0 are obtained by replacing these expressions in225

the constraints (24) and solving the resulting system of equations. When226

solving the Lagrangian functional equation which is concave in f, we assume227

that there exists a feasible f > 0 with finite entropy. The results for Tsallis228

and Renyi entropies leads to the same family of distribution depending on229

α due to the monotonicity property of the logarithm function. For the two230

criteria -Energy and Shannon entropy, we can find analytical solutions for231

λ1(x), λ2(y) and λ0. For -Energy, we obtain:232

λ1(x) = −2f1(x) +

∫
λ1(x) dx + 2, λ2(y) = −2f2(y) +

∫
λ2(y) dy + 2233

and λ0 = −2 −

∫
λ1(x) dx −

∫
λ2(y) dy, which finally gives:234
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f̂(x, y) = f1(x) + f2(y) − 1. (25)

This is nothing else but the standard Backprojection mechanism (up to scale235

factor and a constant). Hence, the Backprojection method can be easily236

interpreted as a minimum norm solution. For the Shannon entropy, we get:237

λ1(x) = − ln

(
f1(x)

∫
λ1(x) dx

)
, λ2(y) = − ln

(
f2(y)

∫
λ2(y) dy

)
and238

λ0 = ln

(∫
λ1(x) dx

∫
λ2(y) dy

)
which yields239

f̂(x, y) = f1(x)f2(y). (26)

This is now the MBP we obtained as associate to an independent copula.240

Unfortunately, in the cases of Burg, Tsallis and Renyi entropies, it is not241

possible to find analytical expressions for λ0, λ1, and λ2 as functions of f1242

and f2. Consequently a numerical approach is required, see for example [31].243

Using equation (22) one can write all entropies in terms of copulas. For244

example, if we denote the Shannon entropy by H(x, y) and the copula entropy245

by Hc(u, v), then :246

H(x, y) = H(x) + H(y) + Hc(u, v).

The previous relation shows that the Shannon entropy of the bivariate dis-247

tribution is the sum of the entropies provided by each marginal density and248

the copula entropy. In Appendix, we provide the proof of this result in the249

multivariate case, which is, to the best of our knowledge, original. This250

result shall be of interest for multidimensional tomography, especially 3D251

tomography. Therefore, maximizing the joint entropy, given the marginals,252

is equivalent to maximize the entropy of the copula Hc(u, v). Since we only253

have here a domain constraint -the copula is defined on [0, 1]2-, the Shannon254

Maximum entropy copula is uniform, c(u, v) = 1, and we obtain the MBP255

reconstruction (26). Now, if we look for a Shannon maximum entropy cop-256

ula with an additional correlation constraint-that is we fix the correlation of257

the underlying normalized random variables-,then we end with a Gaussian258

copula, which in turn, lead us to the CopBP method with a Gaussian copula259

(22). Along these lines, it seems possible to characterize the different families260

of copula as maximum entropy solutions, possibly incorporating more prior261

information. More generally, it will also be interesting to characterize the262

copulas corresponding to the Burg/Rényi ME solutions.263

Some simulations are reported Figure 3. The aim of these simulations264

from our Copula-Tomography package (which can be downloaded from [32])265

is to illustrate the link between copula in tomography in the case of only two266
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projections. The original 1 image simulated is a Gaussian and the original267

2 image is formed by four Gaussians. We performed BP, FBP, MBP and268

CopBP on these images. We observe that for the MBP and the CopBP, the269

two projections on the reconstructed images match those from the original270

images which is not the case for the BP and the FBP.271

7. Conclusion272

The main contribution of this paper is to highlight a link between the273

notion of copulas in statistics and X-ray CT for small number of projections.274

This link brings up possible new approaches for image reconstruction in CT.275

We first presented the bivariate copulas and the image reconstruction prob-276

lem in CT. We highlight the connexion between the two problems that consist277

in i) determining a joint bivariate pdf from its two marginals and ii) the CT278

image reconstruction from only two horizontal and vertical projections. We279

emphasize that in both cases, we have the same inverse problem for the de-280

termination of a bivariate function (an image) from the line integrals. We281

have indicated the potential of copula-based reconstruction methods, intro-282

ducing the MBP (Multiplicative Back Projection) and CopBP (Copula Back283

Projection) methods. Current work addresses the characterization of family284

of copulas as well as the estimation of copulas parameters in the reconstruc-285

tion process. We also intend to improve the results by accounting for more286

projections in the method, while keeping the copula approach.287

Appendix A. Relation with Shannon entropy in high dimension288

From the n-dimensional version of Sklar’s theorem [1, 16], we have289

F (x1, . . . , xn) = C (F1(x1), . . . , Fn(xn)) . (A.1)

Now taking the partial derivative in Eq.(A.1), since ui = Fi(xi) it follows290

that the probability density function can be expressed by291

f (x1, . . . , xn) = c (u1, . . . , un)
n∏

i=1

fi (xi) . (A.2)

Notice also that the differentials d ui = d Fi(xi) = fi(xi) dxi,

and dx =
n∏

i=1

dxi. Hence du =
n∏

i=1

fi (xi) dxi, and we remark that

∫

In−1

c (u)
n∏

j=1

j 6=i

duj =

∫

Rn−1

f (x1, . . . , xn)

fi(xi)

n∏

j=1

j 6=i

dxj =
fi(xi)

fi(xi)
= 1.
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From the Shannon entropy and using the expression of f(x) in Eq.(A.2):292

Proof.

H (x) = −

∫

Rn

(
c (u)

n∏

i=1

fi (xi)

)
ln

(
c (u)

n∏

i=1

fi (xi)

)
dx

= −

∫

Rn

(
c (u)

n∏

i=1

fi (xi)

)(
n∑

i=1

ln fi (xi)

)
n∏

i=1

dxi −

∫

Rn

c (u) ln c (u)
n∏

i=1

fi (xi) dxi

= −

n∑

i=1

∫

Rn


c (u)

n∏

j=1

j 6=i

fj (xj) dxj


 fi (xi) ln fi (xi) dxi −

∫

In

c (u) ln c (u)du

= −

n∑

i=1



∫

In−1

c (u)

n∏

j=1

j 6=i

duj



(∫

R

fi (xi) ln fi (xi) dxi

)
+ Hc (u)

= −
n∑

i=1

∫

R

fi (xi) ln fi (xi) dxi + Hc (u)

=

n∑

i=1

H (xi) + Hc (u) . (A.3)

293

Eq.(A.3) shows that the entropy H(x) = −

∫

Rn

f(x) ln f(x) dx of the294

joint multivariate distribution is the sum of the entropies provide by each295

marginal density H (xi) and the copula entropy Hc (u) .296
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