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Abstract 

The subject of this paper is the analysis of an electrical transmission system with the objective of 

identifying its most critical elements with respect to failures and attacks. The methodological 

approach undertaken is based on graph-theoretical (topological) network analysis. Four different 

perspectives of analysis are considered within the formalism of weighed networks, adding to the 

purely topological analysis of the system the reliability and electrical characteristics of its 

components. In each phase of the analysis: i) a graph-theoretical representation is offered to 

highlight the structure of the most important system connections according to the particular 

characteristics examined (topological, reliability, electrical or electrical-reliability); ii) the classical 

degree index of a network node is extended to account for the different characteristics considered. 

The application of these concepts of analysis to an electrical transmission system of literature 

confirms the importance of different perspectives of analysis on such a critical infrastructure.  
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1. Introduction 

Engineered critical infrastructures are the systems of interest in this work. The motivation is that 

they provide the continuous flow of essential goods (e.g. energy, water, data) and services (e.g. 

banking, health care, transportation) which the welfare and security of our nations rely on. These 

critical infrastructures are subject to a set of multiple hazards and threats which must be identified 

and analyzed for optimal protection. 

Among the engineered critical infrastructures, the focus of this work is on the electrical 

transmission system and its analysis to identify the importance of the individual elements. The 

motivation is that the infrastructure for electrical transmission of most of the world‟s countries is 

aging and failing, with funding often not sufficient to repair or replace it; in this situation, there is a 

growing demand for a rational, risk-based approach to its operation and maintenance.  

A number of recent studies have addressed the assessment of vulnerability in electric power 

systems, by graph-theoretical topological investigations as in [1]-[5], physics-based models as in 

[6]-[9], agent-based modeling as in [10]. These studies all refer to the transmission system and are 

based on different conceptualizations of vulnerability [11]. Also, more sophisticated techniques 

such as polyhedral dynamics [12] and artificial intelligence-based search methods [13], [14] have 

been proposed to find critical elements and define vulnerability indices.  

The topological approach to vulnerability analysis is quite popular because in spite of its relative 

simplicity it offers the capability of identifying elements of structural vulnerability, i.e. network 

edges and nodes whose failure can induce a severe structural damage to the network through the 

physical disconnection of its parts. However, the methods based on such approach are limited from 

the point of view of the physical analysis of the electrical transmission systems, which the graphical 

networks represent; the limitations come from the fact that the analysis focuses only on the 

topological features of the network, thus neglecting its physical characteristics [15]-[17]. In this 

respect, it is important to verify the extent of these limitations and possibly overcome them by 

complementation with more detailed physical analyses on critical parts of the network [18], [19]. 

In this paper, the formalism of weighed networks is exploited to provide different graph-theoretical 

representations and analyses of a power transmission system. The aim is to contribute to reducing 

the gap between the highly conceptualized (and abstract) analyses based purely on considerations of 

the system topology and the highly detailed (and computationally demanding) simulations of 

system behavior, in order to render the overall vulnerability assessment more feasible and robust. 

The “weights” appended to the network elements are intended to capture relevant electrical and 

reliability properties of the system, so as to overcome the classical simplifying but unrealistic 

assumption that electrical flow occurs along the shortest and failure-free paths of connections. 

The rest of the paper is organized as follows: Section 2 describes the theoretical basis for the 

proposed perspectives of analysis. In Section 3, the work is presented from a practical point of view 

with reference to the popular IEEE RTS 96 system [20]. Section 4 contains a critical comparison of 

the four perspectives of analysis with an outlook on other perspectives. Conclusions are drawn in 

Section 5. 

2. Different perspectives of analysis 

In the present study, the system is modeled as a stochastic, weighted, undirected, connected network 

in which each electric bus is transposed into a node, linked by edges representing the overhead lines 

connecting consecutive buses. In this respect, this representation focuses on the actual topological 

structure of the power transmission network. 

Mathematically, the topological structure of the network can be represented as an undirected graph 

( , )G V E  where V  represents the set of vertexes (or nodes, or components) ( dim( )N V  is the 

number of nodes) and E  represents the set of edges ( , )i j  ( dim( )K E  is the number of edges). 



The connections are specified in an N×N adjacency matrix {aij} whose entries are 1 if there is an 

edge joining node i to node j and 0 otherwise.  

2.1. Graph-theoretical topological analysis  

The transmission network is first analyzed from a purely topological point of view. In the 

topological representation, no specification of the physical length of the edges is given. Each link is 

considered having a length equal to one and thus the distance between two nodes i and j is 

represented solely by the number of edges travelled in the path from i to j. On the basis of {aij}, it is 

possible to compute the matrix of the shortest path lengths {dij} whose generic entry dij is the 

number of edges making up the shortest path linking i and j in the network. The fact that G  is 

assumed to be connected implies that dij is positive and finite i j   and that there are ( 1) / 2N N   

distinct shortest paths among the N nodes. 

From the matrix of shortest path lengths  ijd , a new matrix  ijs  can be computed by considering 

connected only a number of SK  links with smallest values of shortest path lengths; the generic 

element 
ijs  is equal to 1 if the shortest distance connecting i and j is one of the SK  smallest values 

and 0 otherwise.  

A synthetic indicator of the topological structure of a complex network is the distribution of the 

degree (or connectivity) ki of its nodes 1,2,...,i N , the degree being defined as the number of 

edges incident to the node [21]: 

 ,  1,2,...,i ij

j N

k a i N


    (1) 

Intuitively, the degree of a node measures its influence in the graph with respect to the size of its 

immediate environment. 

2.2. Reliability analysis 

While some studies witnessed a reasonable association between the topology of the power grids and 

the robustness and stability of the power transmission systems [1], [22], [23], the relationship 

between network structure and system reliability is also of relevance. In this respect, the formalism 

of weighted networks [22] can be undertaken to account for the reliability properties of the 

transmission network system. More precisely, a reliability matrix {pij} can be introduced to describe 

the network reliability properties at a local level [24]; the generic element pij represents the 

probability of successful transmission along the edge that connects node i and j. 

Since the graph is not fully connected, the reliability matrix tends to be sparse (pij=0 for all pairs of 

nodes i and j that do not share a direct physical connection). In order to obtain a non-sparse matrix 

containing the complete information on the reliability of connection between any two pairs of 

nodes, the reliability 
ij

p  of connection between i and j through any connecting path 
ij  is computed 

by a method based on a combination of cellular automata (CA) and Monte Carlo (MC) sampling 

[25]. In this method, the reliability 
ij

p , i.e. the probability of a successful connection from i to j, is 

computed by MC – sampling a large number M of random realizations (MC trials) of the states of 

the connecting arcs and by CA-computing, for each realization, if a path from i to j exists; the ratio 

of the number of successful 
ij  paths over the total number of realizations computed gives the 

connection reliability from node i to node j. 

As indicator of the importance of the nodes from the reliability point of view, a reliability degree 

can be introduced as: 

 ,  1,2,...,
ij

r

i

j N

k p i N


   (2) 



From the reliability analysis, a matrix  r

ijs  is computed on the basis of the SK  most reliable paths. 

The matrix element 
r

ijs  is equal to 1 if the connection from node i to j is one of the SK  most reliable 

connections, and 0 otherwise.  r

ijs  can be thought of as the reliability equivalent of the topological 

adjacency matrix {aij}. 

2.3. Electrical analysis 

As mentioned in the Introduction, in the case of electrical transmission networks of interest here, 

the existing literature on vulnerability analysis largely takes a topological approach to identify the 

critical components in the network [1], [26], [5]. Even though such analyses are capable of 

identifying elements of structural vulnerability, they are limited from the point of view of the 

physical analysis of the electrical transmission system, which the networks represent. These 

limitations are all related to the fact that the analysis performed focuses only on the topological 

features of the network, thus neglecting its physical characteristics; this is not realistic for electrical 

transmission networks in which: i) the “electrical” length of a path differs from the topological 

length, depending on the difficulty (resistance) of transmission; ii) the electrical power is not 

necessarily routed through the shortest paths: rather, the transmission of power is determined by 

physical rules, e.g. Kirchoff‟s laws, nodal voltages etc.  

To practically overcome these limitations, an electrical connectivity metric was introduced within 

the weighed network formalism to capture the properties of node centrality, relative to metrics 

based on node-edge connectivity [16]. 

The electrical characteristics of the individual network elements and their interconnection 

relationships can be expressed in terms of the bus admittance matrix, busY . Inverting the sparse bus 

admittance matrix ( 0bus

ijY   for all pairs of nodes i and j that do not share a direct physical 

connection) that incorporates Kirchoff‟s laws, a non-sparse matrix, known as impedance matrix, 

can be obtained.  

The matrix of electrical distances is then given by the magnitude  ijm  of the entries of the matrix 

busZ . Admittance is a complete expression of the extent to which a circuit allows a current to flow; 

as the absolute value of the complex admittance becomes larger, the absolute value of the complex 

impedance becomes smaller and therefore smaller bus

ij ijm Z  correspond to shorter electrical 

distances [16].  

The shortest SK  electrical distances, which can be used to define a matrix  e

ijs  analogous to the 

previous matrixes  ijs  and  r

ijs : the matrix element 
e

ijs  is equal to 1 if the connection from node i 

to j is one of the SK  values, and 0 otherwise. The computation of the connection distances between 

nodes i and j takes into account all possible paths between nodes, as in the case of the reliability 

analysis, and not only the shortest paths, as in the topological analysis.  

Based on the electrical information contained in the busZ  matrix, an indicator of the importance of 

the nodes can be introduced as: 

 
1

,  1,2,...,e

i

ij

j N

k i N
m



 


  (3) 

The electrical centrality measure of interest to electrical engineers introduced in [16] and repeated 

in the paper quantifies that the importance of a substation as being inversely proportional to the 

Thévenin equivalent circuit seen in the substation. In other words, the electrical equivalent distance 

(Z Thévenin) between the generation nodes and the substation determines its importance. Thus, the 

importance of a substation is represented by its maximum level of short circuit power. Choosing 



this criterion to identify the importance of a node or substation in a power system implies depending 

on the number of the operating generators (node admittance). Therefore, the adopted definition of 

node importance accounts also for the actual generation dispatch.  

2.4. Electrical-reliability analysis 

As the physical reliability and electrical properties of the transmission network act together in 

shaping the behavior of the system, an analysis more complete than the previous ones would be one 

that combines the reliability and electrical characteristics together. In this view, a electrical- 

reliability distance can be associated to each pair of nodes ij, i.e. the product between the reliability 

ij
p  of connection between i and j and the corresponding electrical distance 

ijm .  

The SK  shortest connections define a matrix  er
ijs , where the generic element 

er
ijs  is equal to 1 if 

the connection from node i to j is one of the SK  values, and 0 otherwise.  

As an indicator of the importance of nodes from the electrical and reliability point of view, the 

electrical- reliability degree can be defined as: 

 

  
1

,  1,2,...,

ij

er

i

ij

j N

k i N
m p



 


  (4) 

As an alternative to the electrical-reliability degree, the expected electrical distance could be used to 

evaluate the importance of different network components. This measure is computed as: 

  ,  1,2,...,
ij iji

j N

e m q i N 


    (5) 

where 
ij

q  is the probability of different combinations of failures when multiple 
ij  paths between 

the pair of nodes i and j exist, and 
ij

m  is the electrical distance corresponding to the 
ij  path.  

As previously stated, the measure based on electrical distances is relevant also for dispatching 

problems aimed at reduction of power losses. In the context of the electrical – reliability analysis 

where short-term contingencies and supply continuity are the crucial factors, a complementary 

measure could be obtained by combining the reliability of lines together with the corresponding 

maximal transmission capacity. 

The further development of these indicators is beyond the purpose of this paper. 

3. Results and discussion 

Let us consider the power transmission network system IEEE RTS 96 of Figure 1 [20]. The network 

consists of 24 bus locations connected by 38 lines and transformers. Some edges (4 out of 38) are 

constituted by double physical lines; for the purpose of the analysis, however, they are treated as a 

single edge of communication so that effectively 34K  . The corresponding graph is shown in 

Figure 2. 

3.1. Graph-theoretical topological analysis 

Obviously, in the case of 34SK K   the smallest values in the matrix of the shortest path lengths 

are equal to 1, and correspond to the direct physical connections, i.e.    ij ijs a  (Figure 2). 

The first column of Table 1 reports the ranking of the nodes based on the values of their degree. As 

defined in Eq. (1), the most important nodes from a degree point of view have the largest number of 

connections to other nodes in the network; thus, nodes 9 and 10, characterized by the largest 

number of incident edges (five) are placed in the first position of the topological ranking; on the 

contrary, node 7 with only one connection, falls in the last position of the ranking. 



3.2. Reliability analysis 

Table 2, third column lists the 34SK   most reliable connections, which can be used to define a 

matrix  r

ijs  analogous to  ijs  defined on the basis of the smallest values of shortest path lengths in 

the topological analysis. The matrix element 
r

ijs  is 1 if the connection from node i to j is one of the 

34SK   listed in Table 2, first and second column; it is 0 otherwise. The representation of the 

connection pattern of the 34 most reliable paths is shown in Figure 3, with the node size 

proportional to the number of incident edges. It can be seen that the most reliably-connected nodes 

do not necessarily share a direct physical connection. 

The reliability-driven representation of the network connectivity shows a different pattern than the 

topological one; this is due to the fact that the computation of the reliability of the connection from 

node i to j takes into account all the possible paths linking nodes i and j, not just the shortest 

topological one. This conceptual representation of the network shows that there are several hubs 

identified as important from the reliability point of view: they are traversed by the majority of the 

most reliable paths. 

The most reliably connected area is found to be the central part of the network, concentrated around 

nodes 9, 10, 11 and 12 (which have also the highest degree, as reported in Table 1), due to direct 

physical connections, i.e. edges 9-11, 10-11, 9-12, and indirect connections, i.e. 9-10 and 11-12. On 

the other hand, several nodes appear to be disconnected from the network, forming clusters of size 

one or two. Based on these findings, the network could be made more robust by increasing the 

reliability of these clusters of critical hubs. 

Table 1, third column, provides the ranking of the reliability degree for each node. Nodes 9, 10, 11 

and 12 have the most reliable connections. The ranking is similar to the one obtained with the 

topological degree (Table 1, first column), with nodes 9, 10, 11 and 12 being the most important 

(reliable), and nodes 7 and 24 the least. This points to a strong correlation between the network 

structure and the system reliability due to the large values of connection reliability 
ij

p
. 

3. 3. Electrical analysis 

Table 2, column five provides the most important paths with respect to the electrical distance. The 

edge 7-8 was identified as the most important, i.e. having the shortest electrical distance and 

therefore a larger propensity for power to flow between its connecting nodes. The tendency of 

power to flow through this edge is a consequence of the network‟s structure; as it can be seen from 

Figure 1, node 7 is a generator connected to the rest of the network only by node 8. As in the 

reliability case, both direct physical connections, i.e. edges 7-8 and 1-2, and indirect connections, 

i.e. 18-22 and 17-21 are ranked as the most important connections.  

Figure 4 shows the connection pattern realized by the 34 shortest electrical paths. The resulting 

graph has the same size as the original network in Figure 2 (24 nodes and 34 edges), and the node 

size is proportional to the number of incident edges. The electrical representation of the network 

suggests a very different structure with respect to the topological and the reliability perspectives. 

The most vulnerable area from an electrical perspective is the north-west side of the network, where 

the power flow concentrates due to Kirchoff‟s Laws. Indeed, this area contains several important 

generators (i.e. nodes 15, 16, 18, 21 and 22), and therefore there is a strong exchange of power 

among the nodes. These electrical hubs appear to be potentially more vulnerable with respect to 

faults or malicious attacks than the other network nodes. 

Table 1, fifth column provides the ranking of the nodes with respect to the electrical degree and 

shows a different prioritization of the network nodes with respect to the topological and reliability 

degrees. Nodes 18, 17 and 21 are identified as the most important from an electrical point of view, 

having the highest degree of electrical connectivity. They are ranked as being the most vulnerable 

because power is more likely to flow through these electrical hubs. In spite of that, they have small 



reliability degrees (Table 1, forth column), which expose the network to potential severe outages. 

On the contrary, node 7 is among the less critical nodes according to the electrical degree, and 

consistently, it has the smallest reliability degree. 

3.4. Electrical-reliability analysis 

The electrical-reliability representation of the connection pattern of the 34 most reliable electrical 

paths is shown in Figure 5, with the node sizes adjusted according to the number of incident edges. 

The most important edge from the electrical and reliability point of view is 7-8, which also 

represents a physical connection of the electrical transmission network analyzed (Figure 1). This 

edge, ranked as first in Table 2, sixth column is characterized by the smaller electrical distance (

78 0.1030m  ) and a relatively small reliability of 0.7409.  

Figure 5 suggests that the majority of the most vulnerable paths are those connecting the south-east 

and the north sides of the network through nodes 7 and 22; these paths are characterized by small 

values of the electrical-reliability distance. Some of the 34SK   connections include also paths 

with short electrical distance and average reliability, located in the north area of the network 

system. 

Table 1, seventh column provides the ranking of the network nodes with respect to the reliability 

and electrical properties of the network, which bears resemblance to the reliability ranking (Table 1, 

third column). This fact suggests that the reliability (and structural) characteristics have a larger 

influence upon the vulnerability of the network than the electrical characteristics. In this view, node 

7 having the smallest reliability degree (Table 1, forth column) and a relatively large electrical 

degree (Table 1, sixth column) is ranked among the most critical nodes (Table 1, eighth column). 

Nonetheless, the reliability-electrical analysis highlights criticalities complementary to the electrical 

analysis. In particular, node 16, characterized by a relatively large reliability degree (Table 1, forth 

column) and large electrical degree (Table 1, sixth column) is ranked among the critical nodes when 

combing the two characteristics (Table 1, eighth column). 

From this perspective, the core made of nodes 9, 10, 11 and 12, concentrated in the central part of 

the network, is found to be the most robust, with node 10 having the smallest electrical-reliability 

degree. On the contrary, the north side of the network appears to be the most vulnerable, with nodes 

17, 18 and 22 placed in the first positions of the electrical-reliability ranking. 

4. Choosing among the perspectives 

The four perspectives on network analysis can be framed into the broader scenario of risk analysis 

against random failures and malevolent attacks [27]-[30]. In this view, a comparative evaluation is 

proposed to determine which perspective to choose for a given circumstance. Table 3 provides a 

starting point for choosing among several perspectives on network analysis based on mutual 

comparison criteria [31], [32]. 

The major drawback of the purely topological analysis is that it relies solely on the network 

structure to assess the connectivity performance and nodes importance, and does not consider any 

physical properties nor system dynamics (first three columns of Table 3). By considering the 

connections reliability among the nodes based on the failure probabilities of the edges, the 

reliability-driven representation highlights the most reliable indirect connections, and the most 

reliably connected areas of the network. 

Nevertheless, the topological and reliability analyses fail to explicitly incorporate the physical laws 

governing the electrical flow. An electrical- or electrical-reliability-driven representation of the 

network indeed highlights the electrical hubs that appear to be more vulnerable, due to the smaller 

electrical- or electrical-reliability distances of the paths that traverse them. The incapacitation of 

these vulnerable paths causes the electrical flow to be routed along alternative paths, possibly 

triggering cascades of overloads and extensive blackouts. 



The quantification of system vulnerability indicators and the identification of its critical elements 

are the two main outputs of a vulnerability assessment. While providing complementary 

information, vulnerability indicators are parameters encompassing the static and/or dynamic 

characteristics of the whole system, whereas the identification of critical elements comes from their 

ranking with respect to their individual connectivity efficiency and/or their contributions to the 

propagation of failures, with their effects, through the system [33]. 

To properly quantify the importance and criticality of the network components, various weighted 

indicators can be defined as complements to the topological indicators. From a topological 

viewpoint, various measures of the importance of a network element (edge or node) can be found in 

the literature [34]. This centrality measures can be further extended by considering suitable 

connections weights to identify the critical components with respect to the reliability and the 

electric features [35] of the networks components. By further considering the „reliability distances‟ 

or the „electrical-reliability distances‟ among network nodes in terms of the probabilities of failure 

of the interconnecting links, or in terms of a combination of the reliability and the electrical 

properties of the links, vulnerability indicators can be defined for use in the analysis of the 

robustness of network systems.  

The „data needs‟ criterion refers to the quantity and quality of input data needed to properly perform 

the analysis. By associating the high scale to the electrical and electrical- reliability analysis we 

consider that this approaches strongly depend on a high quantity and quality of input data to provide 

reasonable outputs. On the contrary, graph-theoretical and reliability analyses rely on a minimum 

amount of information such as the adjacency matrix and the failure rate of the lines. 

The level of maturity of each perspective can be measured by the amount of available literature 

review [31]. Many application examples are found in scientific literature for the graph-theoretical 

and the electrical analysis so we assume a high level of maturity. On the contrary, a poor level of 

maturity is assigned to the electrical-reliability perspective due to the scarce experience in this field. 

We assume for the reliability analysis a middle level of maturity. 

Complexity criteria takes into account the difficulty of the algorithms and programs of the 

respective methodological approach. Two levels of complexity can be distinguished: a low level of 

complexity assigned to the graph-theoretical perspective due to the simplicity of the algorithms 

necessary to perform such an analysis and a medium level of complexity for the remaining 

perspectives. 

The „requested time‟ criterion describes the effort employed in developing the algorithms for the 

analysis, and the simulation speed. A low level can be assigned to the graph-theoretical and 

reliability analyses because of the relative small amount of time needed to build-in the algorithms 

and a fast simulation speed, while we assume a medium level for the other two analyses. 

A number of alternative approaches for the vulnerability assessment of electrical networks have 

been reported in Table 3, fifth to eight row [32]. The choice of the suitable approach depends on the 

type of system, the objective of the analysis, and the available information. For example, statistical 

analysis [36] is suitable when rich data sets about the system operation and performance are 

available. It is characterized by a high level of maturity and low level of complexity. However, the 

structure of the network under analysis may be hidden by the fact that the data are often presented 

in an aggregate form [37], [38]. Moreover, the effective use of the sets of data is difficult because 

they come from a variety of past operating conditions that may not fully reflect the situations of 

interest at present and in the future. 

Probabilistic risk assessment is another mature methodology that can be applied for analyzing 

network systems [39], [23]. It integrates deterministic and stochastic tools to carry out a systematic 

and structured evaluation of the risk associated with every life cycle aspect of a complex engineered 

technological system, which may lead to undesired consequences triggered by an accident initiating 

event. The disadvantages of this methodology arise from its complexity that leads to significant 

efforts in logic modeling and quantification, and from the limited capability of providing an 

exhaustive analysis. 



Agent-based modeling (ABM) is also a suitable approach, particularly useful for situations with 

sparse or non-existent macro scale information. ABM is able to use the rich sources of micro-level 

data to develop interaction forecasts. The main disadvantages of these simulation models lie in the 

complexity of the computer programs, which tends to obscure the underlying assumptions, and in 

the inevitable input subjectivity. The high level complexity leads also to a high level of requested 

time. 

Object-oriented modeling offer also an attractive modeling paradigm for describing the dynamic 

network behavior [40]. One of the major advantages of an object-oriented approach is the 

possibility to include physical laws into the simulation. The level of modeling detail offered by the 

object-oriented approach allows analyzing a multitude of time-dependent availability aspects. The 

main problems are related to the slow simulation speed and the large number of parameters to be 

input in the analysis [18]. However, by focusing on specific safety aspects, the model can be 

simplified and the computational burden reduced. 

Based on this comparative evaluation, we propose a framework of analysis that incorporates the 

four perspectives presented in this work to be used as a preliminary screening analysis of the 

network vulnerabilities. This is reasonable since the first step in a general risk assessment is 

represented by the system characterization [41], [42]. By performing such an analysis a better 

comprehension of the system is achieved, and the different criticalities within the network 

components are highlighted. Such framework could be used as a starting point for a more detailed 

analysis, focused on the previously identified critical components. 

5. Conclusions 

In this paper, the analysis of an electrical transmission network system has been undertaken with the 

objective of identifying the critical components, within a vulnerability assessment frame of work. 

The electrical transmission network IEEE RTS 96 has been taken as reference to present the 

development of the analysis from four different perspectives: topological, reliability, electrical and 

electrical-reliability. 

For each perspective, the structure of the most important system connections has been identified, 

and an extended degree index has been computed for the nodes based on this structure. The three 

weighted indicators quantify the importance of the network components with reference to the role 

played by the observed characteristic (topological, reliability, electrical or electrical-reliability). 

A comparative evaluation of the four perspectives also with respect to other approaches for the 

vulnerability assessment was performed and a mechanism for choosing among them was provided. 

In particular, we found that the reliability analysis identifies the clusters of critical hubs whose 

reliabilities have to be enhanced to ensure network robustness against random failures. Moreover, 

the electrical analysis ranks as vulnerable the buses that are traversed by the greater part of the 

power flow. These electrical hubs are more vulnerable to faults or malicious attacks because their 

malfunctions lead to a large redistribution of power to other electrical routes. By comparing the 

reliability and the electrical analyses, we were able to find inconsistencies in the network design. 

Namely, nodes with large electrical degree have small reliability degrees, which expose the network 

to potential severe outages. Therefore, we suggest network modifications that increase the reliability 

degree of the nodes which have a large electrical degree. 
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Tables and figures 

 
Table 1. Degree indicators of the 24 network nodes 

Topological Degree Reliability Degree Electrical degree Electrical-reliability 

degree 

node degree node degree node degree node degree 

9 5 9 19.0939 18 0.2469 7 0.4215 

10 5 10 19.0928 17 0.2467 22 0.4149 

11 4 11 19.0926 21 0.2467 18 0.3781 

12 4 12 19.0912 15 0.2465 17 0.3622 

16 4 13 18.1300 16 0.2462 21 0.3592 

1 3 3 18.0415 22 0.2452 19 0.3515 

2 3 24 17.9313 19 0.2449 20 0.3440 

3 3 1 17.6274 24 0.2447 14 0.3317 

8 3 16 17.5905 20 0.2433 15 0.3304 

13 3 23 17.4177 23 0.2423 16 0.3238 

15 3 2 17.3933 14 0.2419 23 0.3198 

17 3 15 17.2740 13 0.2388 4 0.3176 

21 3 5 17.0725 11 0.2386 8 0.3149 

23 3 8 16.9606 12 0.2370 24 0.3133 

4 2 14 16.7865 3 0.2368 5 0.3030 

5 2 4 16.7335 9 0.2340 13 0.3029 

6 2 6 16.6817 8 0.2316 3 0.3021 

14 2 20 16.3159 7 0.2315 2 0.2985 

18 2 19 16.0972 4 0.2303 1 0.2951 

19 2 21 16.0233 1 0.2250 6 0.2914 

20 2 17 15.8838 2 0.2245 11 0.2872 

22 2 18 15.2564 5 0.2242 12 0.2858 

24 2 22 13.8271 10 0.2219 9 0.2820 

7 1 7 12.7517 6 0.2107 10 0.2678 

 



Table 2. Ranking of network connections with respect to the reliability, electrical and reliability-electrical distances 

From 

node  

To 

node 

Reliability Rank Electrical 

distance 

Rank Electrical-

reliability distance 

Rank From 

node  

To 

node 

Reliability Rank Electrical 

distance 

Rank Electrical-

reliability 

distance 

Rank 

1 2 0.8991 6 0.1505 15 - - 10 24 0.8822 16 - - - - 

1 9 0.8869 13 - - - - 11 12 0.9996 2 - - - - 

1 10 0.8870 12 - - - - 11 13 0.9389 5 - - - - 
1 11 0.8869 13 - - - - 11 23 0.8730 22 - - - - 

1 12 0.8868 14 - - - - 11 24 0.8822 16 - - - - 

2 9 0.8786 19 - - - - 12 13 0.9391 4 - - - - 
2 10 0.8787 18 - - - - 12 24 0.8821 17 - - - - 

2 11 0.8786 19 - - - - 15 16 0.8900 10 0.1506 16 - - 

2 12 0.8785 20 - - - - 15 17 - - 0.1484 11 - - 

3 9 0.8919 7 - - - - 15 18 - - 0.1470 9 - - 

3 10 0.8917 9 - - - - 15 19 - - 0.1584 28 - - 

3 11 0.8918 8 - - - - 15 21 - - 0.1455 8 - - 
3 12 0.8918 8 - - - - 15 22 - - 0.1477 10 0.1061 25 

3 22 - - - - 0.1085 32 15 24 - - 0.1535 20 - - 

3 24 0.9862 3 0.1580 25 - - 16 17 - - 0.1493 12 - - 
4 7 - - - - 0.1027 19 16 18 - - 0.1501 14 - - 

4 22 - - - - 0.1024 17 16 19 - - 0.1551 21 - - 

5 7 - - - - 0.1076 30 16 20 - - 0.1620 34 - - 
5 22 - - - - 0.1090 34 16 21 - - 0.1506 17 - - 

7 8 - - 0.1030 1 0.0763 1 16 22 - - 0.1512 18 0.1070 28 

7 14 - - - - 0.1004 13 16 24 - - 0.1606 33 - - 
7 15 - - - - 0.0999 12 17 18 - - 0.1375 4 - - 

7 16 - - - - 0.1020 16 17 19 - - 0.1575 24 0.1085 33 

7 17 - - - - 0.0891 4 17 20 - - - - 0.1062 26 
7 18 - - - - 0.0850 3 17 21 - - 0.1413 7 - - 

7 19 - - - - 0.0944 8 17 22 - - 0.1392 6 - - 

7 20 - - - - 0.0980 11 17 24 - - 0.1593 31 - - 
7 21 - - - - 0.0899 5 18 19 - - 0.1582 26 0.1024 18 

7 22 - - - - 0.0772 2 18 20 - - - - 0.1006 15 

7 23 - - - - 0.1083 31 18 21 0.8898 11 0.1366 2 - - 
8 9 0.8731 21 - - - - 18 22 - - 0.1380 5 0.1037 21 

8 10 0.8731 21 - - - - 18 23 - - - - 0.1047 23 

8 11 0.8730 22 - - - - 18 24 - - 0.1583 27 0.1065 27 
8 22 - - - - 0.1042 22 19 20 - - 0.1522 19 - - 

13 22 - - - - 0.1031 20 19 21 - - 0.1586 29 0.1075 29 

14 22 - - - - 0.1004 14 19 22 - - 0.1594 32 0.0930 7 
9 10 0.9997 1 - - - - 19 23 - - 0.1570 22 - - 

9 11 0.9997 1 - - - - 20 21 - - - - 0.1060 24 

9 12 0.9997 1 - - - - 20 22 - - - - 0.0915 6 
9 13 0.9389 5 - - - - 20 23 - - 0.1493 13 - - 

9 24 0.8826 15 - - - - 21 22 - - 0.1367 3 - - 

10 11 0.9997 1 - - - - 21 24 - - 0.1572 23 - - 
10 12 0.9997 1 - - - - 22 23 - - - - 0.0951 9 

10 13 0.9389 5 - - - - 22 24 - - 0.1592 30 0.0965 10 

 



Table 3. Evaluation of the four perspectives based on literature review and developed criteria 

 Accounting 

for system 

structure 

Accounting 

for 

physical 
properties 

Accounting 

for 

dynamics 

 Identification 

of importance 

indicators 

 Identification of 

vulnerability 

indicators 

Data needs Maturity Complexity Requested 

time 

Graph-

theoretical 
analysis 

YES NO NO YES NO LOW HIGH LOW LOW 

Reliability 
analysis 

YES YES NO YES NO LOW MIDDLE MEDIUM LOW 

Electrical 
analysis 

YES YES YES YES YES HIGH HIGH MEDIUM MEDIUM 

Reliability-

electrical 

analysis 

YES YES YES YES YES HIGH POOR MEDIUM MEDIUM 

Statistical 

analysis 
NO NO NO YES YES HIGH HIGH LOW LOW 

Risk analysis YES YES YES YES YES HIGH HIGH HIGH HIGH 

Agent-based 

modeling 
YES YES YES YES YES LOW HIGH HIGH HIGH 

Object-
oriented 

modeling and 

simulation 

YES YES YES YES YES HIGH HIGH HIGH HIGH 

  



 

 

Figure 1. The IEEE RTS 96  

 

 

Figure 2. The topological graph of the IEEE RTS 96  
  



 

Figure 3. The IEEE RTS 96 redrawn to highlight the structure of the 34 most reliable connections 

 

 

Figure 4. The IEEE RTS 96 redrawn to highlight the structure of the shorter electrical connections 

  



 

Figure 5. The IEEE RTS 96 redrawn to highlight the structure of the most reliable electrical connections 


