
On the stability and stabilization of quaternion

equilibria of rigid bodies

Rune Schlanbusch, Antonio Loria, P. J. Nicklasson

To cite this version:

Rune Schlanbusch, Antonio Loria, P. J. Nicklasson. On the stability and stabilization of
quaternion equilibria of rigid bodies. Automatica, Elsevier, 2012, 48 (12), pp.3135-3141.
<10.1016/j.automatica.2012.08.012>. <hal-00831433>

HAL Id: hal-00831433

https://hal.archives-ouvertes.fr/hal-00831433

Submitted on 7 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

We study attitude control of rigid bodies on quaternion coordinates under three mathematically different perspectives,
depending on how the system dynamics are assumed to evolve. In the first case, we suppose that one equilibrium point is chosen
a priori and a continuous controller is used under the assumption that the rigid body always spins in the same direction. In
the second case, we relax the assumption that the sense of rotation is constant. Finally, a third scenario is considered in which
hybrid (switching) control is used to choose the direction in which to spin, that is, both equilibria are continuously considered
with regard to less energy consumption. It is showed that each of three scenarios must be treated in a different theoretical
setting. A comparative study in simulations is also provided.

Keywords:

1 Introduction

The attitude of a rigid body may be described by so-called
quaternions, redundant coordinates on the space SO(3).
Quaternions determine any point on the sphere and include
one “extra” coordinate which indicates the sense of rigid-
body rotations. They are redundant as the two poles of
the sphere correspond to the same physical posture of the
body yet, mathematically they account for two equilibria.
This brings especial difficulties to the stability analysis of
attitude-controlled rigid bodies.

From a practical viewpoint, certain control actions may
cause the body to rotate almost a full revolution to achieve a
posture which is close to the initial one, i.e., to take a longer
path. From an analytical view-point the two equilibria must
be considered as different hence, one may not expect to
achieve “global” stability properties in closed-loop. Besides,
the adjective “global” or “in the whole” pertains to the
case when the states are elements of Rn –see Hahn (1967).
See also Loŕıa and Panteley (2006) for precise definitions of
stability and discussions.

To deal with multiple equilibria in control design there are
two evident alternatives: to choose a target equilibrium be-
fore starting a maneuver, or not. If a target equilibrium is
fixed before the maneuver the control design relies on the
hypothesis that the sense of rotation does not change.Math-
ematically, this is tantamount to assuming that one of the
quaternion states does not change sign. In Kristiansen et
al. (2008) the authors proposes a controller which steers a
spacecraft to the equilibrium point closest to the initial pos-
ture. However, the shortest-path rotation is not necessarily
optimal in terms of use of input “energy” –for instance, fuel
consumption in the context of spacecraft control, if initial

velocities are relatively high and in direction opposite to
the desired rotation. See Schlanbusch et al. (2010a) for a
study of this aspect.

The freedom of not fixing the reference equilibrium a
priori comes at the price of the increased complexity. See
for instance Casagrande et al. (2008) on control of an
under-actuated non-symmetric rigid body and Mayhew et
al. (2009) where the authors present two quaternion-based
hybrid controllers: one is derived from an energy-based
Lyapunov function which entails a switch in the rotational
direction only when the rotational error is above π rad and
one based on backstepping design which also considers the
angular velocity errors to determine whether switching is
needed.

In this paper we analyze the three following scenarios

Scenario 1.– One equilibrium is considered and is chosen
a priori;

Scenario 2.– Two equilibria are considered, one of which
is chosen a priori;

Scenario 3.– Two equilibria are considered, none of which
is chosen a priori.

For comparison, we use in the three cases a controller that is
inspired from Slotine and Li (1988). However, the controller
that we propose is adapted to the rigid body in quater-
nion space hence, it is different from that in the latter ref-
erence, which applies to robot manipulators in joint space
(R2n) 1 . In the first case, the controller is showed to guaran-
tee asymptotic stability in the large provided that the sense

1 We remark that the choice of the controller is unimportant,
i.e., the same results may be obtained for many other controllers
inspired from robot control literature.
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of rotation is constant. In the second case, we add to the
previous controller a switching rule which yields only one
potential initial switch and we provide a proof of asymp-
totic stability using density functions –see Rantzer (2001).
We show asymptotic stability for all initial conditions on
the sphere except for a zero-measure set. In the third case
we incorporate a switching law, the closed-loop system is
hybrid and we use the framework of Sanfelice et al. (2007)
to analyze the closed-loop system.

Simulation results are presented with the aim at showing
that a proper design of the switching law may lead to per-
formance improvement.

The rest of the paper is organized as follows. In Section
2 we describe the quaternion-based model of a rigid-body;
in Section 3 we present our main results; in Section 4 we
present a comparative simulations study and we conclude
with some remarks in Section 5.

2 Rigid-body model

Attitude control consists in achieving any rigid-body ori-
entation relative to a fixed frame, independent of that at-
tached to the body itself. Perhaps the best manner to ex-
plain the kinematics and dynamics is to consider the at-
titude of a satellite relative to the Earth. We denoted the
body frame as Fb, and is located at the center of mass of
the rigid body, and its basis vectors are aligned with the
main axis of inertia and the inertia frame as F i.

2.1 Quaternions

We recall that the special orthogonal group of order three
corresponds to the set SO(3) of orthonormal rotation ma-
trices R,

SO(3) = {R ∈ R
3×3 : R⊤R = I, det(R) = 1} ,

where I denotes the identity matrix. A rotation matrix for
a rotation θ about an arbitrary unit vector k may be angle-
axis parameterized as in Egeland and Gravdahl (2002), i.e.,

Rk,θ = I+ S(k) sin(θ) + S2(k)(1− cos(θ)). (1)

Then, the coordinate transformation of a vector r from
frame a to frame b is written as rb = Rb

ar
a. The rotation

matrix in (1) can be expressed by an Euler parameter rep-
resentation as

R = I+ 2ηS(ǫ) + 2S2(ǫ) ,

where the matrix S(·) is the cross product operator, i.e.,

S(ǫ) =









0 −ǫz ǫy

ǫz 0 −ǫx

−ǫy ǫx 0









, ǫ =









ǫx

ǫy

ǫz









.

Quaternions are used to parameterize elements of SO(3).
The unit quaternion is defined as q = [η, ǫ

⊤]⊤ ∈ S3 =
{x ∈ R

4 : x⊤x = 1}, where η = cos (θ/2) ∈ R is ‘the
scalar part’ and ǫ = k sin (θ/2) ∈ R

3 is ‘the vector part’.
The set S3 forms a group with quaternion multiplication,
which is distributive and associative, but not commutative.

The inverse rotation of a given attitude is performed via
the inverse conjugated q̄ = [η, − ǫ

⊤]⊤.

The difference between two postures is given by the quater-
nion product,

q1 ⊗ q2 =

[

η1η2 − ǫ
⊤
1 ǫ2

η1ǫ2 + η2ǫ1 + S(ǫ1)ǫ2

]

.

We stress that the quaternion representation is redundant.
Notice that q and −q represent the same physical attitude
however, the two postures differ mathematically by a 2π
rotation about an arbitrary axis. As a consequence, the
mathematical model has two equilibria and this must be
considered when studying stability.

2.2 Kinematics and Dynamics

The time derivative of the rotation matrix is

Ṙa
b = S

(

ω
a
a,b

)

Ra
b = Ra

bS
(

ω
b
a,b

)

,

where ωa
a,b ∈ R

3 is the angular velocity of a frame Fb rela-
tive to a frameFa, expressed in frameFa. Correspondingly,
the kinematic equation is

q̇ = T(q)ω, T(q) =
1

2

[

−ǫ
T

ηI+ S(ǫ)

]

∈ R
4×3 .

The rigid body dynamics is derived from Euler’s moment
equation, which describes the relation between applied
torque and angular momentum on the rigid body, i.e.,

Jω̇ = −S(ω)Jω + τ , (2)

where ω = ω
b
i,b is the angular velocity of the body frame Fb

relative to an inertia frameF i, expressed in the body frame;
τ ∈ R

3 is the total torque working on the body frame 2 ,
and J ∈ R

3×3 = diag{Jx, Jy, Jz} is the inertia matrix.

3 Attitude control on quaternion coordinates

The attitude control problem consists in making the actual
attitude converge towards a given reference attitude qd sat-
isfying the kinematic equation

q̇d = T(qd)ωd.

Assumption 1 a) The desired attitude qd, the desired an-
gular velocity ωd and the desired angular acceleration ω̇d

are all bounded functions; b) the desired reference is such
that the quaternion errors satisfy the quaternion constraint
ǫ̃
⊤
ǫ̃ = 1− η̃2.

The quaternion error is given by q̃ = q̄d⊗q and yields q̃ =
[η̃, ǫ̃⊤]⊤ with η̃ ∈ [−1, 1], by definition. The control goal is
to steer ǫ̃(t) to zero under Assumption 1. Correspondingly,
in view of the quaternion constraint, η̃ must converge either
to +1 or to −1.

2 Typically, in the context of attitude control of spacecraft,
τ contains the control inputs and external disturbances. The
latter are not considered in this paper.
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Now, the error kinematic equation is given by

˙̃q = T(q̃)eω, (3)

where eω = ω − ωd. We remark that due to the redun-
dancy of the quaternion coordinates (3) has two equilibria,
which we represent by (q̃+, eω) = ([10], 0) and (q̃−, eω) =
([−10], 0) where 0 = [0 · · · 0]⊤ is of appropriate dimen-
sions. For the purpose of analysis we translate the prob-
lem of stabilizing an equilibrium to that of stabilizing the
origin. For this, we define the attitude error vector eq+ =

[1 − η̃, ǫ̃
⊤]⊤ for the “positive” equilibrium and use eq− =

[1+ η̃, ǫ̃⊤]⊤ for the “negative” equilibrium. The kinematic
relation can then be expressed as

ėq± = Te(eq±)eω, where Te(eq±) =
1

2

[

±ǫ̃
⊤

η̃I+ S (ǫ̃)

]

.

(4)

In the first two scenarios described below, the control strat-
egy relies on choosing a target equilibrium before the ma-
noeuvre. In the first case, we assume that the body’s sense
of rotation is constant hence the state space is restricted
by the constraint η̃ ≥ 0 or η̃ ≤ 0; in the second case we re-
lax such assumption. In both scenarios the control action
is generated by

τ = Jω̇r − S (Jω)ωr − kqT
⊤
e eq − kω(ω − ωr), (5a)

ωr =ωd − γT⊤
e eq, (5b)

where kq > 0, kω > 0 and γ > 0 and Te is defined by (4),
that is, it depends on the choice of the target equilibrium,
made before the manoeuvre.

Define s = ω−ωr. Then, the closed-loop system is obtained
by differentiating the latter, using (5a) in (2) and using (5b)
with s = ω − ωr in (4), that is,

[

ėq

ṡ

]

=

[

Tes−TeγT
⊤
e eq

J−1
{

[S(Jω(t))− kωI]s− kqT
⊤
e eq

}

]

. (6)

Note that independently of whether eq = eq+ or eq = eq−
the right hand-side of (6) equals [0, 0]⊤ if s = 0 and ǫ̃ = 0
where the latter holds if and only if q̃ = [1, 0, 0, 0]⊤ or
q̃ = [−1, 0, 0, 0]⊤.

In both scenarios we show that the following stability prop-
erty is ensured 3 with respect to different sets.

Definition 2 (Asymptotic stability in the large) Let
Γ ⊂ R

n be given. The trivial solution x = 0 of ẋ = f(t, x)
is called asymptotically stable in the large with respect to
Γ if it is stable in the sense of Lyapunov and every other
solution x(t, t◦, x◦) → 0 as t → ∞ for any initial states
x◦ ∈ Γ and for any initial times t◦ ∈ R≥0. The origin is
uniformly asymptotically stable if it is uniformly stable and
convergence is uniform in the initial times and in compact
sets of the initial states.

3 The definition is paraphrased from (Furasov, 1977, p. 29) for
the purposes of this paper.

3.1 Scenario 1: the sense of rotation does not change

We consider that the state space of (6) corresponds to ei-
ther Γ+ := {eq+ : q̃ ∈ S3, η̃ ∈ [0, 1]} × R

3 or Γ− := {eq− :
q̃ ∈ S3, η̃ ∈ [−1, 0]} ×R

3, depending on which target equi-
librium is chosen.

Proposition 3 Let Assumption 1 hold and let Γ◦
+ ⊂

Γ+. Assume that all trajectories with initial conditions
(t◦, eq+(t◦), eω(t◦)) ∈ R≥0 × Γ◦

+ satisfy sgn(η̃(t)) =
sgn(η̃(t◦)) ≥ 0 for all t ≥ t◦ [mutatis mutandis for Γ◦

− ].
Then, the equilibrium point (eq+, eω) = (0,0) [respectively,
the equilibrium (eq−, eω) = (0,0) ] of system (6) is uni-
formly asymptotically stable in the large with respect to Γ◦

+

[ respectively, with respect to Γ◦
− ].

Remark 3.1 An estimate of Γ◦
+, respectively of Γ◦

−, may
be obtained using Lyapunov theory and restricting the size of
initial velocity and attitude errors –cf.Caccavale and Villani
(1999).

Proof:Define x = [s⊤, e⊤q ]
⊤. Without loss of generality, let

the target equilibrium point be (eq+, eω) = (0,0). Then,
the closed-loop equations are given by (6). By Assumption
the trajectories that originate in Γ◦

+ satisfy sgn(η̃(t)) =
sgn(η̃(t◦)) ≥ 0 for all t ≥ t◦ hence, in view of Assumption
1 (the quaternion constraint) x(t) ∈ Γ+ for all t ≥ t◦. Con-
sider the radially unbounded, positive definite Lyapunov
function candidate V : Γ+ → R≥0,

V (x) =
1

2
s⊤Js+

1

2
e⊤q kqeq (7)

which satisfies

V̇ (x) = s⊤Jṡ+ e⊤q kqėq.

Using (6) and the skew-symmetry of S we obtain

V̇ (x) = −s⊤kωs− e⊤q TeγkqT
⊤
e eq (8)

which under the quaternion constraint, implies that

V̇ (x) ≤ −s⊤kωs− e⊤q
γkq
8

eq ; (9)

to see this notice that T⊤
e eq = (1/2)ǫ̃ hence,

e⊤q TeT
⊤
e eq =

1

4
ǫ̃
⊤
ǫ̃. (10)

Now, assume that

1

4
ǫ̃
⊤
ǫ̃ <

1

8

[

(1− η̃)2 + ǫ̃
⊤
ǫ̃
]

, (11)

which is equivalent to

(1− η̃)2 > ǫ̃
⊤
ǫ̃ . (12)

Then, in view of the unit quaternion constraint ǫ̃⊤ǫ̃ = 1−
η̃2, inequality (12) holds if and only if η̃2 > η̃ which is
impossible since |η̃| ∈ [0, 1]. We conclude that (11) does

not hold hence, from (10) and e⊤q eq = [(1− η̃)2 + ǫ̃
⊤
ǫ̃], we

obtain

e⊤q TeT
⊤
e eq ≥

1

8
e⊤q eq (13)
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which together with (8), implies (9). The proof is com-
pleted invoking standard Lyapunov theory arguments. Let
jM ≥ ‖J‖ ≥ jm, c1 := 0.5min{jm, kq}, c2 := max{jM , kq}
and c3 := min{kω, γkq/8}. Then, from (7) we have

c2
[

‖s‖2 + ‖eq‖
2
]

≥ V (x) ≥ c1
[

‖s‖2 + ‖eq‖
2
]

and, to-

gether with (9) we obtain V̇ (x) ≤ −(c3/c2)V (x). All these
inequalities hold for all x ∈ Γ+. The result follows recalling
that eω = γT⊤

e eq − s.

The proof for the negative equilibrium follows mu-
tatis mutandis, replacing Γ+ with Γ− and noting that
Te(eq−)

⊤eq = −(1/2)ǫ̃ so the previous computations
remain valid.

3.2 Scenario 2: two equilibria

We relax the assumption that the sign of η̃(t) is constant
for all t and consider that the state space of the closed-
loop system is Γ = Γ+ ∪ Γ−. In this space, the closed-loop
system possesses two equilibria: the positive equilibrium
(eq+, eω) = (0,0) and the negative equilibrium (eq−, eω) =
(0,0). As in Rantzer (2001); Angeli (2004, 2001), we use
a notion of stability for all initial states except for a zero-
measure set. For systems with state space Rn, we speak of
almost global asymptotic stability –see Rantzer (2001) if
the origin is asymptotically stable for all all initial states
in R

n except for a set of measure zero. If not because the
system’s state space is a subset of R6 (hence, we cannot
use the qualifier ‘global’) this is the property that we estab-
lish below, relying on a refinement of the main theorem in
Rantzer (2001) for non-autonomous systems. Define

∇ · f :=
∂f1
∂x1

+ · · ·+
∂fn
∂xn

, f : R× R
n → R

n,

∇V :=

[

∂V

∂x1
· · ·

∂V

∂xn

]

, V : Rn → R.

Theorem 4 Consider the system ẋ = f(t, x) such that
f(t, 0) = 0 for all t and 0 is a locally stable equilibrium point.
Let ρ : Rn\{0} → R≥0 be once continuously differentiable
and satisfy

∂

∂t
ρ(t, x) + [∇ · (fρ)](t, x) > 0 ∀t ≥ 0, a.a. x ∈ R

n .

Moreover, assume that ρ(t, x) is integrable uniformly in t
over {‖x‖ > ε} for every ε > 0. Then, for every initial time
t◦ the set of points that are not asymptotically attracted by
the origin has zero Lebesgue measure.

Remark 3.2
• The proof of Theorem 4 follows along the lines of the
proof of Proposition 2.2. of Monzón (2006); actually, the
enunciate of Theorem 4 corresponds to that of Proposition
2.2. of Monzón (2006) except that in the latter reference the
author assumes that “ρ(t, x) is integrable for fixed t”.

• Stability is an assumption of Theorem 4 hence, an implicit
statement which follows directly from its conclusion is that
the origin is almost globally asymptotically stable, in the
sense defined in Rantzer (2001).

Proposition 5 Let Assumption 1 hold. The equilibrium
point (eq+, eω) = (0,0) [respectively, the equilibrium
(eq−, eω) = (0,0)] of the closed-loop system (6) is asymp-
totically stable in the large with respect to Γ, taken away

a set of measure zero which includes the dual equilibrium
{(eq−, eω) = (0,0)} [respectively, with respect to Γ, taken
away a set of measure zero including the dual equilibrium
{(eq+, eω) = (0,0)}].

In other words, the equilibrium point (eq+, eω) = (0,0)
[respectively, the equilibrium (eq−, eω) = (0,0) ] is stable
and attracts almost all trajectories in Γ.

Proof: Firstly, we observe that local stability of either equi-
librium follows from the proof of Proposition 3; the proof of
convergence from all initial states in Γ taken away a zero-
measure set, relies on Theorem 4.Without loss of generality
let eq = eq+ and define x = [e⊤q , s

⊤]⊤. We apply Theo-
rem 4 with x = x hence, let f denote the expression on the
right-hand side of (6) with Te = Te(eq+) and consider the
density function ρ : Γ\{x = 0} → R≥0,

ρ(x) =

[

1

2

(

e⊤q kqeq + s⊤Js
)

]−α

, α > 2.

That is, we have ρ(x) = V (x)−α where V : Γ → R≥0 is
defined as in (7). Since V (x) = O(‖x‖2) and ρ is indepen-
dent of t the integrability condition on ρ holds provided
that α > 2. It is left to show that

[∇ · (fρ)](t,x) > 0 ∀t ≥ 0, a.a. x ∈ Γ .

As in the first steps of the proof of (Rantzer, 2001, Propo-
sition 1), we have 4

∇ · (fρ) = ∇ρ · f + (∇ · f)ρ

= (∇ · f)V −α − αV −(α+1)∇V · f

= V −(α+1) [(∇ · f)V − α∇V · f ] .

The right-hand side of the previous equality is positive if
and only if so is the sum in brackets. Let us show this. On
one hand we have

∇V · f = −s⊤kωs− e⊤q TeγkqT
⊤
e eq (14)

and on the other 5 ,

[∇ · f ](t,x) = ∇(eq) · ėq +∇(s) · ṡ

∇(eq) · ėq = ∇(eq) · (Tes− γTeT
⊤
e eq) = −

3γη̃

4

∇(s) · ṡ = ∇(s) · (J−1{[S(Jω(t))− kωI]s− kqT
⊤
e eq}).

Then, using ω(t) = s+ ωr(t) we obtain

∇(s) · ṡ =∇ · (J−1{[S(Js) + S(Jωr(t))− kωI]s− kqT
⊤
e eq})

and since
∇(s) · S(Js)s = 0

∇(s) · S(Jωr(t))s = 0

4 We drop the arguments t, x for simplicity in the notation.
5 With an abuse of notation we split up the gradient and the
vector with respect to which the function is differentiated hence,

we write ∇(x) · f(x, y) = ∂f(x,y)
∂x

.
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for any t, we see that

∇(s) · ṡ = −3ckω,

where c := (1/Jx + 1/Jy + 1/Jz). Therefore,

[∇ · f ](t,x) = −3
(γη̃

4
+ ckω

)

. (15)

Using (14), (15) and (7) we see that

[(∇ · f)V − α∇V · f ] > 0

if and only if

−
3

2

(γη̃

4
+ ckω

)[

s⊤Js+
1

2
e⊤q kqeq

]

+ α
[

s⊤kωs+ e⊤q TeγkqT
⊤
e eq

]

> 0.

In view of (13) we see that the previous inequality holds for
sufficiently large values of α and provided that x 6= 0 (which
correspond to the two equilibria). According to Theorem 4
all points in Γ except for a set of measure zero, generate
via (6) with Te = Te(eq+), solutions that converge asymp-
totically to (eq+, eω) = (0,0). It is evident that the dual
equilibrium (eq−, eω) = (0,0) also generates trajectories a
trajectory which does not converge to (eq+, eω) = (0,0).

A similar analysis with the pertinent modifications, may be
established for the dual equilibrium eq = eq−.

3.3 Scenario 3: Hybrid control

We assume now that the controller is hybrid. In particular,
we introduce a switching lawwhich determines the reference
equilibrium online. That is, the latter is not fixed before the
maneuver. For the sake of comparison, the continuous-time
component of the controller corresponds to the algorithm
previously used. Hysteresis is introduced to avoid chatter-
ing.

For the purpose of analysis, we use the setting of Sanfe-
lice et al. (2007); Goebel et al. (2009). According with this
framework hybrid systems are described by a continuous-
time dynamics defined by a “flow map” and discrete-time
dynamics, defined by a “jump map”. In addition, we are
equipped of a “flow set” and a “jump set”. That is,

H :

{

x ∈ C =⇒ ẋ = F (x)

x ∈ D =⇒ x+ = G(x)

where x+ is the state value ‘immediately’ after a jump.

After Sanfelice et al. (2007); Goebel et al. (2009) solutions
to the hybrid system are defined as maps from a hybrid
time domain, subset of R≥0 × N, into an Euclidean space.
Roughly, the hybrid time domain denoted “dom x”, con-
sists in an ordered sequence of continuous-time intervals
[tj , tj+1) or [tj , tj+1] and discrete instants {j}. During flows
(if x(t, j) ∈ C) the solution is a locally absolutely contin-
uous function that satisfies ẋ = F (x). At jumps (x ∈ D),
the state value after the jump satisfies x+ = G(x). The so-
lution of a hybrid system is denoted j, t → x(t, j).

Then, (asymptotic) stability is defined as follows. A com-
pact set A is stable for H if for each ǫ > 0 there exists
σ > 0 such that 6 ‖x(0, 0)‖A ≤ σ implies ‖x(t, j)‖A ≤ ǫ
for all solutions x to H and all (t, j) ∈ dom x. A compact
set is attractive if there exists a neighborhood of A from
which each solution is complete and converges to A, that
is, ‖x(t, j)‖A → 0 as t+ j → ∞, where (t, j) ∈ dom x. A is
asymptotically stable if both properties hold.

In order to use the methods of Sanfelice et al. (2007) for
the controlled rigid-body we define the error variable ehq =

[1− hη̃, ǫ̃⊤]⊤ which satisfies the kinematic equation

ėhq = Th(ehq)eω (16)

where eω = ω − ωd,

Th(ehq) =

[

hǫ̃⊤

η̃I+ S(ǫ̃)

]

, (17)

and h ∈ H = {−1, 1}. The hybrid controller is composed
of the continuous-time control law

τ = Jω̇r − S (Jω)ωr − kqT
⊤
h ehq − kω(ω − ωr), (18a)

ωr =ωd − γT⊤
h ehq, kq, kω, γ > 0; (18b)

defining x = [e⊤hq, e
⊤
ω , h]

⊤, the switching law

x+ = G(x) = [e⊤hq, e
⊤
ω ,−h]⊤ x ∈ D (19)

and the flow and jump sets

C =

{

x ∈ S3×R
3×H : h

[

kq η̃ −
1

2
γǫ̃⊤Jeω

]

≥ −δ

}

(20a)

D=

{

x ∈ S3×R
3×H : h

[

kq η̃ −
1

2
γǫ̃⊤Jeω

]

≤ −δ

}

, (20b)

where δ defines the switching hysteresis, i.e., switching oc-
curs only if the quantity involved in (20b) has decreased by
certain amount. This is introduced to avoid Zeno behaviour.

Proposition 6 Consider the system (2) and (16)–(17) in
closed loop with the controller (18)–(20). Then, the set

A = {x ∈ S3×R
3×H : (ehq, eω) = (0,0)}

is asymptotically stable on the set S3 × R
3.

Proof: Let s = ω − ωr with ωr defined by (18b). We use
the Lyapunov function

Vs(x) =
1

2
(s⊤Js+ e⊤hqkqehq),

whose total time derivative along the closed-loop flow tra-
jectories, that is generated by (2), (16)-(17) and (18), yields
(under the quaternion constraint)

V̇s(x) ≤ −s⊤kωs− e⊤hq
γkq
8

ehq

6 As usual, ‖x‖A =infz∈A|z − x|.
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–see (9). Now, we evaluate Vs(G(x))− Vs(x). We have

Vs(G(x)) =
1

2

[

(eω + γT⊤
−hehq)

⊤J(eω + γT⊤
−hehq)

+ e⊤hqkqehq

]

Vs(x) =
1

2

[

(eω + γT⊤
h ehq)

⊤J(eω + γT⊤
h ehq) + e⊤hqkqehq

]

Note that T⊤
h ehq = 1/2hǫ̃ and that e⊤hqehq = (1 − hη̃)2 +

ǫ̃
⊤
ǫ̃, and by inserting the unit quaternion constraint η̃2 +

ǫ̃
⊤
ǫ̃ = 1 we have e⊤hqehq = 2(1− hη̃). Hence,

2Vs(G(x)) = e⊤ωJeω − γ(−h)ǫ̃⊤Jeω +
1

4
γ2(−h)2ǫ̃⊤Jǫ̃

+2kq[1− (−h)η̃]

2Vs(x) = e⊤ωJeω − γhǫ̃⊤Jeω +
1

4
γ2h2

ǫ̃
⊤Jǫ̃+ 2kq[1− hη̃]

and therefore

Vs(G(x))− Vs(x) = 2h
[

kq η̃ −
1

2
γǫ̃⊤Jeω

]

which in view of (20b), implies Vs(G(x))−Vs(x) ≤ −2δ < 0
when x ∈ D. Thus,

V̇s(x) ≤ −c3/c2Vs(x) ∀x ∈ C

Vs(G(x))− Vs(x) < 0 ∀x ∈ D .

After (Sanfelice et al., 2007, Corollary 7.7) we conclude that
the set A is asymptotically stable with basin of attraction
BA = C ∪D, thus uniform asymptotic stability in the large
on the set S3 × R

3 follows.

4 Comparative simulations study

We have performed several series of simulations to compare
the hybrid controller of Section 3.3 to the continuous con-
troller of Proposition 5. In the simulations setting we as-
sume that the rigid body is a spacecraft and naturally, the
primary goal is to improve performance. The latter is mea-
sured in terms of (reducing) fuel consumption, i.e., control
effort. For that purpose we use the functionals

Jq =

∫ tf

t0

ǫ̃
⊤
ǫ̃dt, Jω =

∫ tf

t0

e
⊤
ω eωdt, Jp =

∫ tf

t0

τ
⊤
a τ adt

where t0 and tf define the start and end of the simulations
window respectively. The functionals Jq and Jω correspond
to the integral square errors of the attitude and the angular
velocity error respectively. The functional Jp is a measure
of the energy injected to perform the attitude maneuver.
Thus, the controllers of the previous sections are imple-
mented with similar tuning but with the aim at reducing
Jp.

The simulations are performed in SimulinkTM using a fixed
sample-time Runge-Kutta ODE4 solver, with sample time
of 1 · 10−2 s. The moments of inertia for the rigid body are
J = diag{4.35, 4.33, 3.664} kgm2.

For the continuous controller of Proposition 5 a reference
equilibrium point is chosen a priori according to themethod
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Fig. 1. Switching value, attitude error, total angular veloc-
ity error, power consumption and actuator torque for switch-
ing and continuous sliding surface control of a rigid body.
(kq = 1, kω = 2, ω = 1.5v)
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Fig. 2. Switching criterion evolving over time

described in Schlanbusch et al. (2010b). This is done con-
sidering both initial sense of rotation and orientation, i.e.,

eq =

{

eq+ if kη̃ η̃(t0) + k ˙̃η
˙̃η(t0) ≥ 0

eq− if kη̃ η̃(t0) + k ˙̃η
˙̃η(t0) < 0

, (21)

where η̃(t0) and ˙̃η(t0) are initial values and kη̃ and k ˙̃η are

design parameters. Note that ˙̃η = −1/2ǫ̃⊤eω. By this rule
of choice we can make a fair comparison with the hybrid
controller.

Also, an appropriate tuning of the control gains is made. For
the continuous controller the gains kη̃ and k ˙̃η can be tuned
to fit a given system while for the switching strategy tuning
consists in choosing appropriately the hysteresis threshold
δ and the gains kq and γ which reduces the tuning flexibility
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Fig. 3. Switching value, attitude error, total angular veloc-
ity error, power consumption and actuator torque for switch-
ing and continuous sliding surface control of a rigid body.
(kq = 1, kω = 2, ω = 3.5v)

of the control law itself.

An interesting natural scenario to consider is when the
initial conditions are ‘large’. Particularly, when the space-
craft’s attitude is ‘close’ to the desired one but turning
rapidly away from it, that is, ‖eω(t◦)‖ ≫ 1 and ǫ̃ ≈ 0. Note
that the switching law in (20) consists in verifying whether

σ := h

(

kq η̃ −
1

2
γǫ̃⊤Jeω

)

≥ −δ .

Hence, if we have ǫ̃
⊤eω ≈ 0 the effect of (large) angular

velocity errors may be transparent to the hybrid controller.

The simulations are made for two cases of initial an-
gular velocities. For the plots showed in Figure 1 we
used q(t◦) = [1,0]⊤ and ω(t◦) = 1.5v⊤ where v =
[3,−4, 5]⊤/‖[3,−4, 5]⊤‖, and the gains are set to kq = 1,
kω = 2, γ = 1, with switching threshold δ = 0.1. As it may
be appreciated the negative equilibrium point is prefer-
able but the switching condition for the hybrid controller
is never met; the trajectories remain out of the jump set.
One may think that the hysteresis switching surface is not
chosen properly however, Figure 2 illustrates the opposite.
It shows that the value of the switching function does not
reach the jump condition for any δ > 0. It may be argued
that the initial angular velocity may not be recognized by
the continuous controller (21) either. Yet, this expression
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Fig. 4. Switching value, attitude error, total angular veloc-
ity error, power consumption and actuator torque for switch-
ing and continuous sliding surface control of a rigid body.
(kq = 1, kω = 1, ω = 3.5v)

only accounts for small initial angular velocities. For large
initial angular velocities the equilibrium point giving the
largest initial rotational error is in general preferred.

Next, we increase the initial velocity to ω(t◦) = 3.5v⊤ to
provoke switching; see Figure 3. Now, the system under ei-
ther controller, continuous or hybrid, eventually settles at
the negative equilibrium point, although, the continuous
controller is faster, consumes less energy and utilize less
maximum torque but leads to larger overshoot of the atti-
tude error.

To compare further the performances of the hybrid versus
the continuous controller we performed simulations by de-
creasing the derivative gain to kω = 1. On one hand, this
entails a change in the preferred reference equilibrium point
when using the continuous controller (5) 7 . On the other,
using the hybrid controller with lower derivative gain value
results in lower energy consumption and smaller overshoot
of the attitude absolute error. See Figure 4. The energy con-
sumption under hybrid control may be further diminished
by increasing the hysteresis threshold δ.

A comparison of the controllers in function of the perfor-

7 It should be noted that according to Schlanbusch et al.
(2010a) it is assumed that the available actuator torque is suf-
ficient and that the control law is tuned to make the rigid body
stop at the preferred equilibrium point without doing any full
revolutions, thus the system in this case is under-damped.
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mance indexes Jp, Jω and Jτ is presented in Table 1.

Table 1
Values of performance functionals

Jq Jω Jp

Continuous controller (Fig. 1) 2.80 7.19 9.50

Hybrid controller (Fig. 1) 1.47 1.15 21.07

Continuous controller (Fig. 3) 1.86 18.00 70.11

Hybrid controller (Fig. 3) 1.69 13.44 76.89

Continuous controller (Fig. 4) 4.52 20.02 83.16

Hybrid controller (Fig. 4) 4.53 19.44 80.95

5 Conclusions

We analyzed the control attitude problem under three dif-
ferent settings. Although the basic control law is the same,
the difference lies in the theoretical assumptions that are
made. The specificities of each setting requires the use of
especial stability tools, each leading to a different mathe-
matical result. From a practical viewpoint, it is obtained
for the three cases that the attitude errors converge to zero
from almost any initial valid posture. However, it has been
showed in simulations that performance may be improved
if, for instance, it is allowed to change the reference equi-
librium point during the maneuver.

Although this is not discussed due to space constraints, the
results here presented may be extended to the more realistic
case in which a spacecraft is affected by unknown bounded
matched disturbances.

Acknowledgements

The authors express their gratitude to Editor Teel and the
Associate Editor for the exceptional handling of this paper
and greatly appreciate the many constructive remarks of
the anonymous reviewers.

References

Angeli, D. (2001). Almost global stabilization of the in-
verted pendulum via continuous state feedback. Automatica
37(7), 1103–1108.

Angeli, D. (2004). An almost global notion of input-to-state sta-
bility. IEEE Transactions on Automatic Control 49(6), 866–
874.

Caccavale, F. and L. Villani (1999). Output feedback control for
attitude tracking. Systems & Control Letters 38(2), 91–98.

Casagrande, D., A. Astolfi and T. Parisini (2008). Global asymp-
totic stabilization of the attitude and the angular rates
of an underactuated non-symmetric rigid body. Automatica
44(7), 1781–1789.

Egeland, O. and J. T. Gravdahl (2002). Modeling and Simula-
tion for Automatic Control. Marine Cybernetics. Trondheim,
Norway. ISBN 82-92356-01-0.

Furasov, V. D. (1977). Ustoichivost’ dvijeniya, otzenki i stabi-
lizatsia. Nauka. Moscow. Translated title: Stability of motion,
estimates and stabilization.

Goebel, R., R. G. Sanfelice and A. R. Teel (2009). Hybrid dy-
namical systems. IEEE Control Systems Magazine 29(2), 28–
93.

Hahn, W. (1967). Stability of Motion. Springer-Verlag. Berlin,
Germany.

Kristiansen, R., P. J. Nicklasson and J. T. Gravdahl (2008).
Spacecraft coordination control in 6DOF: Integrator back-
stepping vs passivity-based PD+. Automatica 44(11), 2896–
2901.
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