Numerical and experimental assessment of a phase retrieval technique applied to planar near field distribution for wide band application

Nicolas Ribi`ere-Tharaud, Aronne Casagranda, Marc Lambert, Fran¸cois Jouvie

To cite this version:

HAL Id: hal-01107471
https://hal-supelec.archives-ouvertes.fr/hal-01107471
Submitted on 20 Jan 2015
NUMERICAL AND EXPERIMENTAL ASSESSMENT OF A PHASE RETRIEVAL TECHNIQUE APPLIED TO PLANAR NEAR FIELD DISTRIBUTIONS FOR WIDE BAND APPLICATIONS

Nicolas Ribiére-Tharaud, A. Caugande, M. Lambert, F. Jouvie

Saint-Louis - USA

THE PHASE RETRIEVAL TECHNIQUE

• HISTORICAL BACKGROUND
 ✓ Gerschberg-Saxton [1972] : electron microscopy (1 plane)
 ✓ Misell variant [1973] : electron microscopy (2 defocused planes)
 ✓ Anderson & All [1984] : microwave applications

• PRINCIPLE
 ✓ Algorithm initialization
 ✓ Electric field magnitude known in two planes P1 & P2 in front of the source

NUMERICAL ASSESSMENTS (1/4)

• Models
 ✓ MoM (Feko)
 ✓ Classical horn antenna (same used for experimental approach)
 ✓ Frequency: 8 GHz

• Purposes
 ✓ Validation tool
 ✓ Agreement Models/Measurements
 ✓ Exact phase calculation
 ✓ Exact far field calculation
 ✓ Sets of data for parametric study
 ✓ dplane-source and dplane-plane
 ✓ Planes sampling
 ✓ Planes sizes

• APPROACH
 ✓ Implementation of a phase retrieval algorithm
 ✓ Assumptions on sources
 ✓ CW
 ✓ High directivity

• CONTEXT
 ✓ Final purpose
 ✓ Experimental antenna far field pattern characterization
 ✓ Wide frequency range
 ✓ Pulsed sources
 ✓ Measurement constraints
 ✓ Planar near field test setup
 ✓ Magnitude only measurements

• CONTEXT
 ✓ Final purpose
 ✓ Experimental antenna far field pattern characterization
 ✓ Wide frequency range
 ✓ Pulsed sources
 ✓ Measurement constraints
 ✓ Planar near field test setup
 ✓ Magnitude only measurements
NUMERICAL ASSESSMENTS (2/8)

- **Parametric Study**
 - **Criterion**
 \[
 \Delta_{\text{complex}} = \sqrt{\frac{\sum_{j=1}^{N} \sum_{i=1}^{N} \left| E_j(x_i, y_i, z_i) - \hat{E}_j(x_i, y_i, z_i) \right|^2}{\sum_{j=1}^{N} \sum_{i=1}^{N} \left| \hat{E}_j(x_i, y_i, z_i) \right|^2}}
 \]
 - **planes positions**
 - Fields calculated in magnitude and phase using Feko
 - distances: 11 values \[x_1 = 2\lambda, \ldots, x_{11} = 1\text{ m}]\n - 55 phase reconstructions

NUMERICAL ASSESSMENTS (3/8)

- **Planes positions parameter: \(x_j\) and \(x_2\)**
 - Far field from using the reconstructed phase
 - Worst case: \(\Delta_{\text{complex}} = 222.54\%\)
 - Best case: \(\Delta_{\text{complex}} = 7.94\%\)

NUMERICAL ASSESSMENTS (4/8)

- **Sampling parameter: \(\delta_x\)**
 - Far field from using the reconstructed phase
 - \(\delta_x = \frac{\lambda_0}{6}\) \(\Delta_{\text{complex}} = 7.94\%\)
 - \(\delta_x = \frac{\lambda_0}{3}\) \(\Delta_{\text{complex}} = 6.07\%\)
 - \(\delta_x = \frac{\lambda_0}{2}\) \(\Delta_{\text{complex}} = 29.53\%\)

NUMERICAL ASSESSMENTS (5/8)

- **Planes dimensions parameter: \(L\)**
 - \(L_{\text{min}} = 20\lambda_0\)

- **Planes positions parameter:**
 - \(x_j\) and \(x_2\)
 - Far field from using the reconstructed phase
 - Worst case: \(\Delta_{\text{complex}} = 222.54\%\)
 - Best case: \(\Delta_{\text{complex}} = 7.94\%\)
Phase reconstructions

- Approx. 1000 to 10000 iterations
- Less than 1 or 2 hours on a standard PC

Results at 8 GHz: reconstructed far field

Experimental validation: planar near field measurement setup

- AUT = Horn, Probe = Dipole, open end waveguide
- Frequencies = 2 GHz, 8 GHz and 18 GHz
- Distance AUT/Probe: $2\lambda, 3\lambda, \ldots, 1\text{m}$
EXPERIMENTAL VALIDATION : f = 8 GHz

- Validation of reconstructed far field

![Graphs showing reconstructed and measured magnitudes](image)

EXPERIMENTAL VALIDATION : f = 2 & 18 GHz

- Validation of reconstructed far field

![Graphs showing reconstructed and measured magnitudes](image)

CONCLUSION & FUTURE WORKS

- Conclusions on the phase reconstruction algorithm
 - Validation on numerical and experimental data
 - Parametric study for optimal use
 - Wide band validation

- Future tasks
 - Adding information to increase performances
 - Expanding the parametric study
 - Towards pulsed sources …