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Mass Determination of Groups of Galaxies:

Effects of the Cosmological Constant

S. Peirani ∗ and J.A. de Freitas Pacheco

Observatoire de la Côte d’Azur, B.P. 4229, F-06304 Nice Cedex 4, France

Abstract

The spherical infall model first developed by Lemâitre and Tolman was modified
in order to include the effects of a dark energy term. The resulting velocity-distance
relation was evaluated numerically. This equation, when fitted to actual data, per-
mits the simultaneous evaluation of the central mass and of the Hubble parameter.
Application of this relation to the Local Group, when the dark energy is mod-
eled by a cosmological constant, yields a total mass for the M31-Milky Way pair
of (2.5 ± 0.7) × 1012 M⊙, a Hubble parameter H0 = 74 ± 4 kms−1Mpc−1 and a
1-D velocity dispersion for the flow of about 39 kms−1. The zero-velocity and the
marginally bound surfaces of the Local Group are at about 1.0 and 2.3 Mpc re-
spectively from the center of mass. A similar analysis for the Virgo cluster yields a
mass of (1.10± 0.12)× 1015 M⊙ and H0 = 65± 9 kms−1Mpc−1. The zero-velocity is
located at a distance of 8.6±0.8 Mpc from the center of the cluster. The predicted
peculiar velocity of the Local Group towards Virgo is about 190 kms−1, in agree-
ment with other estimates. Slightly lower masses are derived if the dark energy is
represented by a fluid with an equation of state P = wǫ with w = −2/3.

Key words: Local Group, Virgo Cluster, Hubble constant
PACS: 98.62.Ck, 98.65.Bv, 98.65.Cw

1 Introduction

New and high quality data on galaxies belonging to nearby groups have im-
proved considerably estimates of masses and mass-to-light ratios (M/L) of
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these systems. Searches on the POSS II and ESO/SERC plates (Karachent-
seva & Karachentsev 1998; 2000) as well as “blind” HI surveys (Kilborn et
al. 2002) lead to the discovery of new dwarf galaxies, increasing substantially
their known population in the local universe. Moreover, in the past years, us-
ing HST observations, distances to individual members of nearby groups have
been derived from magnitudes of the tip of the red giant branch by Karachent-
sev and collaborators (Karachentsev 2005 and references therein), which have
permitted a better membership assignment and a more trustful dynamical
analysis.

Previous estimates of M/L ratios for nearby groups were around 170M⊙/LB,⊙

(Huchra & Geller 1982). However, virial masses derived from the aforemen-
tioned data are significantly smaller, yielding M/L ratios around 10-30 M⊙/LB,⊙.
If these values are correct, the local matter density derived from nearby groups
would be only a fraction of the global matter density (Karachentsev 2005).
However, for several groups the crossing time is comparable or even greater
than the Hubble time and another approach is necessary to evaluate their
masses, since dynamical equilibrium is not yet attained in these cases.

Lynden-Bell (1981) and Sandage (1986) proposed an alternative method to
the virial relation in order to estimate the mass of the Local Group, which can
be extended to other systems dominated either by one or a pair of galaxies.
Their analysis is essentially based on the spherical infall model. If the motion
of bound satellites is supposed to be radial, the resulting parametric equations
describe a cycloid. Initially, the radius of a given shell embedding a total mass
M expands, attains a maximum value and then collapses. At maximum, when
the turnaround radius R0 is reached, the radial velocity with respect to the
center of mass is zero. For a given group, if the velocity field close to the main
body, probed by satellites, allows the determination of R0, then the mass can
be calculated straightforwardly from the relation

M =
π2R3

0

8GT 2
0

(1)

where T0 is the age of the universe and G is the gravitational constant.

Data on the angular power spectrum of temperature fluctuations of the cosmic
microwave background radiation derived by WMAP (Spergel et al. 2003) and
on the luminosity-distance of type Ia supernovae (Riess et al. 1998; Perlmutter
et al. 1999), lead to the so-called “concordant” model, e.g., a flat cosmolog-
ical model in which Ωm = 0.3 and Ωv = 0.7. The later density parameter
corresponds to the present contribution of a cosmological constant term or a
fluid with negative pressure, dubbed “quintessence” or dark energy. The ra-
dial motion leading to the aforementioned M = M(R0, T0) relation neglects
the effect of such a term, which acts as a “repulsive” force. This repulsive
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force is proportional to the distance and its effect can be neglected if the zero-
velocity surface is close to the center of mass. Turnaround radii of groups are
typically of the order of 1 Mpc (Karachentsev 2005), while the characteris-
tic radius at which gravitation is comparable to the repulsion force is R∗ =
1.1M

1/3
12 Mpc, where M12 = M/(1012M⊙) and the Hubble parameter H0 was

taken equal to 70 kms−1Mpc−1. This simple argument suggests that the effect
of the cosmological term can not be neglected when deriving masses from the
M = M(R0, T0) relationship.

In this paper we revisit the velocity-distance relationship when a dark en-
ergy term is included in the dynamical equations and calculate the resulting
M = M(R0, H0) relation. The presence of the dark energy term has been
also invoked as a possible explanation for the smoothness of the local Hubble
flow (Chernin 2001; Teerikorpi, Chernin and Baryshev 2005) being a further
reason to investigate its effects on the M = M(R0, T0) relation. For a cosmo-
logical density parameter associated to the “vacuum” energy Ωv = 0.7 (our
preferred solution), numerical computations indicate that the “zero-energy”
surface, beyond which galaxies will never collapse onto the core, is located at
about 2.3R0. In order to illustrate our results, some applications are made to
the Local Group and the Virgo cluster. As we shall see, values of the Hub-
ble parameter resulting from fits of the actual data to the velocity-distance
relation including a cosmological term, are in better agreement with recent
estimates then those derived from the relation obtained either by Lyndell-Bell
(1981) or Sandage (1986). In Section 2 the relevant equations are introduced,
in Sections 3 and 4 the results are applied to the Local Group and the Virgo
cluster and finally, in Section 5 the concluding remarks are given.

2 The velocity-distance relation

The evolution of a self-gravitating zero-pressure fluid with spherical symmetry
was first considered by Lemâitre (1933) and Tolman (1934). The Lemâitre-
Tolman model describes quite well the dynamics of an extended halo around
a bound central core, asymptotically approaching a homogeneous Friedmann
background. In this situation, three main distinct regions can be distinguished:
i) the central core, in which the shell crossing has already occurred, leading to
energy exchanges which transform radial into transverse motion; ii) the zero-
velocity surface, boundary which separates infalling and expanding bound
shells and iii) the “marginally” bound surface (zero total energy), segregat-
ing bound and unbound shells. Density profiles resulting from the Lemâitre-
Tolman model were examined by Olson & Silk (1979) and application of this
model to the velocity field close to the Virgo cluster were made by Hoffman
et al. (1980), Tully & Shaya (1984), Teerikorpi et al. (1992) among others.
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If displacements of galaxies, here associated to the outer halo shells, develop
mainly at low redhsifts when the formation of the mass concentration around
the core is nearly complete (see, for instance, Peebles 1990), then the equation
of motion for a spherical shell of mass m, moving radially in the gravitational
field created by a mass M inside a shell of radius R, including the dark energy
term is

d2R

dt2
= −

GM

R2
−

(1 + 3w)

2
ΩvH

2
0R(

a0

a
)3(1+w) (2)

where M = 4π
∫ R
0 r2ρmdr and a is the scale parameter (the present value is

taken as a0 = 1). The latter satisfies the Hubble equation

(
dlg a

dt
)2 = H0[Ωm(

a0

a
)3 + Ωv(

a0

a
)3(1+w)] (3)

Here, the common assumption that the dark energy can be modeled as being
a fluid with an equation of state P = wǫ was adopted and in the two equations
above, the dependence of the dark energy on the scale parameter was obtained
by solving the energy conservation for such a component. Eq. (2) is intended
to describe the motion of shells in the halo, excluding the central region where
shell crossing effects have probably already occurred.

Defining the dimensionless variables y = R/R0, τ = tH0 and x = a/a0, eqs.
(2) and (3) can be rewritten as

d2y

dτ 2
= −

1

2
[
A

y2
+ Byx−3(1+w)] (4)

and

dx

dτ
=

√

Ωm

x
+

Ωv

x(1+3w)
(5)

where we have introduced the parameters A = 2GM/(H2
0R

3
0) and B = (1 +

3w)Ωv. These equations were solved numerically by adopting the following
procedure. For a given redshift, the initial value of the scale parameter is
derived as well as the corresponding instant of time from the Hubble equation.
If initially, at high redshifts (here taken around z ∼ 100), the dark energy term
is negligible, then using a Taylor expansion of the standard Lemâitre-Tolman
solution, when the angle parameter θ << 1 (see, for instance, Peebles 1980),
the initial values of y and its derivative dy/dτ can be estimated. For a given
value of w, the parameter A is varied until the condition defining the zero-
velocity surface, e.g., dy/dτ = 0 at y = 1 is satisfied. For the case w = −2/3,
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we have obtained A = 3.414 and for the particular case w = −1, representing a
cosmological constant, A = 3.658. Therefore, the mass inside the zero-velocity
radius R0 is

M = 1.827
H2

0R
3
0

G
= 4.1 × 1012h2R3

0 M⊙ (6)

where h = H0/(100 kms−1Mpc−1) and R0 is in Mpc. In the case w = −2/3,
the numerical coefficient is slightly smaller (1.705 instead of 1.827). Comparing
with eq. (1), we notice that the inclusion of the dark energy term represents,
for a given R0, an increase of about 28-38% on the mass derived by such a
procedure.

Once the parameter A is known, the velocity-distance relation, v = v(R), for
different shells at a given time is obtained by varying their energy. Shells with
negative energy will expand, halt and fall back toward the center, while shells
with positive energy expand forever, according to the aforementioned char-
acterization of regions ii and iii. At a given time, there is a critical energy
Ec which defines the zero-velocity radius. Shells having E < Ec have already
crossed the turnaround point and are collapsing. Consequently, they have neg-

ative velocities. Shells with E > Ec are still expanding and thus have positive

velocities.

For the case w = −1, which gives a good representation of actual data, as
we shall see in the next sections, the resulting numerical values are quite well
fitted by the relation

v(R) = −
0.875H0

Rn
(
GM

H2
0

)(n+1)/3 + 1.274H0R (7)

with n = 0.865. Notice that from the condition v(R0) = 0, eq. (6) is recovered.
It is worth mentioning that solutions with negative energies are possible up to
R = 2.30R0, which defines the marginally bound surface. Beyond this critical
radius, only unbound shells exist. The solution for w = −2/3 differs only
marginally and will not be considered in further analyses.

For comparison, the velocity-distance relationship derived for the case Ωv = 0
is

v(R) = −1.038(
GM

R
)1/2 + 1.196H0R (8)

which has a slightly flatter dependence on the distance than the precedent
equation.
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3 The Local Group

An immediate application of the velocity-distance relationship is the determi-
nation of the Local Group mass, concentrated mainly on M31 and the Milky
Way, as well as the Hubble parameter itself as we shall see later. Moreover,
the velocity-distance relation gives also an indication of the dispersion of the
peculiar velocities over the Hubble flow. As we have already mentioned, the
local velocity dispersion is known to be quite small (Giraud 1986; Schlegel et
al. 1994), a fact referred usually as the “coldness” of the local flow. An in-
vestigation of the dynamics of the Local Group and its environment by using
numerical simulations was performed by Governato et al. (1997), who con-
cluded that cold dark matter models (Ωm = 1 or Ωm = 0.3) are unable to
produce candidates embedded in regions having “cold” flows.

As a first step, we have searched to check the accuracy of eqs. (6) and (7) by
using numerical simulations. We have performed N-body simulations using the
adaptive particle-particle/particle-mesh (AP 2M) code HYDRA (Couchman
et al. 1995), with cosmological parameters h = 0.65, Ωm = 0.3, Ωv = 0.7
and σ8 = 0.9. The simulation was performed in a periodic box of side 30h−1

Mpc including 2563 particles, corresponding to a mass resolution of 2.05 ×

108 M⊙. The simulation started at z = 49 and ended at the present time. Halos
were initially detected by using a friends-of-friends (FOF) algorithm and, in a
second step, unbound particles were removed by an iterative procedure. Thus,
all halos in our catalog are gravitationally bound objects. For further details,
the reader is referred to Peirani et al. (2004).

In our mock halo catalog, several examples of pairs with physical characteris-
tics similar to the MW-M31 pair can be found. However, most of them have
nearby (within 3-5 Mpc) halos of comparable mass or even higher, which per-
turb considerably the velocity field. Here, for illustration purposes only, we
consider one case in which the main halos have masses respectively equal to
9.85 × 1011 and 6.48 × 1011 solar masses and are separated by a distance of
0.69 Mpc, parameters comparable to those of the M31-MW pair. About 73
subhalos were detected within 3 Mpc of this pair, but satellites situated at
distances larger than 2 Mpc are clearly perturbed by other nearby structures,
since the velocity dispersion increases considerably at those distances. Veloc-
ities and distances with respect to the center of mass were computed for all
these objects.

A simple fitting of these simulated data gives R0 = 0.98 ± 0.20 Mpc and
using eq. (6) with h = 0.65 (adopted in the simulations) a total mass of
(1.60 ± 0.32) × 1012 M⊙ is obtained. In spite of the excellent agreement with
the actual total mass of the pair, this result is somewhat fortuitous since the
velocity dispersion of the simulated satellites is rather high. In practice, besides
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Fig. 1. Simulated velocity-distance data (diamonds) and best fit to the v=v(R)
relation (solid curve), corresponding to M = 1.48× 1012 M⊙ and σ = 73 km/s. The
Hubble parameter was held constant, h = 0.65.

random motions, errors in distances or velocities increase considerably the
uncertainty in the determination of the zero-velocity radius. These difficulties
can be alleviated by searching the best fit of the v = v(R) relation to data.
By varying the mass in order to minimize the velocity dispersion and giving a
higher weight to the inner satellites, one obtains M = (1.48±0.30)×1012 M⊙.
This result seems to be more confident to evaluate the uncertainties of the
method. It is worth mentioning that quoted errors are estimates based on the
spread of values derived from the fitting procedure and not formal statistical
errors. In figure 1 we show the simulated velocity-distance data for satellites
with R ≤ 1.8 Mpc and the best fit solution for eq. (7). The derived 1-D
velocity dispersion for this simulated data is 73 kms−1, a value lower than
that derived by Governato et al. (1997) but in quite good agreement with the
ΛCDM simulations by Macciò et al. (2005), who obtained a velocity dispersion
of about 80 kms−1 within a sphere of 3 Mpc radius (see their Fig. 3). A flat,
Λ dominated cosmology is able to produce flows on scales of few Mpc around
field galaxies “colder” than pure dark matter models, but somewhat higher
than values derived from actual data, as we shall see below.

Recent data on neighboring galaxies of the Local Group were summarized by
Karachentsev et al. (2002), who have estimated R0 = 0.94± 0.10 and derived
from eq. (1) a total mass of 1.3 × 1012 M⊙ for the M31/MW pair.

Here, eq. (7) was fitted to the data by Karachentsev et al. (2002), but varying

7



0.5 1.0 1.5 2.0 2.5 3.0 3.5

-100

0

100

200

300
Local Flow

v 
(k

m
/s

)

R  (Mpc)

Fig. 2. Velocity and distance data (circles) for satellites of the M31-MW system
(Karachentsev et al. 2002) and the best fit to the v=v(R) relation, corresponding
to M = 2.5 × 1012 M⊙ and h = 0.74

now both the mass and the Hubble parameter in order to minimize the velocity
dispersion. We have obtained h = 0.74±0.04 and M = (2.5±0.7)×1012 M⊙,
where the quoted errors are again estimates based on the uncertainties of
the fitted parameters. Figure 2 shows data points and the velocity-distance
relation defined by the previous parameters. Had we used eq. (8) instead of
eq. (7) in the fitting procedure, a similar result for the mass would have been
obtained, but with a higher Hubble parameter, e.g., h = 0.87± 0.05. We shall
return to this point latter.

The zero-velocity radius is located at 1.0±0.1 Mpc, which is about 10% higher
than the value estimated by Karachentsev et al. (2002) and the “marginally”
bound surface (zero-energy) is at a distance of about 2.3 Mpc. From our fit
it results a 1-D velocity dispersion of 39 kms−1, which should be compared
with the value of 73 km/s found from our simulated data for a similar scale.
Macciò et al. (2005) have also revisited the “coldness” of the Hubble flow and,
according to their final results, within a sphere of radius 3 Mpc, the expected
velocity dispersion is 38 kms−1, in rather good agreement with our figure.
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Fig. 3. Velocity and distance data for galaxies with Virgocentric distances in
the range 3.5 ≤ R ≤ 15 Mpc and the best fit to the v=v(R) relation, for
M = 1.1 × 1015 M⊙ and h = 0.65

4 The Virgo Cluster

Dynamical models for the Virgo cluster based on the Lemâitre-Tolman model
were, for instance, developed by Hoffman et al. (1980). They have modeled the
projected velocity dispersion as a function of the angular distance and, from
comparison with data, derived a mass of (4.0 ± 1.0) × 1014h−1 M⊙ contained
inside a sphere of 6o radius, which corresponds approximately to the central
relaxed core of the cluster. Using the virial relation, Tully & Shaya (1984)
obtained a mass of (7.5 ± 1.5) × 1014 M⊙ for this central core. More recently,
Fouqué et al. (2001) using the Lemâitre-Tolman model derived a mass of
1.3 × 1015 M⊙ inside a radius of 8o.

In this section, the derived velocity-distance relation (eq. 7), including effects
of the cosmological constant, will be applied to galaxies outside the inner core
of the Virgo cluster.

Galaxies with Virgocentric distances higher than 1.7 Mpc, corresponding ap-
proximately to the core radius, and less than 15 Mpc, were selected from
the list by Teerikorpi et al. (1992), constituting a sub-sample of 27 objects.
Distances derived from the Tully-Fisher relation were taken from the afore-
mentioned source. Heliocentric velocities were corrected with respect to the
Local Group according to the prescription by Courteau and van den Bergh
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(1999). Velocities and distances with respect to Virgo center were calculated
by assuming a distance to the cluster of 16.8 Mpc (Tully & Shaya 1984) and
an observed velocity of 967 km/s (Kraan-Korteweg 1981).

The best fit of eq. (7) to data gives h = 0.65 ± 0.09 and M = (1.10 ± 0.12)×
1015 M⊙, corresponding to a velocity dispersion σ1D = 335 km/s for the flow.
Figure 3 shows the velocity-distance data for the galaxies of our sample and
the theoretical v = v(R) relation computed with the derived parameters. The
higher mass derived in the present analysis confirms some early results based
on models of the velocity field in the vicinity of the Virgo cluster using the
Lemâitre-Tolman equations, as those performed by Tully & Shaya (1998) and
Fouqué et al. (2001).

The resulting zero-velocity surface is located at R0 = 8.6 ± 0.8 Mpc, which
at the assumed distance corresponds to an angle θZV = 29o. This should be
compared with the analyses by Hoffman et al. (1980), Tully & Shaya (1984) or
Teerikorpi et al. (1992), who estimated θZV = 27o, 28o and 25.8o respectively.

Eq. (7), with the above parameters, predicts that at the level of the Local
Group the observed velocity should be 988 km/s, which compares quite well
with the observed value. This indicates that the projection of the peculiar
velocity of the Local Group in the Virgo direction is about 190 km/s, compat-
ible with the values found by de Freitas Pacheco (1985), Tamman & Sandage
(1985) and Federspiel et al. (1998). The marginally bound surface is located
at about 19.8 Mpc, implying that the Local Group is bound to the cluster.

5 Conclusions

The contribution of a dark energy term in the mass-energy budget of the
universe seems to be well established at the present time. In this study, the
usual velocity-distance relation based on the Lemâitre-Tolman model, was
revisited in order to include effects due to such a cosmological term.

The dynamical equations were solved numerically and the relation M =
M(H0, R0), defining the mass inside the zero-velocity surface was recalculated.
For a given R0, the resulting masses are about 35-38% higher with respect to
the original relation derived from the Lemâitre-Bondi model (Ωv = 0), if the
dark energy is modeled by a fluid with an equation of state P/ǫ = w = −2/3
or by a cosmological constant respectively.

The resulting v = v(R) relation (w = −1 case) was applied to the Local Group
and to the Virgo cluster. From the best fitting procedure, a mass of (2.5±0.7)×
1012 M⊙ was derived for the M31-MW system, which corresponds to a M/L
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ratio of about 25 M⊙/LB,⊙. The zero-velocity surface and the “marginally”
bound surface are located at about 1.0 ± 0.1 Mpc and 2.3 Mpc respectively.
The later defines in fact the boundaries of the Local Group.

More sophisticated analyses of the Local Group based on the action principle
were performed by Peebles (1990). In this method, orbits are reconstructed
in order to reproduce the observed radial velocities, maintaining the action
stationary. Peebles (1990) preferred solution implies a mass of 6.4×1012 M⊙

for the Local Group, a factor 2.5 higher than our result, but a comparison of
these results could be meaningless since a different cosmology (Ω = 0.1) was
adopted in that work.

The same procedure applied to the Virgo cluster gives a mass of about (1.10±
0.12)×1015 M⊙ inside a radius of 8.6±0.8 Mpc. This mass is higher than the
virial value (Tully & Shaya 1984) or values derived from velocity dispersion
profiles computed from models based on the Lemâitre-Tolman model (Hoff-
man et al. 1980). However, recent studies of the velocity field based on the
Lemâitre-Tolman formulation also lead to masses compatible with our result.
Our velocity-distance relation predicts a peculiar velocity of the Local Group
towards the Virgo cluster of about 190 km/s, compatible with different esti-
mates. The “marginally” bound surface encloses the Local Group, which in
the future may attain its zero-velocity surface and then fall onto the cluster.
However this prediction is based on a model in which the Local Group is con-
sidered as an “isolated” system. In reality the motion of the Local Group is
much more complex, being strongly affected by large mass concentrations in
the direction of Hydra-Centaurus (Great Attractor) and the Shapley super-
cluster. Some numerical simulations predict that within ∼ 30 Gyr the Local
Group will get closer to the Virgo center (in comoving coordinates), but then
will be pulled away(in physical coordinates) due to the accelerated expansion
of the Universe (Nagamine & Loeb 2003).

The introduction of a cosmological constant term modifies the velocity-distance
relation in comparison with that derived from the Lemâitre-Tolman model.
Nevertheless both descriptions of the velocity field near the Local Group or
the Virgo cluster yield masses comparable to within a factor of two. This is
probably due to the fact that errors still present in distance estimates mask
differences between both models. However, when searching for a best fit of
both models to data, there is a substantial difference in the resulting Hubble
parameter. The Lemâitre-Tolman model requires h in the range 0.87-0.92 in
order to fit adequately the Local Group and Virgo data respectively, whereas
eq.(7) requires h in the range 0.65-0.74, more consistent with recent determi-
nations and with the “concordant” model. In this sense, the inclusion of the
cosmological constant in the v(R) relation seems to improve the representation
of actual data.
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