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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-UNICE

https://core.ac.uk/display/52794459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00077568


cc
sd

-0
00

77
56

8,
 v

er
si

on
 1

 -
 3

1 
M

ay
 2

00
6

On meromorphic functions defined by
a differential system of order 1, II

Tristan Torrelli1

Abstract. Given a nonzero germ h of holomorphic function on (Cn, 0), we
study the condition: “the ideal AnnD 1/h is generated by operators of order

1”. When h defines a generic arrangement of hypersurfaces with an isolated
singularity, we show that it is verified if and only if h is weighted homogeneous
and −1 is the only integral root of its Bernstein-Sato polynomial. When h is a
product, we give a process to test this last condition. Finally, we study some
other related conditions.

1 Introduction

Let h ∈ O = C{x1, . . . , xn} be a nonzero germ of holomorphic function such
that h(0) = 0. We denote by O[1/h] the ring O localized by the powers
of h. Let D = O〈∂1, . . . , ∂n〉 be the ring of linear differential operators with
holomorphic coefficients and F•D its filtration by order. In [28], we study the
following condition on h:

A(1/h) : The left ideal AnnD 1/h ⊂ D of operators annihilating 1/h is gen-
erated by operators of order one.

This property is very natural when one considers sections of O[1/h]/O with
an algebraic viewpoint, see [26]. On the other hand, it seems to be linked to
the topological property LCT(h): the de Rham complex Ω•[1/h] of mero-

morphic forms with poles along h = 0 is quasi-isomorphic to its subcomplex

of logarithmic forms. In particular, LCT(h) implies A(1/h) for free germs
[8] (in the sense of K. Saito [20]). The study of this condition LCT(h) was
initiated in [9] by F.J. Castro Jiménez, D. Mond and L. Narváez Macarro (see
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[29] for a survey). In this paper, we pursue the study of the condition A(1/h),
and more precisely when h is a reducible germ. Our motivation is to deepen
the link between LCT(h) and A(1/h).

Let us recall that this last condition is closely linked to the following ones:

H(h) : The germ h belongs to the ideal of its partial derivatives.

B(h) : −1 is the smallest integral root of the Bernstein polynomial of h.

A(h) : The ideal AnnD hs is generated by operators of order one.

Indeed, condition H(h) seems to be necessary in order to have A(1/h), see
[29]. Moreover, condition A(1/h) always implies B(h) ([28], Proposition 1.3).
This last condition has the following algebraic meaning: the D-module O[1/h]
is generated by 1/h (see below). On the other hand, one can easily check that:

If conditions H(h), B(h) and A(h) are verified, then so is A(1/h). (1)

Our first part is devoted to condition B(h). For testing this condition, it
seems natural to avoid the full determination of the Bernstein polynomial of h,
denoted by b(hs, s). Here we give such a trick when h is not irreducible, using
Bernstein polynomials associated with sections of holonomic D-modules.

Given a nonzero germ f ∈ O and an element m ∈ M of a holonomic
D-module without f -torsion, we recall that there exists a functional equation:

b(s)mf s = P (s) · mf s+1 (2)

in (Dm) ⊗ O[1/f, s]f s, where P (s) ∈ D[s] = D ⊗ C[s] and b(s) ∈ C[s] are
nonzero [17]. The Bernstein polynomial of f associated with m, denoted by
b(mf s, s), is the monic polynomial b(s) ∈ C[s] of smallest degree which verifies
such an equation. When f is not a unit and m ∈ f r−1M−f rM with r ∈ N∗, it
is easy to check that −r is a root of b(mf s, s). Thus we consider the following
condition:

B(m, f) : −1 is the smallest integral root of b(mf s, s)

for m ∈ M− fM; this extends our previous notation when m = 1 ∈ O = M.
By generalizing a well known result due to M. Kashiwara, this condition means:
the D-module (Dm)[1/f ] is generated by m/f (see Proposition 2.5). Hence
we get:

Proposition 1.1 Let h1, h2 ∈ O be two nonzero germs without common fac-
tor and such that h1(0) = h2(0) = 0.
(i) We have: B(h1h2)⇒B(1/h1, h2)⇒B(1̇/h1, h2) where 1̇/h1 ∈ O[1/h1]/O.
(ii) If B(h1) is verified, then B(h1h2)⇔B(1/h1, h2).
(iii) If B(h2) is verified, then B(1/h1, h2)⇔B(1̇/h1, h2).
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Of course, the equivalence in (ii) just means: (O[1/h1])[1/h2] = O[1/h1h2].
Let us insist on the condition B(1̇/h1, h2). Indeed, the polynomial b((1̇/h1)h

s
2, s)

may be considered as a Bernstein polynomial of the function h2 in restriction
to the hypersurface (X1, 0) ⊂ (Cn, 0) defined by h1, see [26]. In particu-
lar, b((1̇/h1)h

s
2, s) coincides with the (classical) Bernstein Sato polynomial of

h2|X1
: (X1, 0) → (C, 0) if h1 defines a smooth germ (X1, 0) (Corollary 2.4);

thus this trick is very relevant when h has smooth components. As an applica-
tion, we prove that B(h) is true when h defines a hyperplane arrangement
(Proposition 2.7), by using the classical principle of ‘Deletion-Restriction’.
This result was first obtained by A. Leykin [31], and more recently by M.
Saito [22].

What about the condition A(1/h) when h = h1 · h2 is a product with
h1(0) = h2(0) = 0 and h1, h2 have no common factor ? It is also natural to
consider the ideal AnnD (1/h1)h

s
2 and the Bernstein polynomial b((1/h1)h

s
2, s).

Indeed B(1/h1, h2) is a weaker condition than B(h1h2) (Proposition 1.1) and
we have an analogue of (1). Of course, it is difficult to verify if AnnD (1/h1)h

s
2

is - or not - generated by operators of order one. Meanwhile, this may be done
under strong assumptions on the components of h, by using the characteristic
variety of D(1/h1)h

s
2 which may be explicited in terms of the one of D(1/h1)

[14]. Let us give a definition.

Definition 1.2 A reduced germ h ∈ O defines a generic arrangement of hy-
persurfaces with an isolated singularity if it is a product

∏p

i=1 hi, p ≥ 2, of
germs hi which defines an isolated singularity, and such that, for any index
2 ≤ k ≤ min(p, n), the morphism (hi1, . . . , hik) : (Cn, 0) → (Ck, 0) defines a
complete intersection with an isolated singularity at the origin.

In the second part, we give a full characterization of A(1/h) for such a
type of germ.

Theorem 1.3 Let h =
∏p

i=1 hi ∈ O, p ≥ 2, define a generic arrangement
of hypersurfaces with an isolated singularity. Then the ideal AnnD 1/h is gen-
erated by operators of order one if and only if the following conditions are
verified:

1. the germ h is weighted homogeneous;

2. −1 is the only integral root of the Bernstein polynomial of h.

We recall that a nonzero germ h is weighted homogeneous of weight d ∈ Q+

for a system α ∈ (Q∗+)n if there exists a system of coordinates in which h is
a linear combination of monomials xγ1

1 · · ·xγn
n with

∑n

i=1 αiγi = d.
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This result generalizes the case of a hypersurface with an isolated singular-
ity [26]. Moreover, the condition B(h) is also explicit when p = 2, h weighted
homogeneous (Corollary 3.6), and the trick above for testing B(h) may be
generalized for p ≥ 3 (Proposition 2.8). On the other hand, these conditions
on the components of h are strong and they are not verified in general. To il-
lustrate this limitation, we end this part by studying the condition A(1/h) for
h = (x1 − x2x3)g when g ∈ C[x1, x2] is a weighted homogeneous polynomial.

Proposition 1.4 Let g ∈ C[x1, x2] be a weighted homogeneous reduced poly-
nomial of multiplicity greater or equal to 3. Let h ∈ C[x1, x2, x3] be the poly-
nomial (x1 − x2x3)g.
(i) If g is not homogeneous, then the condition A(1/h) does not hold for h.
(ii) If g is homogeneous of degree 3, then A(1/h) holds for h.

Here H(h) are B(h) are verified (see Lemma 3.7) whereas A(h) fails. We
mention that this family of surfaces was intensively studied by the Sevilian
group in order to understand the condition LCT(h) [4], [6], [10], [12], [13].

In the last part, we give some results on conditions closely linked to A(1/h).
First, we show how the Sebastiani-Thom process allows to construct germs h
which verify the condition A(h). Then, we do some remarks on a natural
generalization of condition A(1/h). We end this note with some remarks on
the holonomy of a particular D-module which appears in the study of LCT(h).

Aknowledgements. This research has been supported by a Marie Curie
Fellowship of the European Community (programme FP5, contract HPMD-
CT-2001-00097). The author is very grateful to the Departamento de Álgebra,
Geometŕıa y Topoloǵıa (Universidad de Valladolid) for hospitality during the
fellowship, and to the Departamento de Álgebra (University of Sevilla) for
hospitality in February 2004 and March 2005.

2 The condition B(h) for reducible germs

2.1 Preliminaries

In this paragraph, we recall some results about Bernstein polynomials of a
germ f ∈ O associated with a section m of a holonomic D-module M without
f -torsion. As they appear in [24] (unpublished), we recall some proofs for the
convenience of the reader.

Lemma 2.1 Let f ∈ O be a nonzero germ such that f(0) = 0. Let m be a germ
of holonomic D-module M without f -torsion. Let P (s) ∈ D[s] be a differential
operator such that P (j)mf j ∈ M[1/f ] is zero for a infinite sequence of integers
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j ∈ Z. Then P (s) belongs to the annihilator in D[s] of mf s ∈ M[1/f, s]f s,
denoted by AnnD[s] mf s.

Proof. We have the following identity:

P (s)mf s = (
d∑

i=0

mis
i)f s−N (3)

in M[1/f, s]f s, where mi ∈ M and N ∈ N denotes the order of P . By
assumption, there exists some integers j0 < · · · < jd such that

∑d

i=0(jk)
imi = 0

in M for 0 ≤ k ≤ d. Since the Gram matrix of the integers j0, . . . , jd is
inversible, the previous identities imply that mi = 0 for 0 ≤ i ≤ d. We
conclude with (3). �

Lemma 2.2 Let f ∈ O be a nonzero germ such that f(0) = 0. Let m ∈ M be
a nonzero section of a holonomic D-module without f -torsion.
(i) If g ∈ O is such that g ·m = 0, then b(mf s, s) coincides with b(m(f +g)s, s).
(ii) If m ∈ M− fM, then (s + 1) divides b(mf s, s).
(iii) For all p ∈ N∗, b(mf ps, s) divides the

∏p−1
i=0 b(mf s, ps+ i), and the polyno-

mial l.c.m(b(mf s, ps), . . . , b(mf s, ps+p−1)) divides b(mf ps, s). In particular,
these polynomials have the same roots.

Proof. In order to prove the first point, we just have to check that the poly-
nomial b(m(f + g)s, s) is a multiple of b(mf s, s) for any g ∈ AnnO m, and
to apply this fact with f̃ = f + g, g̃ = −g. Let P (s) ∈ D[s] be a dif-
ferential operator which realizes the Bernstein polynomial of m(f + g)s. In
particular, R(s) = b(m(f + g)s, s) − P (s)f belongs to AnnD[s] m(f + g)s. As
(f + g)j · m = f j · m for all j ∈ N, the operator R(s) annihilates mf s by
Lemma 2.1. Thus the polynomial b(mf s, s) divides b(m(f + g)s, s).

Now, we prove (ii). Let R ∈ D be the remainder in the division of P (s) by
(s + 1) in a nontrivial identity (2). Thus R ·mf s+1 = (R ·m)f s+1 + (s + 1)af s

where a ∈ M[1/f, s]. From (2), we get b(−1)m = fR(m). Hence b(−1) = 0
since m 6∈ fM.

The last point is an easy exercice. �

Proposition 2.3 Let X ⊂ Cn be an analytic subvariety of codimension p
passing through the origin. Let i : X →֒ Cn denote the inclusion and let
h1, . . . , hp ∈ O be local equations of i(X). Let f ∈ O be a germ such that f ◦ i
is not constant and let M′ be a holonomic DX,0-module without (f ◦ i)-torsion.

If m ∈ M′ is nonzero, then b(m(f ◦ i)s, s) coincides with the polynomial
b(i+(m)f s, s) where i+(m) ∈ M′ ⊗ (O[1/h1 · · ·hp]/

∑p

i=1 O[1/h1 · · · ȟi · · ·hp])
denotes the element 1̇/h1 · · ·hp.
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Proof. Up to a change of coordinates, we can assume that hi = xi, 1 ≤ i ≤ p.
Then the remainder f̃ ∈ C{xp+1, . . . , xn} in the division of f by x1, . . . , xp

defines the germ f ◦ i. Thus we have b(i+(m)f s, s) = b(i+(m)f̃ s, s) by using
Lemma 2.2. Let us prove that b(i+(m)f̃ s, s) coincides with b(mf̃ s, s). Firstly,
it easy to check that a functional equation for b(mf̃ s, s) induces an equation
for b(i+(m)f̃ s, s); thus b(i+(m)f̃ s, s) divides b(mf̃ s, s). On the other hand, we
consider the following equation:

b(i+(m)f̃ s, s)i+(m)f̃ s = P · i+(m)f̃ s+1 (4)

where P ∈ D[s]. It may be written P =
∑p

i=1 Qixi + R where Qi ∈ D[s] and
the coefficients of R ∈ D[s] do not depend on x1, . . . , xp; in particular, we can
change P by R in (4). Let R̃ ∈ DX,0[s] = C{xp+1, . . . , xn}〈∂p+1, . . . , ∂n〉[s]
denote the constant term of R as an operator in ∂1, . . . , ∂p with coefficients in
DX,0[s]. Obviously we can change R by R̃ in (4). As the annihilator of i+(m)f̃ s

in DX,0[s] coincides with the one of mf̃ s, we deduce that b(i+(m)f̃ s, s) is a
multiple of b(mf̃ s, s). This completes the proof. �

Corollary 2.4 Let h1, h2 ∈ O be two nonzero germs without common factor
and such that h1(0) = h2(0) = 0. Assume that h1 defines a smooth germ
(X1, 0) ⊂ (Cn, 0). Then b((1̇/h1)h

s
2, s) coincides with the (classical) Bernstein

Sato polynomial of h2|X1
: (X1, 0) → (C, 0).

Proposition 2.5 Let f ∈ O be a nonzero germ such that f(0) = 0. Let m
be a section of a holonomic D-module without f -torsion, and ℓ ∈ N∗. The
following conditions are equivalent:

1. The smallest integral root of b(mf s, s) is strictly greater than −ℓ − 1.

2. The D-module (Dm)[1/f ] is generated by mf−ℓ.

3. The following morphism is an isomorphism:

D[s]mf s

(s + ℓ)D[s]mf s
−→ (Dm)[1/f ]

.

P (s)mf s 7→ P (−ℓ) · mf−ℓ .

This is a direct generalization of a well known result due to M. Kashiwara
and J.E. Björk for m = 1 ∈ O = M (see [16] Proposition 6.2, [2] Propositions
6.1.18, 6.3.15 & 6.3.16).
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2.2 Is −1 the only integral root of b(hs, s) ?

First of all, let us prove Proposition 1.1.

Proof of Proposition 1.1. Assume that condition B(h1h2) is verified. From
Proposition 2.5, this means D1/h1h2 = O[1/h1h2]. In particular, we have
(D1/h1)[1/h2] ⊂ D1/h1h2; thus, by using Proposition 2.5 with m = 1/h1,
condition B(1/h1, h2) is verified. The second relation in (i) is clear since a
functional equation realizing b((1/h1)h

s
2, s) induces a functional equation for

b((1̇/h1)h
s
2, s).

The second point is clear, since it just means (O[1/h1])[1/h2] = O[1/h1h2]
(using three times Proposition 2.5). Now, given P ∈ D and ℓ ∈ N, let us
prove that (P · 1/h1)⊗ 1/hℓ

2 belongs to D1/h1h2 when B(1̇/h1, h2) and B(h2)
are verified. From Proposition 2.5, there exists an operator Q ∈ D such that
(P · 1̇/h1) ⊗ 1/hℓ

2 = Q · 1̇/h1 ⊗ 1/h2 in (O[1/h1]/O)[1/h2]. Hence we have
(P ·1/h1)⊗1/hℓ

2 = Q ·1/h1h2 +a/hN
2 , where a ∈ O and N ∈ N∗. As condition

B(h2) is verified, there exists R ∈ D such that R · 1/h2 = a/hN
2 . Thus we

get (P · 1/h1) ⊗ 1/hℓ
2 = (Q + Rh1) · 1/h1h2. In consequence, the condition

B(1/h1, h2) is also verified. �

The following examples show that there is no other relation between B(h1h2),
B(1/h1, h2), B(1̇/h1, h2) and B(h1), B(h2).

Example 2.6 (i) If h1 = x1 and h2 = x1 + x2x3 + x4x5, then b(hs
1, s) =

b(hs
2, s) = s + 1 but b((1̇/h1)h

s
2, s) = b((x2x3 + x4x5)

s, s) = (s + 1)(s + 2) by
using Corollary 2.4.

(ii) If h1 = x1x2 + x3x4 and h2 = x1x2 + x3x5, then b(hs
1, s) = b(hs

2, s) =
(s+1)(s+2), but b((h1h2)

s, s) is equal to (s+1)4(s+3/2)2 by using Macaulay
2 [15], [18]. Moreover, if h3 = x1, then condition B(h1h3) is also true, since
b((h1h3)

s, s) = (s + 1)3(s + 3/2) using Macaulay 2. Hence condition B(h1h2)
does not depend in general of the conditions B(h1) and B(h2).

(iii) Assume that h1 = x1 and h2 = x2
1 +x4

2 +x4
3. Then b(hs

1, s) = s+1 and
condition B(1̇/h1, h2) is true, since b((1̇/h1)h

s
2, s) = b((x4

2+x4
3)

s, s) by Corollary
2.4. But a direct computation using [25] shows that condition B(1/h1, h2) is
false.

(iv) Assume that h1 = x1x2x3 + x4x5 and h2 = x1. Then b((1/h1)h
s
2, s) =

b((1̇/h1)h
s
2, s) = b((x4x5)

s, s) = (s + 1)2, using [27] Proposition 2.9 and [25]
Proposition 1. On the other hand, (s + 1)(s + 2) divides b((h1h2)

s, s) and
b(hs

1, s), by the semi-continuity of the Bernstein polynomial (since when u is
a unit, we have b((u(ux2x3 + x4x5))

s, s) = (s + 1)(s + 2)). Thus B(1/h1, h2)
does not imply B(h1h2) in general.

As an application of Proposition 1.1, we obtain a new proof of the following
result.
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Proposition 2.7 ([31], [22]) Let h ∈ C[x1, . . . , xn] be the product of nonzero
linear forms (distinct or not). Then the Bernstein polynomial of h has only
−1 as integral root.

Proof. Let h be the product lp1

1 · · · lpr
r where r, p1, . . . , pr ∈ N∗ are positive

integers, and li ∈ (Cn)⋆ are distinct. We prove the result by induction on r. If
r = 1, this is a direct consequence of the following identity:

1

pp

(
∂

∂x

)p

· (xp)s+1 = (s +
1

p
)(s +

2

p
) · · · (s +

p − 1

p
)(s + 1)(xp)s

for p ∈ N∗. Now, we assume that the assertion is true for any germ as above
with at most N ≥ 1 distinct irreducible components. Let h be such a germ
with r = N . Let l ∈ (Cn)⋆ be a nonzero form which is not a factor of h, and
p ∈ N∗. In particular, −1 is the only integral root of the Bernstein polynomial
of l, lp and h. Let us remark that the assertion for h · l implies the assertion
for h · lp. Indeed, using Lemma 2.2, it is easy to check that B(1/h, l) implies
B(1/h, lp). We conclude with the help of Proposition 1.1, (ii).

In order to prove B(h · l), we just have to check that −1 is the only integral
root of b((1̇/l)hs, s) (Proposition 1.1, (iii)). But this is true by induction on N
since this last polynomial coincides with the Bernstein polynomial of h|{l=0}

(Corollary 2.4). This completes the proof. �

When h has more than two components, the following result provides a
generalized criterion for the condition B(h).

Proposition 2.8 Let h1, . . . , hp ∈ O be nonzero germs without common fac-
tor, and such that h1(0) = · · · = hp(0) = 0.

(i) Assume that 2 ≤ p ≤ n and that (h1, . . . , hp) defines a complete inter-
section. If B(h1 · · · ȟj · · ·hp), 1 ≤ j ≤ p, are verified, then B(δ, h1) implies
B(h1 · · ·hp) where δ = 1̇/h2 · · ·hp ∈ O[1/h2 · · ·hp]/

∑p

i=2 O[1/h2 · · · ȟi · · ·hp].
(ii) Assume that p = n and (h1, . . . , hn) defines the origin. If the conditions

B(h1 · · · ȟj · · ·hn), 1 ≤ j ≤ n, are verified, then so is B(h1 · · ·hn).
(iii) Assume that p ≥ n+1. If the conditions B(hi1 · · ·hin) are verified for

1 ≤ i1 < · · · < in ≤ p then so is B(h1 · · ·hp).

Proof. We start with the first assertion. From Proposition 1.1, we just have
to prove B(1/h2 · · ·hp, h1) (since B(h2 · · ·hp) is verified). Thus, given P ∈ D
and ℓ ∈ N, let us prove that (P · 1/h2 · · ·hp) ⊗ 1/hℓ

1 belongs to D1/h1 · · ·hp.
Using condition B(δ, h1), we have

(P ·
1

h2 · · ·hp

) ⊗
1

hℓ
1

= R ·
1

h1 · · ·hp

+
∑

2≤i≤p

qi

h
ℓi,1

1 · · · ȟi

ℓi,i
· · ·h

ℓi,p
p

8



with qi ∈ O and ℓi,j ∈ N. We conclude by using that O[1/h1 · · · ȟi · · ·hp] is
generated by 1/h1 · · · ȟi · · ·hp for 2 ≤ i ≤ p by assumption.

In order to prove (ii), we have to check that B(δ, h1) is verified when p = n.
Firstly, we notice that the D-module O[1/h2 · · ·hp]/

∑p

i=2 O[1/h2 · · · ȟi · · ·hp]
is generated by δ (using condition B(h2 · · ·hp)). Thus N = (Dδ)[1/h1]/Dδ
is isomorphic to the module of local algebraic cohomology with support in
the origin; in particular, any nonzero section generates N . We deduce easily
that (Dδ)[1/h1] is generated by δ ⊗ 1/h1. From Proposition 2.5, the condition
B(δ, h1) is verified.

The last point is a direct consequence of the following fact, proved by
A. Leykin [31], Remark 5.2: if the condition B(hi1 · · ·hik−1

) is verified for

1 ≤ i1 < · · · < ik−1 ≤ k with k ≥ n + 1, then so is B(h1 · · ·hk). �

Example 2.9 Let n = 3, p ≥ 3 and hi = ai,1x
2
1 + ai,2x

3
2 + ai,3x

4
3 where the

vector ai = (ai,1, ai,2, ai,3) belongs to C3 and the rank of (ai1 , ai2 , ai3) is maximal
for 1 ≤ i1 < i2 < i3 ≤ p. Thus the polynomial h = h1 · · ·hp defines a generic
arrangement of hypersurfaces with an isolated singularity. By using the closed
formulas for b(hs

i , s) and b((1̇/hi)h
s
j , s), 1 ≤ i 6= j ≤ p, (see [32], [25]), it is

easy to check that the conditions B(hi) and B(1̇/hi, hj) are verified; thus so
is B(h).

3 The condition A(1/h) for a generic arrange-

ment of hypersurfaces with an isolated sin-

gularity

In this part, we characterize the condition A(1/h) when h ∈ O defines a
generic arrangement of hypersurfaces with an isolated singularity. Then we
study this condition for a particular family of free germs (§3.3).

3.1 A convenient annihilator

This paragraph is devoted to the determination of an annihilator which will
allow us to characterize A(1/h).

Notation 3.1 Let h = (h1, . . . , hr) : Cn → Cr, 1 ≤ r < n, be an analytic
morphism. For any K = (k1, . . . , kr+1) ∈ Nr+1 where 1 ≤ k1, . . . , kr+1 ≤ n
and ki 6= kj for i 6= j, let ∆h

K ∈ D denote the vector field:

r+1∑

i=1

(−1)imK(i)(h)∂ki
=

r+1∑

i=1

(−1)i∂ki
mK(i)(h)

9



where K(i) = (k1, . . . , ǩi, . . . , kr+1) ∈ Nr and mK(i)(h) is the determinant of
the r × r matrix obtained from the Jacobian matrix of h by deleting the k-th
columns with k 6∈ {k1, . . . , ǩi, . . . , kr+1}.

Proposition 3.2 Assume that n ≥ 3. Let h =
∏p

i=1 hi ∈ O, p ≥ 2, define
a generic arrangement of hypersurfaces with an isolated singularity, and let
h̃ be the product

∏p

i=2 hi. Then the ideal AnnD (1/h̃)hs
1 is generated by the

operators:

∆
hi1

,...,hir

K

∏

i6=i1,...,ir

hi

with 1 ≤ r ≤ min(n − 1, p) and 1 = i1 < · · · < ir ≤ p.

Proof. Let I ⊂ D be the left ideal generated by the given operators, and let
I ⊂ O[ξ1, . . . , ξn] denote the ideal generated by their principal symbols. We
will just prove that AnnD (1/h̃)hs

1 ⊂ I, since the reverse inclusion is obvious.
Let us study charD D(1/h̃)hs

1 ⊂ T ∗Cn the characteristic variety of D(1/h̃)hs
1.

Given an analytic subspace X ⊂ Cn, we denote by Wh1|X the closure in T ∗Cn

of the set {(x, ξ + λdh1(x)) | λ ∈ C, (x, ξ) ∈ T ∗
XCn}.

Assertion 1. The characteristic variety of D(1/h̃)hs
1 is the union of the sub-

spaces Wh1
and Wh1|Xi1,...,ir

, 2 ≤ i1 < · · · < ir ≤ p, 1 ≤ r ≤ min(n − 1, p),
where Xi1,...,ir ⊂ Cn is the complete intersection defined by hi1 , . . . , hir .

Proof. Under our assumption, (h̃−1(0), x) is a germ of a normal crossing hy-
persurface for any x ∈ h̃−1(0)/{0} close enough to the origin. In particu-
lar, D1/h̃ coincides with O[1/hi1 · · ·hir ] on a neighborhood of such a point,
where {i1, . . . , ir} = {i | hi(x) = 0, 2 ≤ i ≤ p}. Hence, the components of
the characteristic variety of D1/h̃ which are not supported by h1 = 0 are
T ∗

CnCn and the conormal spaces T ∗
Xi1,...,ir

Cn, with 2 ≤ i1 < · · · < ir ≤ p and

1 ≤ r ≤ min(n−1, p). The assertion follows from a result of V. Ginzburg ([14]
Proposition 2.14.4). �

We recall that the relative conormal space2 Wh1
⊂ T ∗Cn is defined by the

polynomials σ(∆h1

k1,k2
) = h′

1,xk2

ξk1
− h′

1,xk1

ξk2
, 1 ≤ k1 < k2 ≤ n (see [32] for

example). One can also determine explicitly the defining ideal of the spaces
Wh1|Xi1,...,ir

.

Assertion 2 ([25]). The conormal space Wh1|Xi1,...,ir
is defined by hi1 , . . . , hir

and by the principal symbol of the vector fields ∆
hi1

,...,hir

K (when r < n − 1),
where K = (k1, . . . , kr+2) ∈ Nr+2 with 1 ≤ k1 < · · · < kr+2 ≤ n.

Now we can determine the equations of charD D(1/h̃)hs
1.

2See §4.1
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Assertion 3. The defining ideal of charD D(1/h̃)hs
1 is included in I.

Proof. Let A ∈ O[ξ] = O[ξ1, . . . , ξn] be a polynomial which is zero on the
characteristic variety of D(1/h̃)hs

1. We will prove the result when p ≥ n - the
case p ≤ n − 1 is analogous.

Using the inclusion Wh1|Xi1,...,in−1
⊂ charD D(1/h̃)hs

1 and Assertion 2, we

have: A ∈ (hi1, . . . , hin−1
)O[ξ] for 2 ≤ i1 < · · · < in−1 ≤ p. By an easy

induction on p ≥ n, one can check that:
⋂

2≤i1<···<in−1≤p

(hi1 , . . . , hin−1
)O =

∑

2≤i1<···<in−2≤p

[
∏

i6=1,i1,...,in−2

hi]O

using that every sequence (hi1 , . . . , hin) is regular. Thus A may be written as

a sum
∑

2≤i1<···<in−2≤p A
(0)
i1,...,in−2

(
∏

i6=1,i1,...,in−2
hi) for some A

(0)
i1,...,in−2

∈ O[ξ].
Now let us fix i1 < · · · < in−2 a family of index as above. From the inclu-

sion Wh1|Xi1,...,in−2
⊂ charD D(1/h̃)hs

1 and Assertion 2, A belongs to the ideal

I1,i1,...,in−2
= (hi1 , . . . , hin−2

)O[ξ] +
∑

K σ(∆
h1,hi1

,...,hin−2

K )O[ξ]. On the other
hand, let us remark that hi is O[ξ]/I1,i1,...,in−2

-regular for i 6= 1, i1, . . . , in−2 [by
the principal ideal theorem, using that I1,i1,...,in−2

defines the irreducible space

Wh1|X1,i1,...,in−2
of pure dimension n + 1]. Thus we have A

(0)
i1,...,in−2

∈ I1,i1,...,in−2
,

and A may be written: A = U +
∑

2≤i1<···<in−3≤p A
(1)
i1,...,in−3

(
∏

i6=1,i1,...,in−3
hi)

where A
(1)
i1,...,in−3

∈ O[ξ] and U ∈ I. Up to a division by I, we can assume that
U = 0. After iterating this process with Wh1|Xi1,...,ir

, 1 ≤ r ≤ n− 2, we deduce

that A − A(n−2)h̃ belongs to I. Hence, using that Wh1
⊂ charD D(1/h̃)hs

1, we
have: A(n−2) ∈

∑
1≤k1<k2≤n σ(∆h1

k1,k2
)O[ξ]. In particular, A(n−2)h̃ belongs to I,

and we conclude that A ∈ I. �

Now let us prove the proposition. Let P ∈ AnnD (1/h̃)hs
1 be a nonzero

operator of order d. In particular, σ(P ) is zero on charD D(1/h̃)hs
1, and by

Assertion 3: σ(P ) ∈ I. In other words, there exists Q ∈ I such that σ(Q) =
σ(P ). Thus, the operator P − Q ∈ AnnD (1/h̃)hs

1 ∩ Fd−1D belongs to I, and
so does P (by induction on the order of operators). �

Remark 3.3 We are not able to determine AnnD hs when h defines a generic
arrangement of hypersurfaces with an isolated singularity. In particular, we
do not know if the condition A(h) (or W(h)) is - or not - verified (see §4.1).

Given a germ h ∈ O such that h(0) = 0, let us denote by Der(− log h)
the coherent O-module of logarithmic derivations relative to h, that is, vector
fields which preserve hO (see [19]).

Corollary 3.4 Let h =
∏p

i=1 hi ∈ O, p ≥ 2, define a generic arrangement
of hypersurfaces with an isolated singularity. Assume that n ≥ 3 and that h

11



is a weighted homogeneous polynomial. Then Der(− log h) is generated by the
Euler vector field χ such that χ(h) = h and the vector fields

[
∏

i6=i1,...,ir

hi

]
· ∆

h11
,...,hir

K

where 1 ≤ r ≤ min(n − 1, p) and 1 = i1 < · · · < ir ≤ p.

Proof. We denote by h̃ ∈ O the product h2 · · ·hp. Let v be a logarithmic
vector field; in particular, v(h) = ah. As h = h1h̃, it is easy to check that
v(h1) = a1h1 and v(h̃) = ãh1 for a1, ã ∈ O such that a1 + ã = a. In particular,
v · (1/h̃)hs

1 = (a1s − ã)(1/h̃)hs
1. Thus v + ã − a1χ belongs to AnnD (1/h̃)hs

1,
and by using the proof of the previous result, we have:

v = −ã + a1χ +

min(n−1,p)∑

r=1

∑

1≤i1<...<ir≤p

λi1,...,ir∆
i1,...,ir
K ·

∏

i6=i1,...,ir

hi

where λi1,...,ir ∈ O for 1 ≤ i1 < . . . < ir ≤ p. As v is a vector field, we get
v = a1χ +

∑
r

∑
λi1,...,ir [

∏
i6=i1···ir

hi]∆
i1,...,ir
K and the assertion follows. �

3.2 The expected characterization

The proof of Theorem 1.3 is an easy consequence of the following result

Proposition 3.5 Let h =
∏p

i=1 hi ∈ O, p ≥ 2, define a generic arrangement
of hypersurfaces with an isolated singularity. Assume that n ≥ 3 and that the
origin is a critical point of h1. Let h̃ denote the product

∏p

i=2 hi. Then the ideal
AnnD 1/h is generated by operators of order one if and only if the following
conditions are verified:

1. the germ is weighted homogeneous;

2. −1 is the smallest integral root of the Bernstein polynomial b((1/h̃)hs
1, s).

Proof. We can assume that h does not define a normal crossing divisor. Indeed,
the conditions A(1/h), 1 and 2 are obviously verified for a normal crossing
divisor. In particular, the constant term with the coefficient on the right side
of any operator in AnnD(1/h̃)hs

1 is not a unit (see Proposition 3.2).

Firstly, we prove that conditions 1 & 2 imply A(1/h). By an Euclidean
division, we have a decomposition

AnnD[s]
1

h̃
hs

1 = D[s](s − q̃ − v) + D[s]AnnD
1

h̃
hs

1

12



where v denotes the Euler vector field such that v(h1) = h1 and v(h̃) = q̃h̃
with q̃ ∈ Q∗+. Moreover, with the condition 2, the ideal AnnD 1/(h̃h1) is
obtained by fixing s = −1 in a system of generators of AnnD[s](1/h̃)hs

1 (see
[26] Proposition 3.1). From Proposition 3.2, the condition A(1/h) is therefore
verified.

Now, we prove the reverse. Let us assume that AnnD1/h is generated by the
operators Q1, . . . , Qw ∈ F1D. From Proposition 1.3 in [28], B(h) is verified,
and so3 is condition 2 by Proposition 1.1. Hence, we just have to check that
h is necessarily weighted homogeneous. Let qi be the germ Qi(1) ∈ O and Q′

i

the vector field Qi − qi. In particular, we have Q′
i(h) = qih for 1 ≤ i ≤ w.

As h = h1h̃, it is easy to deduce that Q′
i(h̃) = q̃ih̃ and Q′

i(h1) = qi,1h1 where
q̃i, qi,1 ∈ O verify

q̃i + qi,1 = qi, 1 ≤ i ≤ w.

On the other hand, we have the following fact:

Assertion 1. There exists a differential operator R in AnnD(1/h̃)hs
1 such that

R = 1 +
∑w

i=1 Aiqi,1 with Ai ∈ D.

Proof. The proof is analogous to the one of [26] Lemme 3.3. From [14] p 351 or
[24], there exists a ‘good’ operator R0(s) of degree N ≥ 1 in AnnD[s](1/h̃)hs

1,

that is R0(s) = sN +
∑N−1

k=0 skPk with Pk ∈ FN−kD, 0 ≤ k ≤ N − 1. By
Euclidean division, we have R0(s) = (s+1)S(s)+R0(−1) where S(s) is monic
in s of degree N−1 and R0(−1) ∈ AnnD1/h. Thus, there exists A1, . . . , Aw ∈ D
such that R0(−1) =

∑w

i=1 AiQi. From the relations above, we get

(s + 1)S(s)
1

h̃
hs

1 + (s + 1)
w∑

i=1

Aiqi,1
1

h̃
hs = 0.

Hence R1(s) = S(s) +
∑w

i=1 Aiqi,1 belongs to AnnD[s](1/h̃)hs
1. By iteration, we

can assume that S(s) = 1. �

In particular, at least one of the qi,1 is a unit (see the very beginning of the
proof.)

Assertion 2. If qi,1 is a unit, then so is qi.

Proof. As the assertion is clear if q̃i is not a unit, we can assume that q̃i is a unit.
Let χi denote the vector field q−1

i,1 Q′
i; in particular χi(h1) = h1. As h1 defines

an isolated singularity, a famous result due to K. Saito [19] asserts that, up to a
change of coordinates, χi is an Euler vector field

∑n

k=1 αkxk∂k with αk ∈ Q∗+.

Hence, the relation χi(h̃) = q−1
i,1 q̃ih̃ implies that the constant (q−1

i,1 q̃i)(0) belongs

3In fact, the same proof shows directly that condition A(1/h) implies B(1/h̃, h1).
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to Q∗+ [consider the initial part of q−1
i,1 q̃ih̃ relative to α1, . . . , αn]. In particular,

q−1
i,1 q̃i + 1 is a unit, and so is qi = q̃i + qi,1. �

We recall that a formal power series g ∈ C[[x1, . . . , xn]] is weakly weighted
homogeneous of type (β0, β1, . . . , βn) ∈ Cn+1 if for all monomial xγ1

1 · · ·xγn
n with

a nonzero coefficient in the power expansion of g, we have β1γ1+· · ·+βnγn = β0.
Let us pursue the proof. We have proved that there exists an Euler vector field
χi such that q−1

i χi(h) = h (in particular, qi(0) > 0). From [19], Corollary 3.3,
there exists a formal change of coordinates φ such that h◦φ is weakly weighted
homogeneous of type (1, α1q

−1
i (0), . . . , αnq

−1
i (0)). As the αkq

−1
i (0) are strictly

positive, h ◦φ is in fact weighted homogeneous, and according to a theorem of
Artin [1], a convergent change of coordinates exists. This completes the proof.
�

Proof of Theorem 1.3. The case n = 2 is done in [26], Theorem 1.2. We just
have to check that the condition 2 in the previous statement may be replaced
by B(h). Indeed, condition A(1/h) always implies B(h) ([28] Proposition
1.3), and on the other hand, B(h) is stronger than B(1/h̃, h1) (Proposition
1.1). �

Of course, we can use §2.2 to test if condition B(h) is verified. In the
particular case p = 2 and h weighted homogeneous, we obtain the following
characterization:

Corollary 3.6 Let h1, h2 ∈ C[x1, . . . , xn] be two weighted homogeneous poly-
nomial of degree d1, d2 for a system α ∈ (Q∗+)n, defining hypersurfaces with an
isolated singularity at the origin and without common components. Let K ⊂ O
be the ideal generated by the maximal minors of the Jacobien matrix of (h1, h2).
Then the annihilator of 1/h1h2 is generated by operators of order 1 if and only
if for j = 1 or 2, there is no weighted homogeneous element in O/hjO + K
whose weight belongs to the set {dj × k −

∑n

i=1 αi ; k ∈ N & k ≥ 2}.

This relies on the existence of closed formulas for b((1/h̃)hs
1, s) under these

assumptions [25].

3.3 About a family of free germs

In this part, we prove Proposition 1.4. As the two parts are quite distinct, we
will prove them successively.

Lemma 3.7 Let g ∈ C{x1, x2} be a nonzero reduced germ of plane curve such
that g(0) = 0. Then −1 is the only integral root of the Bernstein polynomial
of (x1 − x2x3)g(x1, x2).
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Proof. As g is a reduced germ of plane curve, B(g) is verified [30], [21].
Thus, by using Proposition 1.1, the three conditions B((x1 − x2x3)g(x1, x2)),
B(1/x1 − x2x3, g) and B(1̇/x1 − x2x3, g) are equivalent. Let us prove the last
one. From Corollary 2.4, we have b((1̇/x1 − x2x3)g

s, s) = b((g(x2x3, x2))
s, s).

Let us write g(x2x3, x2) = xℓ
2g̃(x2, x3) where g̃ ∈ C{x2, x3} − x2C{x2, x3} is

reduced and ℓ ∈ N∗. If g̃ is a unit, then B(g(x2x3, x3)) is verified and so is
B((x1−x2x3)g(x1, x2)). Now we assume that g̃ is not a unit. As it is reduced,
B(g̃) is verified and B(g̃xℓ

2) is equivalent to B(1/g̃, xℓ
2). Using Lemma 2.2, it is

easy to check that B(1/g̃, x2) implies B(1/g̃, xℓ
2). Thus we just have to prove

B(1/g̃, x2). As condition B(g̃) is verified, the conditions B(1/g̃, x2), B(g̃x2)
and B(1̇/x2, g̃) are equivalent (Proposition 1.1). Both of them are verified since
b((1̇/x2)g̃

s, s) = b((g̃(0, x3))
s, s) from Corollary 2.4, where g̃(0, x3) = uxN

3 with
u ∈ C{x3} is a unit. This completes the proof. �

We recall that a nonzero germ h ∈ O defines a germ of free divisor if
the module of logarithmic derivations relative to h is O-free [20]. Moreover,
such a germ defines a Koszul-free divisor if there exists a basis {δ1, . . . , δn} of
Der(− log h) such that the sequence of principal symbols (σ(δ1), . . . , σ(δn)) is
grFD-regular.

Lemma 3.8 Let g ∈ C[x1, x2] be a weighted homogeneous and reduced polyno-
mial whose multiplicity is greater or equal to 3. Let h ∈ C[x1, x2, x3] denote
the polynomial (x1 − x2x3)g(x1, x2).

(i) The polynomial h defines a free divisor and verifies the condition H(h).
(ii) The polynomial h defines a Koszul-free divisor if and only if the weighted

homogeneous polynomial g is not homogeneous.

Proof. (i) It is enough to remark that the following vector fields verify Saito’s
criterion [20] for h:

δ1 = α1x1∂1 + α2x2∂2 + (α1 − α2)x3∂3

δ2 = g′
x2

∂1 − g′
x1

∂2 + (x3u − v)∂3

δ3 = (x1 − x2x3)∂3

where (α1, α2) ∈ (Q∗+)2 is a system of weights for g, and u ∈ C[x1, x2, x3],
v ∈ C[x2, x3] are the polynomials of degree in x3 less or equal to 1 uniquely
defined by the relation

x3g
′
x1

(x1, x2) + g′
x2

(x1, x2) = u(x1, x2, x3)x1 − v(x2, x3)x2

(we use that g′
x1

, g′
x2

∈ (x1, x2)C[x1, x2] under our assumptions.)

(ii) As the sequence (σ(δ1), σ(δ2), ξ3) is regular, the germ h is Koszul-free if
and only if the sequence (σ(δ1), σ(δ2), x1 − x2x3) is O[ξ]-regular. By division
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by x1 − x2x3, this condition may be rewritten: the polynomials

Υ1 = α1x2x3ξ1 + α2x2ξ2 + (α1 − α2)x3ξ3

Υ2 = g′
x2

(x2x3, x2)ξ1 − g′
x1

(x2x3, x2)ξ2 + (x3u(x2x3, x2, x3) − v(x2, x3))ξ3

have no common factor. Let us notice that x2 is the only (irreducible) common
factor of g′

x1
(x2x3, x2) and g′

x2
(x2x3, x2) [since g ∈ C[x1, x2] defines an isolated

singularity.] Thus, when Υ1 and Υ2 have a common factor, this factor is x2

(up to a multiplicative constant). As g belongs in (x1, x2)
3C[x1, x2], we have

g′
x1

, g′
x2

∈ (x1, x2)
2C[x1, x2]; thus u, v ∈ (x1, x2)C[x1, x2, x3]. In particular, x2

is a factor of Υ2, and Υ1, Υ2 have no common factor if and only if α1 6= α2.
This completes the proof. �

Of course, for g = x1x2(x1 +x2), h is the example of F.J. Calderón-Moreno
in [4] and it is not Koszul-free.

Proof of Proposition 1.4, part (i). Without loss of generality, we will assume
that δ1(h) = h. Let us take δ′2 = δ2 − u · δ1 and δ′3 = δ3 + x2δ1; in particular,
{δ1, δ

′
2, δ

′
3} is a basis of Der(log h) such that δ′2(h) = δ′3(h) = 0.

From the characterization of condition A(1/h) for Koszul-free germs (see
[28] Corollary 1.8), it is enough to check that condition A(h) fails, that
is, the sequence (x1 − x2x3, σ(δ′2), σ(δ′3)) is not regular. As g belongs to
(x1, x2)

3C[x1, x2], we have σ(δ′2), σ(δ′3) ∈ (x1, x2)O[ξ]. By division by x1−x2x3,
we deduce that the sequence is not regular. �

Notation 3.9 Given a homogeneous polynomial g ∈ C[x1, x2] −C of degree
p ≥ 1, we denote by g̃1, g̃2 ∈ C[x1, x2, x3] the quotient of the division of g′

x1
, g′

x2

by x1 − x2x3. In particular:

g′
xi

= (x1 − x2x3)g̃i + xp−1
2 g′

xi
(x3, 1), i ∈ {1, 2}. (5)

Lemma 3.10 Let g ∈ C[x1, x2] be a homogeneous reduced polynomial of degree
p ≥ 3. Then the characteristic variety of D(1/x1 − x2x3)g

s is defined by
the following polynomials: (x1 − x2x3)ξ3, g′

x2
ξ1 − g′

x1
ξ2 + pxp−2

2 g(x3, 1)ξ3, and
[x2g

′
x2

(x3, 1)ξ1 − x2g
′
x1

(x3, 1)ξ2 + pg(x3, 1)ξ3]ξ3.

Proof. Using [14] Proposition 2.14.4, the characteristic variety of the D-module
D(1/x1 − x2x3)g

s is the union of the conormal spaces Wg and Wg|x1=x2x3
. It is

easy to check that they are defined by the ideals I1 = (ξ3, g
′
x2

ξ1−g′
x1

ξ2)O[ξ] and
I2 = (x1 − x2x3, x2g

′
x2

(x3, 1)ξ1 − x2g
′
x1

(x3, 1)ξ2 + pg(x3, 1)ξ3)O[ξ] respectively.
Clearly, the ideal I generated by the given polynomials is contained in I1 ∩ I2.
Thus we just have to prove the reverse relation.

Let A, B, C, D ∈ O[ξ] be such that

A(x1−x2x3)+B(x2g
′
x2

(x3, 1)ξ1−x2g
′
x1

(x3, 1)ξ2+pg(x3, 1)ξ3) = Cξ3+D(g′
x2

ξ1−g′
x1

ξ2).
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Using (5), we get

(A − D(g̃2ξ1 − g̃1ξ2))(x1 − x2x3) + (pBg(x3, 1) − C)ξ3

+ (B − Dxp−2
2 )x2(g

′
x2

(x3, 1)ξ1 − g′
x1

(x3, 1)ξ2) = 0

Since the sequence (x1−x2x3, ξ3, x2(g
′
x2

(x3, 1)ξ1−g′
x1

(x3, 1)ξ2)) is O[ξ]-regular,
there exist U, V, W ∈ O[ξ] such that

{
A − D(g̃2ξ1 − g̃1ξ2) = Uξ3 + Wx2(g

′
x2

(x3, 1)ξ1 − g′
x1

(x3, 1)ξ2)

B − Dxp−2
2 = −V ξ3 − W (x1 − x2x3)

Thus one can notice that the first part of the first identity belongs to I, that
is, I is the defining ideal of Wg ∪ Wg|x1=x2x3

. �

Lemma 3.11 Let g ∈ C[x1, x2] be a homogeneous reduced polynomial of de-
gree 3. Then the annihilator of (1/x1 − x2x3)g

s is generated by the following
differential operators:

(x1 − x2x3)∂3 − x2 , g′
x2

∂1 − g′
x1

∂2 + 3x2g(x3, 1)∂3 + x3g̃1 + g̃2 and

[x2g
′
x2

(x3, 1)∂1−x2g
′
x1

(x3, 1)∂2+3g(x3, 1)∂3]∂3+ g̃2∂1−g̃1∂2+3g′
x1

(x3, 1)∂3+u′
x1

where u = x3g̃1 + g̃2.

Proof. Let us denote by I ⊂ D the ideal generated by the given operators S1,
S2, S3. It is not hard to check the inclusion I ⊂ AnnD (1/x1 − x2x3)g

s. Let us
prove that the reverse inclusion by induction on the order of operators.

Let P ∈ AnnD (1/x1 − x2x3)g
s be an operator of order d. As d = 0

implies P = 0, we can assume d ≥ 1. Then σ(P ) is zero on the characteristic
variety of D(1/x1 − x2x3)g

s. From the previous result, there exists A1 ∈ O[ξ]
(resp. A2, A3) zero or homogeneous in ξ of degree d − 1 (resp. d − 1, d − 2)
such that: σ(P ) =

∑3
i=1 Aiσ(Si). If Ãi ∈ D, 1 ≤ i ≤ 3, are such that

σ(Ãi) = Ai for 1 ≤ i ≤ 3, then P−
∑3

i=1 ÃiSi belongs to Fd−1D and annihilates
(1/x1 − x2x3)g

s. By induction, it belongs to I and so does P . �

Proof of Proposition 1.4, part (ii). We will prove that AnnD 1/h is generated
by the operators δ̃1 = δ1 + 4, δ̃2 = δ2 + u, δ̃3 = δ3 − x2 (with the notations
introduced in the proof of Lemma 3.8 with α1 = α2 = 1). From Lemma 3.7,
we know that −1 is the smallest integral root of b((1/x1 − x2x3)g

s, s). Thus
we have the decomposition AnnD 1/h = Dδ̃1 + AnnD (1/x1 − x2x3)g

s, and the
assertion is a direct consequence of the previous result and of the following
relation in D:

[g′
x2

(x3, 1)x2∂1 − g′
x1

(x3, 1)x2∂2 + 3g(x3, 1)∂3 + 3g′
x1

(x3, 1)](∂3δ̃1 − ∂1δ̃3)
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+ [∂2 + x3∂1](∂3δ̃2 + (g̃2∂1 − g̃1∂2)δ̃3) = −2S3 + ∂1δ̃2 − (g̃2∂1 − g̃1∂2 + u′
x1

)δ̃1

where S3 is the operator of order 2 which appears in the given system of
generators of AnnD (1/x1 − x2x3)g

s. �

4 Some other conditions

In this part, h ∈ O denotes a nonzero germ such that h(0) = 0.

4.1 The condition A(h) for Sebastiani-Thom germs

We recall that the condition A(h) on the ideal AnnD hs may be considered
almost as a geometric condition. Indeed the following condition implies A(h):

W(h) : The relative conormal space Wh is defined by linear equations in ξ.

since Wh = {(x, λdh) | λ ∈ C} ⊂ T ∗Cn is the characteristic variety of Dhs

([16]). For example, W(h) is true for hypersurfaces with an isolated singularity
[32] and for locally weighted homogeneous free divisors [6]. This condition also
means that the kernel of the morphism of graded O-algebras:

O[X1, . . . , Xn] −→ R(Jh)

Xi 7−→ th′
xi

is generated by homogeneous elements of degree 1, where Jh denotes the Jaco-
bian ideal (h′

x1
, . . . , h′

xn
)O and R(Jh) is the Rees algebra

⊕
d≥0 J

d
h td. Following

a terminology due to W.V. Vasconcelos, one says that Jh is of linear type (see
[6] for more details). Finally, let us give a third condition trapped between
A(h) and W(h):

G(h) : The graded ideal grFAnnD hs is generated by homogeneous polyno-
mials in ξ of degree 1.

Remark 4.1 (i) We do not know if the conditions A(h), G(h) and W(h)
are - or not - equivalent.
(ii) These conditions are not stable by multiplication by a unit.

It seems uneasy to find sufficient conditions on h for A(h) or W(h). Thus,
it is natural to study if the class of germs h which verify A(h) or W(h) is -
or not - stable by Thom-Sebastiani sums. Here we give a positive answer in a
particular case.

Proposition 4.2 Let g ∈ O be a nonzero germ such that g(0) = 0 and which
verifies the condition W(g). Let f ∈ C{z1, . . . , zp} be a nonzero germ which
defines an isolated singularity at the origin. Then h = g + f verifies the
condition W(h).

18



This is direct consequence of the following result.

Proposition 4.3 Let g ∈ O be a nonzero germ such that g(0) = 0, and
Υ1, . . . , Υw ∈ O[ξ] be homogeneous polynomials which generate the defining
ideal of Wg.

Let f ∈ C{z1, . . . , zp} be a nonzero germ which defines an isolated singu-
larity and ξ1, . . . , ξn, η1, . . . , ηp denote the conormal coordinates on T ∗Cn×Cp.
Then the relative conormal space Wg+f ⊂ T ∗Cn ×Cp is defined by the polyno-
mials f ′

zi
ηj − f ′

zj
ηi, 1 ≤ i < j ≤ p, g′

xk
ηi − f ′

zi
ξk, 1 ≤ i ≤ p, 1 ≤ k ≤ n, and

Υ1, . . . , Υw.

Proof. Let us denote by E ⊂ C{z1, . . . , zp} a C-vector space of finite dimension
isomorphic to C{z1, . . . , zp}/(f ′

z1
, . . . , f ′

zp
) by projection, and by C{x, z} the

ring C{x1, . . . , xn, z1, . . . , zp}. In particular, any germ p ∈ C{x, z} may be
written in a unique way: p = p̃ + r where p̃ ∈ E ⊗C O ⊂ C{x, z} and
r ∈ (f ′

z1
, . . . , f ′

zp
)C{x, z}.

We denote by If+g ⊂ C{x, z}[ξ, η] the ideal generated by the given oper-
ators, and by Ig ⊂ C{x, z}[ξ, η] (resp. If ) the ideal generated by Υ1, . . . , Υw

(resp. f ′
zi
ηj − f ′

zj
ηi, 1 ≤ i < j ≤ p). Obviously, any element of Ig+f is zero on

Wg+f . Let us prove the reverse relation.

Let P ∈ C{x, z}[ξ, η] be a homogeneous polynomial of degree N ∈ N∗ in
(ξ, η) which is zero on Wg+f .

Assertion 1. There exists P̃ (ξ, η) ∈ C{x, z}[ξ, η] such that P − P̃ (ξ, η) belongs
to Ig+f , and it is of the form:

P̃ (ξ, η) = Q(η) +
∑

|γ|≤N−1

P̃γ(ξ)η
γ1

1 · · · ηγp

p

where γ = (γ1, . . . , γp) ∈ Np, P̃γ(ξ) ∈ (E ⊗O)[ξ] are zero or homogeneous in
ξ of degree N − |γ|, Q(η) ∈ C{x, z}[η] is zero or homogeneous of degree N .

Proof. Let us write: P =
∑

|β+γ|=N pβ,γη
γξβ with pβ,γ ∈ O. For all β ∈ Nn,

|β| = N , the germ pβ,0 may be written in a unique way pβ,0 = p̃β,0 + rβ,0 with
p̃β,0 ∈ E ⊗ O and rβ,0 =

∑p

i=1 rβ,0,if
′
zi

for some rβ,0,i ∈ C{x, z}. As |β| ≥ 1,
there exists an index k such that βk 6= 0. Thus

rβ,0ξ
β1

1 · · · ξβn

n −

p∑

i=1

rβ,0,ig
′
xk

ηiξ
β1

1 · · · ξβk−1
k · · · ξβn

n ∈ Ig+f

and we fix P̃0(ξ) =
∑

|β|=N p̃β,0ξ
β. By iterating this process for increasing |γ|,

we get a decomposition P = Q(η) +
∑

|γ|≤N−1 P̃γ(ξ)η
γ + R where R ∈ Ig+f . �

Assertion 2. The polynomials P̃γ(ξ) belong to Ig.
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Proof. We prove it by induction on γ, using the lexicographical order on Np. As
P̃ (g′

x1
, . . . , g′

xn
, f ′

z1
, . . . , f ′

zp
) = 0, we have P̃0(g

′
x1

, . . . , g′
xn

) ∈ (f ′
z1

, . . . , f ′
zp

)C{x, z}.

Thus P̃0(ξ) belongs to Ig (since P̃0(ξ) ∈ (E ⊗ O)[ξ] and g ∈ O). Now, let
us assume that P̃γ′(ξ) ∈ Ig for all γ′ < γ, γ′ ≥ 0 and P̃γ(ξ) 6= 0. Since
P̃ (g′

x1
, . . . , g′

xn
, f ′

z1
, . . . , f ′

zp
) = 0 and P̃γ′(g′

x1
, . . . , g′

xn
) = 0 for γ′ < γ, we have:

P̃γ(g
′
x1

, . . . , g′
xn

)f ′γ1

z1
· · · f ′γp

zp
∈ (f ′γ1+1

z1
, f ′γ1

z1
f ′γ2+1

z2
, . . . , f ′γ1

z1
· · · f ′γp−1

zp−1
f ′γp+1

zp
)C{x, z}

+ Q(f ′
z1

, . . . , f ′
zp

)C{x, z}

⊂ (f ′γ1+1
z1

, . . . , f ′γp+1
zp

)C{x, z}

since the degree of Q(η) is strictly greater than |γ|. From this identity, we
deduce that P̃γ(g

′
x1

, . . . , g′
xn

) ∈ (f ′
z1

, . . . , f ′
zp

)C{x, z} using that (f ′
z1

, . . . , f ′
zp

) is

a C{x, z}-regular sequence. Thus P̃γ(ξ) belongs to Ig as above. �

In particular, the polynomial P − Q(η) belongs to Ig+f . As P is zero on
Wg+f , we have Q(f ′

z1
, . . . , f ′

zp
) = 0. Thus Q(η) belongs to If (since (f ′

z1
, . . . , f ′

zp
)

is C{x, z}-regular). We conclude that P ∈ Ig+f , and this completes the proof.
�

Remark 4.4 Let us recall that the reduced Bernstein polynomial of the germ
h = g(x) + zN has no integral root for N ‘generic’ [21]. In particular, our
result allows to construct some examples of weighted homogeneous polyno-
mials h which verify condition A(1/h) [with the help of identity (1) of the
Introduction].

4.2 The condition Alog(1/h)

Let us recall how the condition A(1/h) appears in the study of the so-called
logaritmic comparison theorem. If D is a free divisor, F.J. Calderón-Moreno
and L. Narváez-Macarro [8] have obtained a differential analogue of the con-
dition LCT(D); in particular, it implies that the natural D-linear morphism
ϕD : DX ⊗VD

0

OX(D) −→ OX(⋆D) is an isomorphism. Here OX(D) denotes
the OX -module of meromorphic functions with at most a simple pole along D,
and VD

0 ⊂ DX is the sheaf of ring of logarithmic differential operators, that is,
P ∈ DX such that P · (hD)k ⊂ (hD)kO for any k ∈ N, where hD is a (local)
defining equation of D. Locally, we have OX(D) = VD

0 · (1/hD), thus ϕD is
given by

D/DAnnVD
0

1/hD −→ O[1/hD]

P 7−→ P ·
1

hD

20



where AnnVD
0

1/hD ⊂ VD
0 is the ideal of logarithmic operators which annihilate

1/hD. From the structure theorem of logarithmic operators associated with a
free divisor [4], we have VD

0 = OX [Der(− log hD)]; hence the ideal AnnVD
0

1/hD

is locally generated by vi + ai, 1 ≤ i ≤ n, where {v1, . . . , vn} is a basis of
Der(− log hD) and ai ∈ O is defined by vi(hD) = aihD, 1 ≤ i ≤ n. In
particular, the injectivity of ϕD means that the condition A(1/h) is verified.

Let us notice that the following condition may also be considered:

Alog(1/h) : The ideal AnnD 1/h is generated by logarithmic operators.

In this paragraph, we compare these two conditions. Firstly, it is easy to
see that the condition A(1/h) always implies Alog(1/h). On the other hand,
we do not know if these conditions are distinct or not. Meanwhile, we have
the following result:

Lemma 4.5 Let h ∈ O be a nonzero germ such that h(0) = 0. Assume that
one of the following conditions is verified:

1. the ring VD
0 coincides with O[Der(− log h)], the O-subalgebra of D gen-

erated by the logarithmic derivations relative to h.

2. the conditions A(h) and H(h) are verified.

Then the conditions A(1/h) and Alog(1/h) are equivalent.

Proof. Assume that condition 1 is verified, and let P ∈ VD
0 ∩ AnnD 1/h be

a nonzero logarithmic operator annihilating 1/h. By assumption, it may be
written as a sum

∑
|γ|≤d pγv

γ1

1 · · · vγN

N where pγ ∈ O and v1, . . . , vN is a gener-

ating system of Der(− log h). As Der(− log h) is stable by Lie brackets, we
have

P =
∑

|γ|≤d

pγ(v1 + a1)
γ1 · · · (vN + aN)γN +

∑

|γ|<d

rγv
γ1

1 · · · vγN

N

︸ ︷︷ ︸
R

where rγ ∈ O, and ai ∈ O is defined by vi(h) = aih, 1 ≤ i ≤ N ; in particular,
R belongs to VD

0 ∩AnnD 1/h. By induction, we conclude that P belongs to the
ideal D(v1 + a1, . . . , vN + aN ); thus Alog(1/h) implies the condition A(1/h).

Now we assume that the conditions Alog(1/h), A(h) and H(h) are verified.
From Proposition 4.7, the condition B(h) is also verified. Thus so is A(1/h)
(see (1) in the Introduction). This completes the proof. �

In particular, these conditions coincides for weighted homogeneous polyno-
mials which define an isolated singularity.
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Remark 4.6 Some criterions for condition 1 are given by M. Schulze in [23].

Finally, this condition Alog(1/h) always implies B(h) (as A(1/h) does.)

Proposition 4.7 Let h ∈ O be a nonzero germ such that h(0) = 0. If
the ideal AnnD 1/h is generated by logarithmic operators, then −1 is the only
integral root of the Bernstein polynomial of h.

Proof. The proof is analogous to the one of [26], Proposition 1.3. We need the
following fact.

Assertion. If Q is a logarithmic operator relative to h, then Q · hs = q(s)hs

with q(s) ∈ O[s].
Proof. We have Q · hs = a(s)hs−N with a(s) =

∑N

i=0 ais
i, ai ∈ O, and N is

the degree of Q. Thus we just have to prove that a(s) ∈ hNO[s]. As Q is
logarithmic, Q · hk belongs to hkO for k ≥ 1; in particular

∑N

i=0 aik
i ∈ hNO

for 1 ≤ k ≤ N + 1. By solving this system, we get ai ∈ hNO, 0 ≤ i ≤ N , that
is, a(s) ∈ hNO[s]. �

Let Q1, . . . , Qw be a generating system of logarithmic operators which an-
nihilate 1/h. For 1 ≤ i ≤ w, we have Qi · hs = qi(s)h

s with qi(s) ∈ O[s]. As
Qi annihilates 1/h, the polynomial qi(s) belongs to (s + 1)O[s] and we denote
q̃i(s) ∈ O[s] the quotient of qi(s) by (s+1). Let us suppose that the Bernstein
polynomial of h, denoted by b(s), has an integral root strictly smaller than
−1. We denote by k ≤ −2, the greatest integral root of b(s) verifying this
condition. Using a Bernstein equation which gives b(s), we get:

b(s) · · · b(s − k − 2)hs = P (s)hs−k−1

where P (s) ∈ D[s]. Thus P (k) annihilates 1/h and it may be written
∑w

i=1 AiQi

with Ai ∈ D, 1 ≤ i ≤ w. If P ′(s) ∈ D[s] is the quotient of P (s) by s − k, the
previous equation becomes:

b(s) · · · b(s − k − 2)︸ ︷︷ ︸
c(s)

hs = (s − k)

[
P ′(s) +

w∑

i=1

Aiq̃i

]
h−k−2 · hs+1

where −k − 2 ≥ 0 and the multiplicity of k in c(s) is the same in b(s). Hence,
by division by (s − k), we get a Bernstein functional equation such that the
polynomial in the left member is not a multiple of b(s). But this is not possible,
because b(s) is the Bernstein polynomial of h. Hence we have the result. �

22



4.3 The condition M(h)

Let h ∈ O be a nonzero germ such that h(0) = 0. In this paragraph, we study
the following condition

M(h) : The D-module M̃h = D/Ĩh is holonomic

where Ĩh ⊂ D is the left ideal generated by the operators of order 1 which
annihilate 1/h. This condition only depends on the ideal hO (since the right
multiplication by a unit u ∈ O induces an isomorphism of D-modules from
M̃h to M̃uh).

Let us recall that this condition and this ‘logarithmic’ D-module - intro-
duced by F.J Castro-Jiménez and J.M. Ucha in [11] - are very natural in this
topic. Indeed, the condition A(1/h) always implies M(h), since A(1/h) means

that the morphism M̃h → O[1/h] defined by P 7→ P · 1/h is an isomorphism.
Moreover, the condition LCT(D) needs locally M(hD) for a free divisor D
(see the beginning of the previous paragraph).

Here, we link the condition M(h) with some other conditions introduced
in this topic (see §4.1). Firstly, let us consider the following one:

L(h) : The ideal in OT ∗Cn generated by π−1Der(−log h) defines an analytic
space of (pure) dimension n

where π denotes the canonical map T ∗Cn → Cn. In K. Saito’s language, one
says that the irreducible components of the logarithmic characteristic variety
are holonomic; moreover, this is equivalent to the local finiteness of the log-
arithmic stratification associated with h (see [20], §3). For a free germ, this
is exactly the notion of Koszul-free germ (see [20]; [3], Proposition 6.3; [6],
Corollary 1.9).

Proposition 4.8 Let h ∈ O be a nonzero germ such that h(0) = 0.
(i) The condition L(h) implies M(h).
(ii) The condition A(h) implies M(h).
(iii) The condition G(h) implies L(h).
(iv) If h defines a locally weighted homogeneous divisor, then the condition
L(h) is verified.

Proof. The first point is clear since π−1Der(−log h) ⊂ gr Ĩh. Let us prove (ii).
By assumption, the ideal J = AnnD hs is included Ĩ. On the other hand, it is
obvious that the operators h∂i + h′

xi
, 1 ≤ i ≤ n, belong to Ĩ. Hence, we have

the following inclusion: grF J + (hξ1, . . . , hξn)O[ξ] ⊂ grF Ĩ. We notice that

grF J + (hξ1, . . . , hξn)O[ξ] = (grFJ, h)O[ξ] ∩ (ξ1, . . . , ξn)O[ξ]
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since grF J ⊂ (ξ1, . . . , ξn)O[ξ]. Thus the characteristic variety of M̃h is in-
cluded in V (grFJ, h)∪V (ξ1, . . . , ξn) ⊂ T ∗Cn. Let us recall that the characteris-
tic variety of Dhs is the the closure Wh ⊂ T ∗Cn of the set {(x, λdh(x)) | λ ∈ C}
[16]; in particular, Wh is irreducible of pure dimension n + 1. From the princi-
pal ideal theorem, Wh ∩ {h = 0} = V (grFJ, h) has a pure dimension n. Hence

M̃h is holonomic.

The proof of (iii) is the very same, since the ideal generated by the principal
symbol of the elements in Der(− log h) contains grF J + (hξ1, . . . , hξn)O[ξ].

Let us prove (iv), by induction on dimension. Let D ⊂ Cn denote the hy-
persurface defined by h, and let L be the associated logarithmic characteristic
variety. If n = 2, then W(h) is verified and so is L(h) by (iii). Now, we
assume that n ≥ 3. From Proposition 2.4 in [9], there exists a neighborhood
U of the origin such that, for each point w ∈ U ∩ D, w 6= 0, the germ of
pair (Cn, D, w) is isomorphic to a product (Cn−1 × C, D′ × C, (0, 0)) where
D′ is a locally weighted homogeneous divisor of dimension n − 2. Up to this
identification, Der(−log h)w is generated by the elements in Der(−loghD′) and
∂/∂z, where z is the last coordinate on Cn−1 ×C; in particular, the induction
hypothesis applied to D′ implies the result for C×D′. Hence, the dimension of
L ∩ π−1(U − {0}) = L− T ∗

{0}C
n is n. Let C ⊂ L be an irreducible component

of L. If π(C) = {0}, then C coincides with T ∗
{0}C

n since dim C is at most

equal to n (see [3], Proposition 1.14 (i)). Now, if π(C) is not the origin, then
dim C = dim(C − T ∗

{0}C
n) = dim(L − T ∗

{0}C
n) = n. We conclude that L has

dimension n. �

We recall that K. Saito proved that the condition L(h) is verified for any
hyperplane arrangements [20], Example 3.14. The point (iv) may be considered
as a generalization of this fact. On the other hand, it generalizes also the fact
that locally weighted homogeneous free divisors are Koszul-free [7] (of course,
our proof is similar).

The following diagram summarizes the previous relations:
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M(h)

Let us notice that the reverse relations are false. Firstly, if h is the germ
(x1−x2x3)(x1x

2
2+x2

1x2) then L(h) and A(h) are not verified but A(1/h) holds
[20], [5], [6], [10], [28]. On the other hand, if h = (x1 − x2x3)(x

3
1 + x4

2) then it
defines a Koszul-free germ (see Lemma 3.8 for instance); in particular, L(h)
is verified where as A(h) and A(1/h) fail (see the proof of Proposition 1.4,
(i)). Finally, L. Narváez-Macarro and F.J Calderón-Moreno prove in [8] that
the free divisor defined by h = (x1 − x2x3)(x

5
1 + x4

2 + x4
1x2) is not of Spencer

type4. In fact, the condition M(h) is no more verified, since all elements of a
system of generators of Ĩ belongs to D(x1, x2), see [8] §5.
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[11] Castro-Jiménez F.J., Ucha J.M., Free divisors and duality for D-

modules, Tr. Mat. Inst. Steklova 238 (2002) 97–105.
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[25] Torrelli T., Équations fonctionnelles pour une fonction sur une inter-
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[31] Walther U., Bernstein-Sato polynomial versus cohomology of the Mil-

nor fiber for generic hyperplane arrangements, Compos. Math. 141 (2005)
121–145.

27



[32] Yano T., On the theory of b-functions, Publ. R.I.M.S. Kyoto Univ. 14
(1978) 111–202.

28


