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Abstract

In this paper, we are interested in the use of duality in effec-
tive computations on polynomials. We represent the elements of the
dual of the algebra R of polynomials over the field K as formal series
∈ K[[∂]] in differential operators. We use the correspondence between
ideals of R and vector spaces of K[[∂]], stable by derivation and closed
for the (∂)-adic topology, in order to construct the local inverse sys-
tem of an isolated point. We propose an algorithm, which computes
the orthogonal D of the primary component of this isolated point, by
integration of polynomials in the dual space K[∂], with good complex-
ity bounds. Then we apply this algorithm to the computation of local
residues, the analysis of real branches of a locally complete intersection
curve, the computation of resultants of homogeneous polynomials.

1 Introduction

Considering polynomials as algorithms (that compute a value at a given
point) instead of lists of terms, has lead to recent interesting developments,
as well from a practical or a theoretical point of view. In these approaches,
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evaluations at points play an important role. We would like to pursue this
idea further and to study evaluations by themselves. In other words, we are
interested here, by the properties of the dual of the algebra of polynomials.
Our objective is to understand the properties of the dual, which can be
advantageous for effective computations on polynomials. Though from a
mathematical point of view, working in the algebra of polynomials or in its
dual are equivalent, from an effective point of view some operations (like
localization, elimination of variables) are cheaper in the dual space. In this
paper, we will focus on isolated points, where series in the local rings are
replaced advantageously by polynomials in the dual space. The cornerstone
of this duality consists to replace multiplication by derivation. We will exploit
this idea, in order to devise an algorithm for the computation of the dual of
B = R/I, which proceeds from bottom (with the evaluation at the isolated
point defined by the ideal I) to the top (with a basis of the dual of B). Each
step of this algorithm consists, roughly speaking, of integrating the preceding
polynomials, and requires only linear algebra tools.

Our work is inspired by [10] or [15]. Recently, another method (inspired
by [11]) was proposed in [18] for the computations of the local inverse system.
We think that the present work is an improvement of this approach on the
following points: a complete characterization of the elements constructed at
each integration, a better complexity bound (of the same order than Gaussian
elimination in the vector space B on n2 + m matrices), bounds for the size
of the coefficients of a basis of B̂, an explicit and effective correspondence
between the structure of the inverse system of I and the algebraic structure
of B, applications of these techniques to the computation of local residues
and related bounds, to the local analysis of real complete intersection curves,
to the computation of resultants.

In the first part of this paper, we describe the main (and classical) prop-
erties of the dual of the algebra, and the inverse systems. The next section
deals with ideals I with an mζ-primary component Qζ (where mζ is the max-
imal ideal defining the point ζ). We show how to extract this component and
to recover the multiplicative structure of Bζ = R/Qζ . Then, we construct the
local inverse system, by characterizing the elements of degree d of D = Q⊥

ζ ,
when we know those of degree d−1, yielding an algorithm based on linear al-
gebra with a better complexity than the one proposed in [18] and new bounds
on the size of the coefficients. We illustrate this method with the compu-
tation of local residues, for locally complete intersection (based on [21],[14])
(the complexity and size for the coefficients of this residue are given), with yet
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another way to compute resultants of homogeneous polynomials (based on
[12],[13]) and with the analysis of real branches of locally complete intersec-
tion curves ([8], [19]). The implementation of these techniques, its practical
comparison with the usual approach of local Gröbner bases computations,
and its application to real problems are still under progress.

2 Duality between polynomials and differen-

tial operators

More details on the material of this section can be found in [10], [15].

2.1 Notations

Let K be a field of characteristic 0. The algebraic closure of K will be denoted
by K. Let denote by R = K[x1, . . . , xn] = K[x], the ring of polynomials in
the variables x1, . . . , xn over K. In this ring, we consider an ideal that we
denote by I. The quotient of R by I is denoted by B = R/I. The class of
an element p ∈ R in B will be denoted by p. For any element p1, . . . , ps ∈ R,
the K-vector space generated by these elements is 〈p1, . . . , ps〉.

Let R̂ be the dual of the K-vector space R, that is the space of linear
forms

λ : R → K

p 7→ λ(p)

We fix here a point ζ = (ζ1, . . . , ζn) of Kn and let mζ = (x1−ζ1, . . . , xn−ζn)
be the maximal ideal of R, defining ζ . Among nice linear forms is certainly
the evaluation at ζ :

∂ζ : R → K

p 7→ p(ζ)

But for any a = (a1, . . . , an) ∈ Nn, we can also consider

∂a

ζ : R → K

p 7→ (dx1)
a1 · · · (dxn

)an (p)(ζ) (1)

where dxi
is the derivation with respect to the variable xi. We denote this

linear form by ∂a

ζ = (∂1,ζ)
a1 · · · (∂n,ζ)

an .
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Definition 2.1 — The space of formal series in the variables ∂i,ζ is denoted
by K[[∂1,ζ , . . . , ∂n,ζ]] or K[[∂ζ ]] or K[[∂1, . . . , ∂n]] = K[[∂]], if the point ζ is
implicit. The ideal of K[[∂ζ ]] generated by ∂1,ζ , . . . , ∂n,ζ is denoted by (∂ζ).

The next proposition shows how any linear form ∈ R̂ can be seen as
formal series of differential operators “at” ζ :

Proposition 2.2 — There is a K-isomorphism of topological spaces between
R̂ (with the topology of simple convergence for the trivial topology on K1) and
the set of formal series K[[∂ζ ]] (with (∂)-adic topology2).

See [10]. Remark that for any (a1, . . . , an) ∈ N
n, (b1, . . . , bn) ∈ N

n:

1∏n

i=1 ai!
∂a1

1,ζ · · ·∂
an

n,ζ

(
n∏

i=1

(xi − ζi)
bi

)
=

{
1 if ∀i, ai = bi,
0 elsewhere.

So that ( 1∏n
i=1 ai!

∂a

ζ ) is the dual basis of the monomial basis (
∏n

i=1(xi − ζi)
ai).

Let denote by xa

ζ , the product
∏n

i=1(xi − ζi)
ai and da = 1∏n

i=1 ai!

∏n
i=1 ∂ai

i,ζ the

elements of its dual basis. Caution must taken on this notation, which is not
multiplicative: da da

′

6= da+a
′

. We have assume at the beginning that the
characteristic of K is 0, but this is not mandatory. We can avoid the division
by ai! by working directly in K[[d]] instead of K[[∂ζ ]].

We can now identify any linear form λ ∈ R̂ with a formal series in
∂1,ζ , . . . , ∂n,ζ, via its decomposition in the dual basis:

λ =
∑

(a1,...,an)∈Nn

λ((x1 − ζ1)
a1 · · · (xn − ζn)an)

1∏n
i=1 ai!

∂a

ζ

=
∑

a=(a1,...,an)∈Nn

λa1,...,an
∂a1

1,ζ · · ·∂
an

n,ζ (2)

(this is just Taylor expansion formula at ζ). This defines a one-to-one corre-
spondence between the series

∑
(a1,...,an)∈Nn λa1,...,an

∂a1
1,ζ · · ·∂

an

n,ζ and the linear

forms λ, which is compatible with the topology given in (2.2). From now on,
we will identify R̂ with K[[∂1,ζ , . . . , ∂n,ζ]]. The evaluation at ζ corresponds
to the constant 1 in this formalism. It will also be denoted by ∂ζ = ∂0

ζ . Note

1 lim
n→∞

λn = 0 iff ∀p ∈ R, ∃N ∈ N st. ∀n ≥ N, λn(p) = 0
2The basic neighborhoods of 0 are the ideals (∂)k, see [3].
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that these objects are connected with those which appear in the theory of
D-modules. In such a field, the coefficients are not necessarily constants ∈ K,
but belongs to a ring of functions. We refer to [17], [16], for more information
on this topic.

2.2 The R-module R̂

The space R̂ has a natural structure of R-module as follows. For any p ∈ R
and λ ∈ R̂, we define p · λ as

p · λ : R → K

q 7→ λ(p q).

Lemma 2.3 — The multiplication by xi−ζi in R̂ corresponds to the deriva-
tion d∂i

with respect to ∂i in K[[∂ζ ]].

Proof. Remark that for any elements p ∈ R and a ∈ N,

(dxi
)a ((xi − ζi) p) = (dxi

)a−1 (p + (xi − ζi) dxi
p)

= (dxi
)a−2 (2 dxi

(p) + (xi − ζi) (dxi
)2 (p)

)

= a (dxi
)a−1 (p) + (xi − ζi) (dxi

)a (p)

Consequently for any element p ∈ R, a = (a1, . . . , an) ∈ Nn, we have

(xi − ζi) · ∂
a(p) = ∂a((xi − ζi) p)

= ai∂
a1
1 · · ·∂

ai−1

i−1 ∂ai−1
i ∂

ai+1

i+1 · · ·∂an

n (p) = d∂i
(∂a)(p)

and (xi − ζi) acts as a derivation on K[[∂ζ ]]. 2

Remark 2.4 Similarly, we can check that the multiplication by ∂i,ζ in K[[∂ζ ]]
acts as a derivation on polynomials: For all p ∈ R, λ ∈ K[[∂ζ ]], i = 1 . . . n,
we have

(∂i,ζλ)(p) = λ(dxi
p).
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2.3 Inverse system

Let I be an ideal of R.

Definition 2.5 (Macaulay [15][p. 65]) — The inverse system of I is the
vector space of R̂:

I⊥ = {λ ∈ R̂ ; ∀p ∈ I, λ(p) = 0}.

Note that I⊥ is stable by derivation, for I is stable by multiplication (Lemma
2.3). The inverse system generated by elements β1, . . . , βd ∈ R̂ = K[[∂ζ ]] will
be, by definition, the vector space generated by these elements and their
derivatives.

For any vector-space D of R̂, we also denote by D⊥ = {p ∈ R; ∀λ ∈
D, λ(p) = 0}.

Note that there is a canonical K-isomorphism between I⊥ and the dual
B̂ of B, which is the transposed map of R →→ B = R/I. Thus, we can see the
elements of B̂ as elements of R̂ orthogonal to the elements of I. From now
on, we identify I⊥ and B̂.

As corollary of proposition (2.2) and lemma (2.3), we have :

Proposition 2.6 — The ideals of R are in one-to-one correspondence with
the vector spaces of K[[∂ζ ]] stable by derivation and closed for the (∂)-adic
topology.

(see [10]). This theorem tells us that the description of an ideal of R is
equivalent to the description of its orthogonal in the space of formal series.

3 Isolated points

We show in this section, how computations with series in the local ring of ζ
can be replaced in the dual space by computations with polynomials in the
variables ∂ζ , for a mζ-primary ideal.

3.1 The mζ-primary component

The correspondence defined in (2.6) restricted to the mζ-primary ideals take
the following form:
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Theorem 3.1 — The mζ-primary ideals are in one-to-one correspondence
with the non-null vector spaces of finite dimension of K[∂], which are stable
by derivations.

This result was attributed to Gröbner in [18]. See also [15] and [10] where
we can find a more modern version of this result.

In practice, it is not frequent to deal directly with a mζ-primary ideal.
More often, we have an ideal I, given by a set of generators, which has an
mζ-primary component. This ideal needs not define a variety of dimension
0 (on the algebraic closure of K), but we only require that the point ζ is an
isolated point of this variety. We are interested here in the local properties
at this point and we give now a way to “extract” the mζ-primary component
of I and forget what is not near the point ζ .

Theorem 3.2 — Let I be an ideal of R with an mζ-primary component Qζ ,
let Dζ be I⊥ ∩ K[∂1,ζ , . . . , ∂n,ζ]. Then D⊥

ζ = Qζ .

This result, is not in the work of Macaulay, though it is underlying in some
of his constructions (see [15][p 74]) and we have not find a reference where it
appears explicitly.

Proof. As I ⊂ Qζ , we have Q⊥
ζ ⊂ I⊥. By the previous theorem, we also

have Q⊥
ζ ⊂ K[∂ζ ]. Therefore, Q⊥

ζ ⊂ I⊥ ∩ K[∂ζ ] = Dζ and D⊥
ζ ⊂ Qζ .

We prove now the inverse inclusion using the two following facts:

• The mζ -primary component Qζ of I is the set of polynomials f such
that there exists g ∈ R with f g ∈ I and g(ζ) 6= 0 (see [3]).

• For any λ ∈ K[∂i], for any g ∈ R, we have according to (2.3)

g · λ(f) = g(ζ1 + d∂1 , . . . , ζn + d∂n
)(λ)(f) (3)

= λ(f) g(ζ) + (g − g(ζ))(ζ1 + d∂1, . . . , ζn + d∂n
)(λ)(f)

Let us prove by induction on the degree of λ in ∂i that if λ ∈ Dζ then
λ ∈ Q⊥

ζ .
If λ is of degree 0, then it is up to a scalar, the evaluation at ζ . So for

any λ ∈ E, f ∈ Qζ and g ∈ R such that g(ζ) 6= 0 and f g ∈ I, λ(f g) = 0 =
f(ζ)g(ζ) implies f(ζ) = 0. This means that λ ∈ Q⊥

ζ .
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Let us assume now that any element of Dζ of degree < d is in Q⊥
ζ .

According to the formula (3), for any λ ∈ E, f ∈ Qζ and g ∈ R such that
g(ζ) 6= 0 and f g ∈ I, we have

λ(f g) = 0 = λ(f)g(ζ) + (g − g(ζ))(ζ1 + d∂1, . . . , ζn + d∂n
)(λ)(f)

= λ(f)g(ζ) + ρ(f)

As ρ = (g − g(ζ))(ζ1 + d∂1, . . . , ζn + d∂n
)(λ) is of degree less than d in ∂i and

in Dζ (stable by derivation), we also have ρ(f) = 0 by induction. This proves
that λ(f) = 0 and λ ∈ Q⊥

ζ .

Consequently, we have shown that Dζ = Q⊥
ζ and D⊥

ζ = Qζ . 2

We can sum up this theorem as follows: If we want to compute the mζ-
primary component Qζ of I, it is enough to search in K[∂ζ ] the orthogonal Dζ

of I. We connect now the maximal degree of the polynomials which appears
in Dζ with an intrinsic parameter of Qζ , as follows:

Lemma 3.3 — The maximal degree of the elements of I⊥ ∩ K[∂ζ ] is the
nil-index of Bζ , (ie. the maximal N ∈ N such that mN

ζ 6⊂ Qζ).

Proof. Let call M the maximal degree of the elements of I⊥ ∩K[∂ζ ]. For all
monomial m ∈ mM+1

ζ (in (xi−ζi)) and all λ ∈ D, we have λ(m) = 0 because

λ is of degree ≤ M . Therefore mM+1
ζ ⊂ D⊥

ζ = Qζ .

Conversely, let λ be an element of I⊥ ∩ K[∂ζ ] of degree M . Then there
exists a monomial m ∈ R of degree M , such that λ(m) 6= 0. Consequently,
m 6= 0 in Bζ and mM

ζ 6⊂ Qζ . This two facts implies that M is the nil-index
of Bζ . 2

Remark 3.4 As consequence, we can find a basis of Bζ among the mono-
mials of degree ≤ N where N is the maximal degree of the elements of Dζ ,
the monomials of bigger degree being in the ideal Qζ .

3.2 Inverse systems and quotient rings

In this section, we explain how we can recover the structure of BζR/Qζ , when
we know Dζ = Q⊥

ζ .

Definitions 3.5 — We denote by Bζ the quotient R/Qζ of R by the mζ-
primary component of I. Its dimension is denoted by µ. For simplicity, we
set D = Dζ = I⊥ ∩ K[∂ζ ].
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Let K[x]≤d (resp. K[∂ζ ]≤d) be the vector space of K[x] (resp. K[∂ζ ])
generated by the monomials of degree ≤ d.

Let Dd = D ∩ K[∂ζ ]≤d be the set of elements of D of degree ≤ d.

Note that Dd is a vector space of finite dimension ≤ µ = dimK(Dζ) =
dimK(Bζ), where µ is the multiplicity of ζ in V (I). The multiplicity µ can
be bounded by dn where d is maximum of the degrees of the polynomials pi.
We assume that this multiplicity is more than 1, ie. that the elements of I
vanish at the point ζ . In practice, the point ζ will often be the origin (by
translation).

Let β1, . . . , βµ be a basis of D such that we have Dd = 〈β1, . . . , βsd
〉 where

s0 = 1 < s1 < · · · < sν = µ. As for any i ∈ [1, µ], k ∈ [1, n] we have
d∂k

(βi) ∈ 〈β1, . . . , βi−1〉,

d∂k
(βi) =

µ∑

j=1

λk
i,jβj .

with λk
i,j = 0 for j ≥ i. Therefore, the matrix Mk = (λk

i,j)1≤i,j≤µ is an
upper-triangular matrix.

Theorem 3.6 — The upper-triangular matrices Mk are the matrices of mul-
tiplication by xk − ζk in the dual basis of (βi) in Bζ .

Proof. Let b1, . . . , bµ be the dual basis of β1, . . . , βµ in Bζ : βi(bj) = κi,j where
κi,j is the Kronecker symbol. The coefficient of indices i, j of the matrix of
multiplication by (xk − ζk) in the basis (bj) is given by

βi((xk − ζk) bj) = ((xk − ζk) · βi)(bj)

= d∂k
(βi)(bj) =

µ∑

l=1

λk
i,lβl(bj) = λk

i,j

which proves that the matrix Mk is the matrix of multiplication by xk−ζk. 2

The quotient Bζ is completely described by these matrices of multiplication.
Their storage requires 1

2
n µ (µ− 1) spaces for the coefficients λk

i,j which may
not be zero. It is worth noting that though we do not know really the dual
basis bi, we have all the information to be able to compute in Bζ : any
polynomial p ∈ R has a representative in Bζ, whose coordinates in (bi)1≤i≤µ

are [β1(p), . . . , βµ(p)]. Equality to 0 in Bζ is tested with the evaluations (βi).
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Nevertheless, there is an explicit way to establish a correspondence be-
tween Bζ and Dζ . Assume that the nil-index of Bζ is N and let

∆N =
∑

|a|≤N

xa

ζ ⊗ da ∈ K[x, ∂ζ ]

where a = (a1, . . . , an) ∈ Nn, |a| =
∑n

i=1 ai,x
a

ζ =
∏n

i=1(xi − ζi)
ai . This

operator, called the diagonal operator, has the property:

∀p ∈ K[x]≤N , ∆N(p) =
∑

|a|≤N xa

ζ da(p) = p,

∀β ∈ K[∂ζ ]≤N , β(∆N) =
∑

|a|≤N β(xa

ζ )da = β.

Proposition 3.7 — Let > be a monomial order and (βi) a basis of Dζ such
that

βi = dai −
∑

b>aµ,|b|≤N

γi,b db (4)

and xa1 = 1 < xa2 < · · · < xaµ. Let us denote by gb = xb +
∑µ

i=1 γi,b xai for
b 6= xai and |b| ≤ N . Then (gb)∪ (xc)|c|=N+1 is a Gröbner basis of the ideal
Qζ for the order >.

Proof. The monomials of gb are such that xb > xai and the leading term of
gb is xb. The set of monomials {xa1,xa2, . . . ,xaµ} is stable by derivation, for
the vector space 〈βi〉 is stable by derivation. Thus the monomials (xai

) are
under a staircase. Rewrite ∆N (with the relations xai = βi +

∑µ

i=1 γi,b xai)
in the form

∆N =

µ∑

i=1

xai ⊗ βi +
∑

b6=xai ,|b|≤N

gb ⊗ db,

where (xai, gb) is a linearly independent family which spans K[x]≤N .
Let first prove that gb ∈ I. As βi(∆N) = βi, we have βi(gb) = 0 and

gb ∈ Qζ . Moreover by definition of the nil-index, Qζ also contains (xc)|c|=N+1,
and Bζ = R/Qζ is generated by (xai)1≤i≤µ. This family has µ = dimK(Bζ)
elements and therefore, it is a basis of Bζ . On the other side, for any p ∈
Qζ ∩ K[x]≤N , we have βi(p) = 0 and

∆N(p) = p ∈ 〈gb〉b6=ai
,

so that Qζ ∩ K[x]≤N ⊂ 〈gb〉b6=ai
. This proves that Qζ is generated by (gb) ∪

(xc)|c|=N+1.
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As all monomials of degree less than N appear either in (xai), or as the
leading term xb of gb, we can reduce any polynomial modulo (gb)∪(xc)|c|=N+1

(according to the order >) to a linear combination of the monomials (xai).
Therefore, as this set of monomials is a basis of the quotient Bζ = R/Qζ , the
reduction is canonical and the polynomials (gb) ∪ (xc)|c|=N+1 are a Gröbner
basis of the ideal Qζ . 2

For other applications of this diagonal operator, we mention [20].

4 Construction of the local inverse system

Now, we describe an algorithm to compute D = Dζ = I⊥ ∩ K[∂]. The
cornerstone of this algorithm is the following remark. The space Dd is stable
by derivation and for any 1 ≤ i ≤ n, d∂i

(Dd) ⊂ Dd−1. Therefore, if we
want to compute Dd, we have of integrating the elements of Dd−1, and keep
those which are orthogonal to the elements of I. The first space D0 being
generated by ∂0

ζ , we will construct by induction the spaces Dd. Each step of
the algorithm will consist roughly to integrate the previous elements and the
algorithm will stop when a generating set of the dual B̂ is obtained.

4.1 Integrating differential operators

We consider here an ideal I of R, D = I⊥ ∈ K[∂] the inverse system at ζ and
Dd = D ∩ K[∂]d. We give a way to construct Dd+1 when we know Dd.

Definitions 4.1 — For any polynomial p ∈ K[∂], we denote by
∫

i
p the

polynomial q ∈ K[∂] such that d∂i
q = p and q(∂1, . . . , ∂i−1, 0, ∂i+1, . . . , ∂n) = 0

(a primitive with no constant term). For any polynomial p ∈ K[∂], let p|∂i=0

denotes p(∂1, . . . , ∂i−1, 0, ∂i+1, . . . , ∂n).

Theorem 4.2 — Assume that I is generated by p1, . . . , pm and that d > 1.
Let β1, . . . , βs be a basis of Dd−1. Then the elements of Dd with no constant
terms (in (∂i)) are the elements Λ of the form

Λ =
s∑

j=1

λ1
j

∫

1

βj |∂2=0,...,∂n=0 +
s∑

j=1

λ2
j

∫

2

βj |∂3=0,...,∂n=0 + · · ·+
s∑

j=1

λn
j

∫

n

βj(5)

such that
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1.
∑s

j=1 λk
j d∂l

βj −
∑s

j=1 λl
jd∂k

βj = 0 for 1 ≤ k < l ≤ n,

2. Λ(pi) = 0 for 1 ≤ i ≤ m.

Proof. Let Λ ∈ Dd with no constant terms. It can be decomposed uniquely
as

Λ = Λ1(∂1, . . . , ∂n) + Λ2(∂2, . . . , ∂n) + · · ·+ Λn(∂n),

with Λi ∈ K[∂i, . . . , ∂n]\K[∂i+1, . . . , ∂n]. This implies that
∫

i
d∂i

(Λi) = Λi.
Then d∂1(Λ) = d∂1(Λ1) ∈ Dd−1 = 〈β1, . . . , βs〉 and

Λ1 =
s∑

j=1

λ1
j

∫

1

βj

for some λ1
j ∈ K.

Consider now d∂2(Λ) = d∂2(Λ1)+d∂2(Λ2) which also belongs to 〈β1, . . . , βs〉.
Therefore,

Λ2 =

∫

2

d∂2Λ2 =
s∑

j=1

λ2
j

∫

2

βj −

∫

2

d∂2Λ1 =
s∑

j=1

λ2
j

∫

2

βj − (Λ1 − Λ1|∂2=0),

for some λ2
j ∈ K (

∫
2
d∂2(Λ1) is equal to the part of Λ1 which depends on ∂2)

and we have

Λ1 + Λ2 =

s∑

j=1

λ1
j

∫

1

βj |∂2=0 +

s∑

j=1

λ2
j

∫

2

βj

Let us call Λ1 + Λ2 = σ2. Applying the same computation to d∂3(Λ) yields

Λ3 =

s∑

j=1

λ3
j

∫

3

βj − (σ2 − σ2|∂3=0)

and

Λ1 + Λ2 + Λ3 =
s∑

j=1

λ1
j

∫

1

βj|∂2=0,∂3=0 +
s∑

j=1

λ2
j

∫

2

βj|∂3=0 +
s∑

j=1

λ3
j

∫

3

βj

Iterating this procedure, we obtain the formula (5) and for any k, l ∈ N, we
have

σk = Λ1 + · · ·+ Λk =
s∑

j=1

λ1
j

∫

1

βj |∂2=0,...,∂k=0

+

s∑

j=1

λ2
j

∫

2

βj |∂3=0,...,∂k=0 + · · · +

s∑

j=1

λk
j

∫

k

βj (6)
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and

Λl =
s∑

j=1

λl
j

∫

l

βj − (σl−1 − σl−1|∂l=0) (7)

This proves that Λ is necessarily of the form (3). Let us show now that we
also have necessarily the relations 1 and 2. Up to now, we have not used the
fact that d∂k

Λl = 0 for k < l. According to (7), d∂l
Λk = 0 implies that

s∑

j=1

λl
j

∫

l

d∂k
βj = d∂k

(σl−1 − σl−1|∂l=0)

As both side of this equality have no constant terms in ∂l, we obtain an
equivalent relation by considering their derivative with respect to d∂l

. As
d∂k

(σl−1) = d∂k
(σk) (for k < l) and according to (6), d∂k

(σk) =
∑s

j=1 λk
j βj ,

so that we obtain a relation of the form

s∑

j=1

λl
jd∂k

βj −
s∑

j=1

λk
j d∂l

βj = 0

which proves the point 1 of the theorem. The point 2 is a consequence of the
fact that Λ ∈ I⊥.

Conversely, let us prove that an element Λ of the form (5) which satisfies
the conditions 1, 2 is in Dd. It can be decomposed as Λ = Λ1 + · · · +
Λn, with Λk =

∑s
j=1 λk

j

∫
k
βj − (σk−1 − σk−1|∂k=0) and σk = Λ1 + · · · + Λk.

This implies by induction, the relation (6). As Λ satisfies the point 1 and
according to the previous computation, we have d∂k

(Λl) = 0 for k < l and
Λl ∈ K[∂l, . . . , ∂n]. Moreover, Λl has no constant term in ∂l and it belongs to
K[∂l, . . . , ∂n]\K[∂l+1, . . . , ∂n]. According to (6), we have

d∂k
Λ =

s∑

j=1

λk
jβj ∈ Dd−1. (8)

Therefore, as the multiplication by xi− ζi corresponds to the derivation with
respect to ∂i and as Dd−1 is stable by derivation, the relation (8) implies
that Λ ∈ (mζ〈p1, . . . , pm〉)

⊥. According to the point 2, we also have Λ(pk) =
0 (for 1 ≤ k ≤ m). Consequently, Λ(p) = 0 for all p ∈ 〈p1, . . . , pm〉 +
mζ〈p1, . . . , pm〉 = I, thus Λ ∈ I⊥. 2 The condition 1 of this theorem can be
replaced by the relation:

13



1’. d∂l
(Λ) ∈ Dd−1 for 1 ≤ l ≤ n.

The two conditions 1’ and 2 implies that Λ ∈ I⊥ as we have just seen and
formula (5) is a necessary form for Λ ∈ I⊥. By this way, we can save some
computations, for if some of the primitives are already in Dd−1, they will be
subtracted directly from Λ.

4.2 Example

Before going into the details of the algorithm, we illustrate the method on
a simple example, that we treat “by hand”. Consider the isolated singular
point 0 ∈ K2 of the system

p1 = 2 x1 x2
2 + 5 x4

1, p2 = 2 x1
2 x2 + 5 x4

2.

For any i, j ∈ N, let d
j
i = 1

j!
∂j

i . We easily check that I⊥ contains 1,d1,d2,

d2
1,d1d2,d

2
2,d

3
1, d3

2. In order to find a new element in I⊥, we integrate
the previous elements, according to the formula (5) and keep those which
introduce new terms:

Λ = λ1 d4
1 + λ2 d2

1d2 + λ3 d1d
2
2 + λ4 d4

2.

As we must have Λ(p1) = Λ(p2) = 0, we see that Λ is of the form Λ =
λ1(2d4

1 − 5d1d
2
2) + λ2(2d4

1 − 5d2
1d2). A new element in I⊥, will be of the

form Λ = λ1d
5
1 + λ2(2d4

1d2 − 5d1d
3
2) + λ3(2d2

1d
2
2 − 5d5

2) and must satisfies
the points 1’, 2. Therefore, we have

Λ = λ (5d2
1d

2
2 − 2d5

1 − 2d5
2).

A new integration yields no new element satisfying the condition 1 and 2, so
that I⊥ is generated by

1,d1,d2,d
2
1,d1d2,d

2
2,d

3
1,d

3
2,

2d4
1 − 5d1d

2
2, 2d4

2 − 5d2
1d2, 5d2

1d
2
2 − 2d5

1 − 2d5
2

and 0 is of multiplicity 11.

4.3 An algorithm

Theorem (4.2) tells us that if we know Dd−1, we can construct the elements of
Dd by solving a linear system in the n×µ unknowns λi

j . We know D0 = 〈∂0
ζ 〉,
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so that we can construct step by step each Dd from the previous Dd−1, up to
the situation where no knew element is found and where D has be computed.
This yields the following algorithm:

Input : (p1, . . . , pm) ∈ Rm and ζ ∈ Kn such that

I = (p1, . . . , pm) has an mζ-primary

component Qζ.

Output : A basis of Q⊥
ζ in K[∂] and the matrix of

multiplication by xk − ζk in Bζ.

⊲ D0 := 1; d := 0; s0 := 1; test := true;

For k from 1 to n do

Uk[1] := [0];
Ak[1] := [∂k(p1), . . . , ∂k(pm)];

⊲ while test do

1) S := system of equations 1, 2 in λk
j;

2) solve the system S;

3) if no new solution then test:= false

else

let (δ1, . . . , δs) be a basis of the new solutions

such that d∂k
(δi) =

∑sd

j=1 λj,sd+i βj;

sd+1 := sd + s;
Dd+1 := Dd, δ1, . . . , δs = β1, . . . , βsd+1

;

for i from sd + 1 to sd+1 do

for k from 1 to n do

Uk[i] := [λ1,i, . . . , λsd,i];
Ak[i] := [

∫
k
βi|∂k+1=···=∂n=0(p1), . . . ,

∫
k
βi|∂k+1=···=∂n=0(pm)];

d := d + 1;
⊲ return Dd and Uk for 1 ≤ k ≤ n;

The vector Uk[i] (resp. Ak[i]) represents the ith column of the matrix Uk

(resp. Ak).
Let us now analyze in detail the complexity of this algorithm. We assume

that we are at the step d of the algorithm and that β1, . . . , βsd
is the computed

basis of Dd. The matrices Uk = (uk
i,j)1≤i,j≤sd

correspond to the derivation by
d∂k

:

d∂k
(βj) =

sd∑

i=1

uk
i,j βi.

15



As we have seen, these matrices are upper-triangular: uk
i,j = 0 for sl−1 + 1 ≤

j ≤ sl, i > sl−1. The matrices Ak are m × sd matrices

(

∫

k

βj |∂k+1=···=∂n=0(pi))1≤i≤m,1≤j≤sd
.

4.4 Complexity

We assume here that the coefficients of these matrices have a size bounded
by Td.

Step 1: Let vl = (λl
1, . . . , λ

l
sd

) be n vectors of size sd and V = [v1, . . . , vn]. The
equations 1 can be rewritten as

Uk vl − Ul vk = 0, 1 ≤ k < l ≤ n.

The equations 2 can be rewritten as

[A1, . . . , An]. V = 0

Therefore, the system S obtained from the equations 1, 2 has the form




Un −U1

Un −U2

. . .
...

Un −Un−1

Un−1 −U1

. . .
...

Un−1 −Un−2
...

...
...

U2 −U1

A1 · · · · · · · · · An




. V = 0

where the empty spaces correspond to zero coefficients. This matrix is
of size (1

2
n (n − 1) sd + m) × n sd.

Step 2: Assume that the vector spaces spanned by the rows of Ui are subspaces
of the space spanned by the rows of Un. We can always recover such
a situation by replacing the matrices Un (resp. the variable xn) by a
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good linear combination of the matrices U1, . . . , Un (resp. the variables
x1, . . . , xn).

By Gaussian elimination, we can put Un and the matrix



Un −U1

Un −U2

. . .
...

Un −Un−1


 (9)

in a row echelon shape. Then we can reduce the rows Un−1 v1 −
U1 vn−1 = 0 by the rows of the matrix (9). We obtain a system of
the form W1,n−1 vn = 0, where W1,n−1 is a matrix of size sd × sd. At
each step of the loop, we add sd − sd−1 new columns to each matrix
Uk. Therefore, we may assume by induction that pivoting and reduc-
tion has already been done for the sd−1 columns of the matrices Uk.
Thus, putting the matrix (9) in a triangular form requires at most
O(n sd

d (sd − sd−1)) new arithmetic operations and the reduction of the
last sd − sd−1 columns of the system Un−1 v1 − U1 vn−1 = 0 requires
at most O(s2

d−1(sd − sd−1)) new arithmetic operations. We apply the
same computations the 1

2
(n − 1) (n − 2) + m other non-zero blocks of

the matrix and we obtain a system of the form




Un −U1

Un −U2

. . .
...

Un −Un−1

W1,n−1
...

W1,2

A′
1 · · · · · · · · · A′

n




. V = 0

where the matrix [A′
1, . . . , A

′
n] has a row-echelon shape and A′

i is re-
duced with respect to Un.

As only the last sd − sd−1 columns of these matrix are not treated (by
induction), the number of new arithmetic operations needed to obtain
this matrix is therefore bounded by

O((n2 + m) × s2
d × (sd − sd−1)). (10)
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Let W ′ be the submatrix of A′
n, whose corresponding rows in A′

i (i =
1 . . . n − 1) are zero and let

W =




W1,n−1
...

W1,2

W ′


 .

The number of rows of this matrix is bounded by 1
2
(n−1) (n−2) sd, +m.

The number of columns is sd.

To obtain the new solutions of this system, we will first solve the system
W . vn = 0 and then report the solution in vi (i = 1 . . . n − 1).

We need at most

O((n2 sd + m) × sd (sd − sd−1)) (11)

new arithmetic operations, to compute a triangular basis of the solu-
tions of W . vn = 0. The new solutions are those, for which the coeffi-
cients of indices sd−1 + 1, . . . , sd not all zero. Reporting the solutions
in order to get vi (i = 1 . . . n − 1) requires

O(n s2
d) (12)

further operations.

As these solutions can be obtained as fractions of two determinants of
size 2 sd of the matrix S, the size of their coefficients is bounded by

2 sd Td + sd log(2 sd) (13)

according to Hadamard’s inequality.

Step 3: This step consists to add sd+1 − sd columns corresponding to the new
solutions vk (found in step 2), to each matrix Uk and to add sd+1 −
sd new columns to the matrices Ak, corresponding to the evaluations∫

k
βj |∂k+1=···=∂n=0(pi). The number of new arithmetic operations, is

therefore bounded by
n m (sd+1 − sd) C (14)

where C is a bound for computing
∫

k
βj|∂k+1=···=∂n=0(pi).
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Let us analyze more precisely the cost for computing these coefficients.
Let us first note that

∀Λ ∈ K[[∂1, . . . , ∂k]], ∀p ∈ K[x], Λ(p) = Λ(p(x1, . . . , xk, 0, . . . , 0))
∀Λ ∈ K[[∂]], ∀p ∈ K[x1, . . . , xk], Λ(p) = Λ(∂1, . . . , ∂k, 0, . . . , 0)(p)

so that
∫

k

βj |∂k+1=···=∂n=0(pi) = (

∫

k

βj)(pi(x1, . . . , xk, 0, . . . , 0)).

The integration
∫

i
of monomials in ∂ corresponds to a multiplication

by ∂i up to a scalar depending on these monomials. Thus according to
the remark (2.4), for j = 1 . . . sd and p ∈ K[x],

∫

k

βj|∂k+1=···=∂n=0(p) = βj(δk(p))

where δk is a linear operator on K[x] and where δk(p) is a linear com-
bination of the derivatives (with respect to xk) of some monomials in
p. Note that δi ◦ δj = 0 if i > j.

The linear forms βi are obtained themselves by iterated integration of
β0 = ∂0, for they also satisfy the conditions 1, 2 of theorem (4.2).
Therefore, each linear form βj can be represented by

βj = ∂0

(
∑

b∈Nn

γb δb

)

where δ(b1,...,bn) = δb1
1 ◦ · · · ◦ δbn

n . Let us denote by pj,k the polynomial(∑
b∈Nn γb δb

)
(pk) so that βj(pk) = ∂0(pj,k) = pj,k(0). This polynomial

pj,k is of the form
∑

b∈M

γb,j,k

1

b!
xb

where M is the set of all monomials obtained by derivations of the
monomials of (pk). Let L be the number of elements of M.

According to theorem (4.2) and to the previous remarks, the new el-
ements pl,k (l = sd + 1, . . . , sd+1) will be linear combinations of the
n sd elements δj(pi,k) (i = 1, . . . , sd, j = 1, . . . , n) (which are linear
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combinations of the L monomials xb (b ∈ M)). Therefore, the num-
ber of arithmetic operations requires to construct one polynomial pj,k

(j = sd +1, . . . , sd+1) is O(n sd L) and the cost for constructing the new
pj,k and the n (sd+1 − sd) new columns of [A1, . . . , An] is bounded by

O((sd+1 − sd) sd n2 m L). (15)

where L is the number of monomials in M.

We assume here that Td is also a bound for the size of γb,j,k. Thus the
coefficients of the new pj,k are obtained as L sums of products γb,j,kλ

k
i .

According to (13), this size is bounded by

(2 sd + 1)Td + sd log(2 sd) + log(L) (16)

Proposition 4.1 — The total number of arithmetic operations during the
algorithm is bounded by

O((n2 + m) µ3 + n m µ C)

where C is the maximal cost for computing
∫

k
βj |∂k+1=···=∂n=0(pi). C can

be bounded by O(n µ L), where L is the number of monomials obtained by
derivation of the monomials of (pi).

Proof. Let ν be the number of loops in this algorithm. As (s1 − s0) + · · ·+
(sν − sν−1) = sν − s0 = µ − 1, the sum of the partial costs (10), (11), (12),
(14) or (15), is bounded by

O((n2 + m) µ3 + n m µ C)

or
O((n2 + m) µ3 + n2 m L µ2).

2 This complexity is not too bad, for the big component
µ3 also corresponds to a bound of the number of steps for pivoting a linear
endomorphism in the vector space B0 of dimension µ.

Proposition 4.2 — The size of the coefficients of the matrices Uk and of
the polynomials pi,k is bounded by

O(T (
2

e
µ +

1

e
)µ+1)

where T is a bound for the size of the coefficients of pk.
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Proof. If Td is a bound for the coefficients in Uk and Ak at the step d,
according to (13), (16), the size of the coefficients at the step d+1 is bounded
by

Td+1 = (2 sd + 1) Td + sd log(2 sd) + log(L)

Therefore Td+1 + log(µ) + log(L) ≤ (2 sd + 1) (Td + log(µ) + log(L)) and

Tν + log(µ) + log(T ) ≤
ν∏

d=1

(2 sd + 1) (T + log(µ) + log(L))

As
∏ν

d=1(2 sd + 1) ≤ (2 µ+1)!
2µ µ!

, according to Stirling’s formula, we have

Tν ≤ O((
2 µ + 1

e
)2 µ+1(

e

2 µ
)µT ) = O(T (

2 µ + 1

e
)µ+1)

2 This estimation is quite rough and in many cases, for instance in local
complete intersection cases, this bound is too big.

If we compare with the method proposed in [18], what is called there a
continuation, corresponds here to a primitive ∈ Dd for which all derivations
are in Dd−1. The method proposed in [18], consists first to construct the
possible continuations following a monomial order and then to take linear
combinations of these elements which are orthogonal to the polynomial pk.
The construction of continuations does not have the same complexity, ac-
cording to the monomial order you chose (the best bound for a step similar
to (2) is O(n3 µ3) (or for a general O(n4 µ3) monomial ordering). This steps
has to be done µ times, so that a bound for the algorithm proposed in [18]
is O((n3 + m) µ4).

Our construction does need a monomial order. Thanks to theorem (4.2),
we are able to describe completely the step of integration in term of a simple
linear system, which grows at each step of the algorithm. Therefore, we
obtain a better complexity of the type O((n2 + m) µ3), (just like Gaussian
elimination in Bζ).

5 Applications

5.1 Local residue

We are going now to give some applications of inverse systems, the first one
being the construction of local residues.
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5.1.1 Gorenstein Algebra

In this section, we recall the fundamental properties of Gorenstein alge-
bras, which are useful to define residues. We denote by R ⊗K R the tensor
product of two copies of R over K. It is also the polynomial ring K[x,y]
where y = (y1, . . . , yn) is a new set of variables. We will identify R ⊗K R
with HomK(R̂, R) via the following map. For any T =

∑s
i=1 ai ⊗ bi =∑s

i=1 ai(x)bi(y) ∈ R ⊗ R and for λ ∈ R̂,

λ 7→ T (λ) =

s∑

i=1

aiλ(bi) ∈ HomK(R̂, R).

Similarly, for any finitely generated K-algebra A (whose dual is denoted by
Â), any element of A ⊗K A will be identified (in the same way) with an
element of HomK(Â, A).

If we focus on the elements of HomK(Â, A), which are compatible with
the multiplication by elements of A, that is the elements of HomA(Â, A), we
have the following result.

Theorem 5.1 — Assume that A is a finite dimensional vector space. Then
A is Gorenstein if and only if there exists a A-isomorphism ∆ between Â and
A.

See [14][p. 362, p. 357, ex. 3] and [21][p. 182,184] for more details.
If this holds, then the element 1 ∈ A has an inverse image τ that we call

the residue associated to ∆. In [14][p. 352] it is called a trace but we
prefer to called it a residue to avoid the confusion with the natural trace.
For a more algorithmic approach of this subject, we mention [6] or [9]. This
algebraic definition of residues leads to the same object as the analytical
residue defined by integrals, in the case where K = C (See [5] for instance).
It shares the same formal properties but can be defined on any field. If we
translate the previous result in the formalism of section (2), we have

Lemma 5.2 — Let Qζ be a mζ-primary component of the ideal I such that
Bζ = R/Qζ is Gorenstein. Then Q⊥

ζ is generated by one polynomial τ(∂)
and all its derivatives with respect to ∂i.

In other words, in the case of a Gorenstein Algebra, the primary component
Qζ is described by one polynomial (ie. a residue).
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Assume here that A is of the form A = R/I for some ideal I of R and
that A is Gorenstein. Let ∆ be an element of R ⊗K R such that its class
∆ in A ⊗ A defines an isomorphism between Â and A. Then the residue is
characterized as follows:

Theorem 5.3 — The residue τ ∈ R̂ of A associated to ∆ is the unique
linear form such that

1. τ = 0 on I,

2. ∆(τ) − 1 ∈ I.

The first point means that τ ∈ Â and the second that ∆(τ) = 1 in A.

5.1.2 Complete intersection

We consider now the case where the ideal I = (p1, . . . , pn) of K[x1, . . . , xn]
with an mζ-component Qζ. Let Bζ = R/Qζ and assume that it is a K-vector
space of finite dimension, denoted by µ. In other words, (p1, . . . , pn) defines
a locally complete intersection. Then there is an explicit way to construct
an element ∆ ∈ R ⊗ R such that ∆ is an isomorphism between B̂ζ and Bζ .

Let X(0) = (x1, . . . , xn), X(1) = (y1, x2 . . . , xn), . . ., X(n) = (y1, . . . , yn),
where y1, . . . , yn are new variables. For any P ∈ R, we denote by θi(P ) =
P (X(i))−P (X(i−1))

yi−xi
, the discrete derivative. Take now the discrete Jacobian

∆ =

∣∣∣∣∣∣∣

θ1(p1) · · · θn(p1)
...

...
θ1(pn) · · · θn(pn)

∣∣∣∣∣∣∣
(17)

Then we have the following result:

Theorem 5.4 — The element ∆ is a Bζ-isomorphism between B̂ζ and Bζ .

See [14], [21][p. 180]. In this case, we will say that the residue of Bζ associated
with ∆ is the residue of P = (p1, . . . , pn). We will denote it by τP and will
call it the local residue of P at ζ .
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5.1.3 Construction of the residue

We have now all the ingredients to construct the local residue at a point
ζ ∈ Kn. Let I = (p1, . . . , pn) and assume that Bζ is of finite dimension
µ > 0.

Input : P = (p1, . . . , pn) ∈ Rn defining a quasi-

regular sequence and ζ such that

(P) = I ⊂ mζ.

Output : The residue τP of P at ζ.

⊲ Construct a basis β1, . . . , βµ of I⊥ ∩ K[∂] with

the algorithm (4.3).

⊲ Solve the system

βj(
∑µ

l=1 λl ∆(βl) − 1) = 0 (1 ≤ j ≤ µ).
⊲ The residue τP is

∑µ

l=1 λl βl where (λl) is the

solution of the previous system.

This algorithm consists essentially, to solve a linear system of size µ, once we
know a basis of Dζ . Thus the number of steps in this part of the algorithm
is bounded by O(µ3), which has to be added to the O(n2 µ3 + n2µ C) steps
for the construction of a basis of Dζ . Moreover, we also need to compute the
bezoutians and the coefficients βj(∆(βi)), which we do not detail here. Each
coefficient of ∆ (corresponding to a n×n- determinant) has a size bounded by
O(n (T + log(n)). The size of the coefficients of βi is bounded in proposition
(4.2), say by T ′. Therefore the size of λl is bounded by O(µ (n T + T ′ +
n log(n) + log(µ))).

5.1.4 Example

We consider again the polynomials of the example (4.2). The polynomial
∆P ∈ K[x,y] is

10 x2
5 + 25 x1

3 x2
3 +

(
10 x2

3 + 25 x1
3 x2

)
y2

2

+
(
10 x2

4 + 25 x1
3 x2

2
)

y2 +
(
25 x1

2 x2
3 − 4 x1 x2

2
)

y1

+
(
−4 x2 + 25 x1 x2

2
)

y1
2 y2 +

(
25 x1

2 x2
2 − 4 x1 x2

)
y1 y2

+
(
10 x1

3 + 25 x1 x2
3
)

y1
2 +

(
10 x2

2 + 25 x1
3
)

y2
3

+
(
25 x2

3 + 10 x1
2
)

y1
3 + 25 x1

2 y1 y2
3 + 25 x1 y1

2 y2
3

+ 25 x1
2 x2 y1 y2

2 + 25 x2
2 y1

3 y2 + 25 y2
2 x2 y1

3

+ 25 x1 x2 y2
2 y1

2 + 10 x1 y1
4 + 25 y1

3 y2
3 + 10 y1

5
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The residue τP is of the form

u1 + u2 d1 + u3 d2 + u4 d1
2 + u5 d2

2 + u6 d1 d2 + u7 d2
3 + u8 d1

3

+ u9

(
5d1 d2

2 − 2d1
4
)

+ u10

(
5d1

2
d2 − 2d2

4
)

+ u11
(
5d1

2
d2

2 − 2d1
5 − 2d2

5
)

and must satisfy the system

−20 u11 − 1 = −20 u9 = −20 u10 = 10 u8 = 10 u7

= 125 u11 − 4 u6 = 10 u5 + 25 u8 = 10 u4 + 25 u7

= −20 u2 + 625 u10 = 625 u9 − 20 u3 = −20 u1 + 125 u6 = 0

This yields

τP = −
625

64
−

25

16
d1 d2 −

1

4
d1

2 d2
2 +

1

10
d1

5 +
1

10
d2

5

The multiplicity of 0 (or the dimension of B0 = R/Q0) is given by the value
of τP on the Jacobian of p1, p2: −12 x1

2 x2
2 +40 x2

5 +40 x1
5 +400 x1

3 x2
3 (see

[21][p. 186]. This result is a consequence of the relation between traces and
residues. Here it yields 11 = (−12)× (−1

4
)+40× 1

10
+40× 1

10
. In the general

case of locally complete intersections, it gives a way to check the results of
the algorithm 4.3.

We can check if dn is a monomial of maximal degree appearing in τ , then
the socle of Bζ ( ie. the annihilator AnnBζ

(mζ) of the maximal ideal mζ) is
generated by xn

ζ . In this case, we can take x5
1 or x5

2.

5.2 Yet another way to compute the resultant

We consider here a special case of the section (5.1.2). Let p1, . . . , pn be n
generic homogeneous polynomials of degree d1, . . . , dn in the variables x =
(x1, . . . , xn). The polynomials pi are of the form

pi =
∑

|m|=di

ai,m xm,

where the ai,m are new variables or “parameters“. Let A = K[ai,m] be the
polynomial ring generated by these parameters, K be the fraction field of A
and I ⊂ K[x], the ideal generated by these polynomials. Generically, these
polynomials have no common root in the projective space P(K

n
), which
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means that these polynomials define the origin in K
n
. Therefore, we can

apply the algorithm (4.3) with ζ = 0, in order to construct I⊥ = D. Note
that as the polynomials pi are homogeneous, we can construct a basis of D,
which is also homogeneous.

Let ν =
∑

i di − n and ∆0 = ∆(x, 0) be the element ∆ (defined in (17))
where y is substituted by the origin. It is a polynomial of degree ν in x. The
following theorem can be found in the works of J.P Jouanolou (see [12],[13]):

Theorem 5.1 — Let ω the homogeneous element of A[∂] ∩ D of degree ν
and of smallest possible degree in ai,m. Then

ω(∆0) = R(p1, . . . , pn)

where R(p1, . . . , pn) is the resultant of the polynomials pi.

As we are in a complete intersection case, there is an element τP which
generates the inverse system D. Using Euler-Jacobi theorem, we check that
the degree of τP is precisely ν. Therefore, there exists a unique homogeneous
element of Dν , with coefficients in A of smallest possible degree. According
to [13], this element generates the module HomA(B, A) and satisfies the
relation

ω(∆) = ω(∆0) = R(p1, . . . , pn).

In fact, the residue τP is given by

τP =
ω

R(p1, . . . , pn)
,

for we must have τP(∆) = 1.
Note that the algorithm (4.3) yields a multiple of the element ω. To

recover ω, we have to extract the primitive part of this last element. In
general, the coefficients of the constructed basis βi can be chosen in A[∂].
Moreover we may assume that there is no common factor ∈ A\K of their
coefficients. In this case, the last constructed element is precisely ω.

5.3 Branches of a curve at the origin

Assume here that K = R.
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5.3.1 Local topological degree

A classical application of residues is the computation of the topological degree
of a polynomial map via the signature of a local residue, by Eisenbud-Levin’s
theorem (see [8], [2][p. 85]). See also [4] for another presentation. In our
case, the degree of such a map P = (p1, . . . , pn) can be computed as follows.

Let β1, . . . , βµ be a basis of B̂ζ and let b1, . . . , bµ be its dual basis in Bζ .
We denote by 〈 | 〉 the inner non-degenerate product (a, b) → 〈a|b〉 = τP(a b)
associated to the local residue of P. Then ∆ has a decomposition in Bζ ⊗Bζ

of the form

∆ =

µ∑

i=1

ai ⊗ bi

where (ai) is the dual basis of (bi) in Bζ for 〈 | 〉. Moreover we have

ai =

µ∑

j=1

〈ai|aj〉 bj,

therefore we also have
βi(∆(βj)) = 〈ai|aj〉

and the signature of the symmetric matrix (βi(∆(βj)))1≤i,j≤µ is the signa-
ture of the quadratic form associated to 〈 | 〉, or the topological degree of P,
according to Eisenbud-Levin’s theorem. This matrix is precisely the matrix
which appears in the construction (5.1.3) of the residue.

5.3.2 Branches of curves

We apply this result to the analysis of curves at a singular point. More of
the material on this subject can be found in [19] or [1]. Let p1, . . . , pn−1 ∈ R
be polynomials defining locally a reduced curve C through the point 0. Let
g be a polynomial such that p1, . . . , pn−1, g defines locally the point 0. We
denote by

Jg :=

∣∣∣∣∣∣∣∣∣

dx1p1 . . . dxn
f1

...
...

dx1pn−1 . . . dxn
pn−1

dx1g . . . dxn
g

∣∣∣∣∣∣∣∣∣

.

Let F = (p1, . . . , pn−1, Jg). Then F is locally a complete intersection defining
0 (if C is reduced), so that it defines a local residue τF.
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The function g being continuous, has a constant sign on each half branch
of the curve in a neighborhood of the origin. Let N+ (resp. N−) be the
number of half real branches of the curve C such that g > 0 (resp. g < 0).

Theorem 5.1 — The signature of the quadratic form associated to the local
residue τF is

1

2
(N+ − N−).

This theorem can be generalized to vector fields γ = γ1(x)dx1 +· · ·+γn(x)dxn

where γi are functions defined in a neighborhood except perhaps at the ori-
gin. A regular point on the curve near the origin has two tangents. We
chose the orientation of the half branch, accordingly with the tangent for
whose inner product with the vector field γ is positive. This orientation is
independent of the point chosen on the half-branch in a neighborhood of the
origin. Therefore we can define N+ outbound half-branches and N− inbound
half-branches. The same result is valid, except that we replace dxi

(g) by γi.
See [19] for more details.

A special interesting case of this theorem is g = x2
1 + · · · + x2

n or γ =
x1dx1 +· · ·+xndxn

, where N− = 0 and N+ is the number of real half-branches
of the curve, at the origin. The signature of τF will be 1

2
N+.

5.3.3 Example

We consider the example of a curve defined by the polynomial p1 = 2 x1 x2
2 +

5 x4
1 = x1 (2 x2

2 + 5x3
1). The number of real branches is given by twice the

signature of the residue τF where F = (p1,
1
4
Jx2

1+x2
2
) and 1

4
Jx2

1+x2
2

= x2
3 −

2 x1
2x2 + 10 x1

3x2. The dual D is generated by

1,d1,d2,d1
2,d1d2,d2

2,d1
3, 2d2

3 + d1
2d2,

2d1
4 − 5d1d2

2, 2d1
5 − 10d2

4 − 5d1
2d2

2

and B is of dimension 10. The residue is

τF = −
151875

2048
−

10125d1

512
−

675d1
2

128
+

225d2
2

64
−

45d1
3

32

−
3d1

4

8
+

15d1d2
2

16
−

d1
5

10
+

d2
4

2
+

d1
2d2

2

4

and the signature of the matrix (βi(∆(βj))) is 6 − 4 = 2, which is half the
number of half branches at the origin, as it can be checked on a picture.
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6 Conclusion

As we have seen the duality between polynomials and differential operators is
particularly well-suited for the description of isolated points of a variety. In
this case, the formal series representing the linear forms become polynomials.
This formalism allows us to devise an algorithm which proceeds from bottom
(with the evaluation at the isolated point) to the top (with a basis of the
dual of Bζ). Among its advantage, we can mention a good complexity of the
algorithm, closely related to intrinsic quantities, and new interesting features
such as residues (which allow us to represent Bζ with one polynomial in
the case of complete intersections), quadratic forms and signatures, which
give topological information on Bζ. For these reasons and for many open
questions related to it, we think that this domain is worth investigating from
an effective point of view and the present work is a step in this direction.
In particular, we aim at implementing these technic, for the local analysis of
isolated points and to compare it with the usual approach of Gröbner basis.
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[12] Jouanolou, J. Le formalisme du résultant. Adv. in Maths 90, 2 (1991),
117–263.

[13] Jouanolou, J. Formes D’inertie et Rsultants : Un formulaire. Prpub-
lication de l’ IRMA (Strasbourg), 1993.

[14] Kunz, E. Kähkler differentials. Advanced lectures in Mathematics.
Friedr. Vieweg and Sohn, 1986.

[15] Macaulay, F. The Algebraic Theory of Modular Systems, vol. 19 of
Cambridge tracts in Math. and Math. Physics. Stechert-Hafner Service
Agency, 1964.

[16] Maisonobe, P. D-modules: an overview towards effectivity. In Com-
puter Algebra and Differential Equations (1994), E. Tournier, Ed., Cam-
bridge Univ. Press, 21–55.

[17] Malgrange, B. Motivations and introduction to the theory of D-
modules. In Computer Algebra and Differential Equations (1994),
E. Tournier, Ed., Cambridge Univ. Press, 1–20.

30



[18] Marinari, M., Mora, T., and Möller, H. Grobner duality and
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