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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

The one-particle distribution function is of importance both in
non-relativistic and relativistic statistical physics. In the relativistic
framework, Lorentz invariance is possibly its most fundamental prop-
erty. The present article on the subject is a contrastive one : we re-
view, discuss critically, and, when necessary, complete, the treatments
found in the standard literature.
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1 Introduction

One of the most important and fruitful concepts in statistical physics is the
concept of phase-space. If one restricts the analysis to the non-quantum level,
the state of every Galilean system consisting of N point-like particles can, at
any time, be represented by one point in a 6N -dimensional phase-space [1].
The statistical behavior of such a system can then be described by an evo-
lution equation for a distribution function, often called phase-space density
and notated ρ(t, rN , pN), defined, at fixed time t, on this 6N -dimensional
phase-space spanned by the 3N positions r

N = (r1, . . . , rN) and the 3N mo-
menta p

N = (p1, . . . , pN ) of the N particles. In many physically interesting
cases, however, the particles which constitute the system can be considered
as weakly interacting only, and it then makes sense to introduce the concept
of a one-particle distribution function, often notated f(t, r, p), and defined
—at any instant t— on a 6-dimensional (i.e, the one-particle) phase-space [2].

In relativistic physics, the concept of a one-particle distribution function
f is also widely used, and it seems even more important to relativistic statis-
tical mechanics than its Galilean homologue is to Galilean statistical physics
[3, 4] : when electromagnetic interactions are included, it does not seem
possible to introduce, at a relativistic level, an analogue for the Galilean N -
particle distribution function ρ(t, rN , pN ), since the transmission of electro-
magnetic signals can no longer be treated as if they occurred instantaneously.
Therefore, the concept of one-particle distribution has become one of the cor-
nerstones of non-quantum relativistic statistical mechanics : in practice, the
one-particle distribution function f(t, r, p) is all one has in relativity.

The natural expression of the particle four-current in terms of the one-
particle distribution function [5] strongly suggests that the latter quantity
has to be a Lorentz-scalar for the theory to be consistent within a relativistic
framework. However, the literature on the notion of relativistic one-particle
distribution offers, when submitted to a critical reading, a rather confusing
perspective. Indeed, various authors differ on the very definition of the con-
cept of distribution function and, consequently, on what should be proved
and what has to be put in by hand. Many authors start from a non-manifestly
covariant definition of the one-particle distribution f that is formally iden-
tical with the usual non-relativistic one, and then the task remains to show
that such a function is invariant under a change of reference-frame, i.e., that
it is a scalar (see, e.g. [6], [7] and [5]). To achieve this goal there are, on the
one hand, approaches which are a kind of relativistic extensions of the non-
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relativistic ones. They, in turn, fall into two basically different types : one
type based on the so-called invariance of the volume element in phase-space
[6, 7], the other type based on a manifestly covariant rewriting of the most
general microscopic definition of the one-particle distribution f in terms of
mean-values with the help of Gibbs-ensemble averages over delta functions
[8, 5]. What remains puzzling here is that both types of approach have very
different physical and mathematical bases, and do not seem to rely on the
same kind of argumentation at all.

On the other hand, there is a more axiomatic approach to the problem
of introducing a relativistically invariant distribution function f ; this other
approach starts from a concept that is manifestly relativistic and Lorentz-
invariant, namely the distribution function fw for the number of particles
world-lines that cross an arbitrary space-like hyper-surface in space-time (see,
e.g., [3] and [4]). The authors who use such a concept derive from it the usual
concept of a particle distribution-function and have then little difficulty in
proving that the standard particle distribution is also frame-independent.
But a direct, microscopic definition of the distribution function for world-
lines, comparable to the standard one for the particle distribution given in
terms of mean-values of delta-functions over some Gibbs-ensemble, has not
yet been given in the literature; as a consequence it has never been proven
that such a world-line distribution function even exists nor that it is frame-
independent. Both assertions are indeed treated as postulates and this is
a rather uncomfortable situation, especially considering the fact that other
authors, as mentioned earlier, seem to be able to establish as a theorem
the fact that the particle distribution function is a scalar without having to
introduce the new concept of world-line distribution.

Our aim is to revisit these issues and to shed some new light on them.
Since the special and general relativistic discussions exhibit mathematical
and physical difficulties which only partly overlap, we thought it would make
things clearer to actually separate the special and general theory, and to
present their treatments in two separate publications. The present article
is, therefore, devoted to the special relativistic case only, while its following
companion starts where this one stops and addresses the general relativistic
situation.

In this article, we start from the standard definition for the one-particle
distribution function in phase-space. The crucial issue is then to determine
whether or not it is possible to establish, by direct reasoning, that the one-
particle-distribution function, so defined, is frame-independent.
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In section 2, we review the first type of proof, based on the so-called invari-
ance of the one-particle phase-space volume under Lorentz-transformation
[6, 7]. We show in a mathematically rigorous manner that the phase-space
volume is not Lorentz-invariant; we also explain why this does not contradict
the fact that the one-particle distribution in phase-space may be Lorentz-
invariant and that the whole argument is just inconclusive. In section 3,
we analyze the proof originally developed by de Groot and Suttorp [8], of
which a pedagogical presentation can also be found in the book by de Groot,
van Leeuwen and van Weert [5]. This proof is based on the most general defi-
nition of the distribution function in phase-space. As such, it makes use of the
concept of an ensemble average and presupposes this procedure to be covari-
ant. We actually show that this procedure is not a priori covariant because
it relies on the concepts of macro- and microstates, which are shown not to
be Lorentz-invariant. We therefore introduce the new covariant concepts of
macroscopic and microscopic ‘histories’ and define, in a manifestly Lorentz-
invariant way, statistical ensembles. The average over these new ensembles
is de facto a scalar procedure and it provides a new definition of the one-
particle distribution function which ensures that this function is definitely
a Lorentz-scalar. We then show that, contrarily to what might have been
expected, the average over these covariant ensembles actually comes down
to the usual average over states and that the usual relativistic one-particle
distribution function is therefore, indeed, a Lorentz-scalar; this completes the
validation of the proof of [5].

In section 4, we discuss the notion of one-particle distribution function
for particles world-lines crossing an arbitrary hypersurface in space-time. We
prove that this notion only makes sense because the particle-distribution in
phase-space is a Lorentz-scalar. In other words, if one chooses the axiomatic

approach to relativistic kinetic theory, postulating that the world-line distribu-

tion function exists is tantamount to postulating that the one-particle distri-

bution function in phase-space is frame-independent. Moreover the world-line
distribution function turns out to be identical with the standard particle dis-
tribution. Finally, in section 5, we give an overview of our results and we
discuss them in some detail.
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2 Earlier attempts to define the one-particle

distribution function

The usual definition of the one-particle distribution function in special rela-
tivity is not completely satisfactory. Strictly speaking, it is even wrong. It is
one of the purposes of this section to analyze in detail what happens exactly
when one counts particles in different systems of reference, and to relate our
results to the corresponding ones found in the standard literature.

The final and disappointing conclusion of this section will be that the
usual approaches, based on the so-called Lorentz-invariance of the phase-
space volume-element, have all failed if one takes them really seriously. It
is our goal to develop a better approach. This is the subject of the next
section, section 3. In order to make the failure of the earlier attempts as
clear as possible we first follow, in the present section, the usual approach as
far as possible.

Let R be an arbitrary Lorentz frame, with respect to which we want to
study a gas of particles. Let

dN(t, x, p) (1)

be the number of particles which, at time t, in R, have positions and momenta
in the intervals (x, x + dx) and (p, p + dp), respectively. Let us denote the
phase space volume elements corresponding to these intervals by d3x and
d3p.

Now, the one-particle distribution function f(t, x, p), at time t, in R, is
defined by the relation :

dN(t, x, p) = f(t, x, p)d3xd3p. (2)

Obviously, the distribution function f has the dimensions of a density in
position and momentum space. We now want to prove that the function f ,
defined via the equation (2), is a Lorentz scalar. To that end we introduce,
next to the reference system R, a new system of reference, R′ which moves
with three-velocity v with respect to R. For reasons of simplicity, we choose
v parallel to p, the momentum of the particles within d3xd3p on which we
are now focusing our attention. Furthermore, we choose the x-axis of R and
R′ both parallel to v.

Because changes occur only in the x-directions, the y- and z-components
of position and momentum variables remain unchanged under the Lorentz
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transformations relating the reference systems R and R′. We have :

ct′ = γ(v)
(

ct − c−1vx
)

(3)

x′ = γ(v) (x − vt) (4)

y′ = y , z′ = z, (5)

with v = |v| is the norm of v = (v, 0, 0), and where γ is the ‘dilatation
factor’. The latter is defined, for arbitrary v, by :

γ(v) :=
1

√

1 − v2/c2
. (6)

¿From (3)-(5) we find :

cdt′ = γ(v)
(

cdt − c−1vdx
)

(7)

dx′ = γ(v) (dx − vdt) (8)

dy′ = dy , dz′ = dz. (9)

Since, by hypothesis, the particles under consideration occupy, in the refer-
ence frame R, a purely spatial element d3x characterized by :

t = constant, (10)

we have, in R :
dt = 0. (11)

Hence, eqs. (7)-(8) reduce to :

dt′ = −γ(v)c−2vdx (12)

dx′ = γ(v)dx, (13)

En passant, we note that equation (13) explains the name dilatation factor
for γ(v). From (9) and (13) we find :

d3x′ = γ(v)d3x. (14)

We now come to the transformation in momentum space. If we suppose, for
a moment, that p0, on the one hand, and px, py, pz on the other hand, are
independent variables, we have :

p′
0

= γ(v)
(

p0 − c−1vpx
)

(15)

p′
x

= γ(v)
(

px − c−1vp0
)

(16)

p′
y

= py , p′z = pz, (17)
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and thus :

dp′
0

= γ(v)
(

dp0 − c−1vdpx
)

(18)

dp′
x

= γ(v)
(

dpx − c−1vdp0
)

(19)

dp′
y

= dpy , dp′z = dpz. (20)

However, p0 and p are not independent. From the normalization of the four-
momentum pµpµ = m2c2 we find :

p02
= m2c2 + px2 + py2 + pz2, (21)

or

dp0 =
1

p0
(pxdpx + pydpy + pzdpz) . (22)

Substituting (22) into (19) we obtain :

dp′
x

= γ(v)

(

1 −
v

c

px

p0

)

dpx − c−1vγ(v)
pydpy + pzdpz

p0
, (23)

or, equivalently, using (15) :

dp′x =
p′0

p0
dpx −

v

c
γ(v)

pydpy + pzdpz

p0
. (24)

Hence, using also (20) :

dp′
x
∧ dp′

y
=

p′p

p0
dpx ∧ dpy − γ(v)

v

c

pz

p0
dpz ∧ dpy, (25)

since the term dp′y ∧ dpy = dpy ∧ dpy cancels. Similarly, we find :

dp′
x
∧ dp′

y
∧ dp′

z
=

p′0

p0
dpx ∧ dpy ∧ dpz, (26)

or
dp′x ∧ dp′y ∧ dp′z

p′0
=

dpx ∧ dpy ∧ dpz

p0
, (27)

or, equivalently :
d3p′

p′0
=

d3p

p0
, (28)
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a well-known result.
In short, we find that (14) and (28) imply :

d3x′d3p′ = γ(v)
p′0

p0
d3x d3p. (29)

An alternative form for p′0 (15) is :

p′
0

= γ(v) p0
(

1 − c−1v
u

c

)

. (30)

where u is the norm of the particle three-velocity cp/p0 = (u, 0, 0). With
(30) we find from (29) :

d3x′d3p′ =
1 − vu/c2

1 − v2/c2
d3xd3p, (31)

where we used the definition (6) of γ(v). We did not encounter the result
(31) in the literature. In the particular case in which the arbitrary reference
frame R′ coincides with the rest- or comoving-frame of the particles which
move with momentum p with respect to R, we have :

u = v. (32)

Let us denote this particular system R′ by R∗, and the position and momen-
tum of particles in this particular co-moving system of reference by x∗ and
p∗. We then find from (31) and (32) :

d3x∗d3p∗ = d3x d3p. (33)

Hence, d3x∗d3p∗ is a scalar. However, contrarily to general belief, the phase
space element d3xd3p is not a Lorentz scalar, as is seen from (31). Let us
digress a little bit on this point.

Equation (14) is a result valid for any Lorentz transformation, from one
system of reference to another, arbitrary system of reference. In particular,
we thus have :

d3x∗ = γ(u)d3x, (34)

where u is the velocity R∗ with respect to R. Hence, combining (14) and
(34), we have :

d3x∗ =
γ(u)

γ(v)
d3x′. (35)
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This relation is not always found in the existing literature. In the textbook
‘The classical Theory of Fields ’, Landau and Lifschitz claim (section 10)
that :

d3x∗ = γ(u)d3x′, (36)

basing themselves on (34) only, and thus forgetting the step leading to
eq. (14). Misner, Thorne and Wheeler, in their textbook ‘Gravitation’, in
Box 22.5, derive (33) and then conclude that the six-dimensional phase space
element is invariant, which it is not, as implied by (31).

The point missed in most treatments encountered in the literature is that,
in any given reference-frame, the volume elements which enter definition (2)
for the distribution- function have to be considered at a fixed time in this
reference-frame. In other words, the points of the volume element d3x in
some system of reference R should be points on a hypersurface of the form
t = constant in that four-space R. In our treatment this is made apparent by
eq. (10); but, if this is so in one reference-frame R, this is not so in any other
reference-frame R′: the same points in space-time occupy the space-volume
d3x′ in R′ but do not belong to a hypersurface t′ = constant, since dt′ 6= 0,
as follows from eq. (12). It makes therefore no sense to count these points
in R′ by using the one-particle distribution-function in R′, which is a priori

suitable only for counting points on hypersurface of the form t′ = constant
(see again definition (2)).

The preceding considerations are all related to eq. (2), the defining rela-
tion of the one-particle distribution function f(t, x, p).

Being a number, the left-hand side of (2) is a scalar, which can be calcu-
lated in any reference system. This does not imply, however, that (2) can be
used as the defining expression of the distribution function f(t, x, p) in an
arbitrary system of reference R′. Let us again elaborate on this point with
some more detail.

The inverses of the Lorentz transformations (3)–(6) and (15)–(17) may be
used to express t, x and p in terms of t′, x

′ and p
′. We may thus introduce

f̃ defined by :

f̃(t′, x′, p′) := f(t(t′, x′), x(t′, x′), p(p′)). (37)

With (37) and (31) we can reexpress (2) in the new coordinates (t′, x′, p′),
which yields :

f(t, x, p)d3xd3p = f̃(t′, x′, p′)
1 − v2/c2

1 − u2/c2
d3x′d3p′. (38)

9



In the particular frame R∗ co-moving with the particles with momentum p

we have :
f(t, x, p)d3xd3p = f̃(t∗, x∗, p∗)d3x∗d3p∗. (39)

Together with (2), eq. (39) suggests that f̃(t∗, x∗, p∗) is the one-particle dis-
tribution function. However, this is not so, since the volume element d3x∗ in
(39) should be a part of a hyperplane t∗ = constant, which it is not, since
dt∗ 6= 0 [cf. eq. (12)].

More generally, the combination f̃(t′, x′, p′)(1 − v2/c2)(1 − uv/c2)−1 is
not the one-particle distribution function in R′, since d3x′ in (38) is not a
part of the hyperplane t′ = constant [again, see eq. (12)].

To summarize : the number dN of eq. (2) indeed is a Lorentz scalar,
as is generally stated. It is simply defined, in any reference system, as the
number of particles which, at time t in R, occupy the phase-space element
d3xd3p centered around (x, p). This number, of course, can be evaluated
in any Lorentz frame. Indeed, eq. (38) gives it expression in R′. However,
dN cannot be interpreted as a number of particles in R′. Therefore, it
cannot be linked with the one-particle distribution function in that reference
system. Thus the above calculations do not offer any clue as to what the
correct distribution in R′ is, and the usual approach is inconclusive. This is
the disappointing conclusion referred to in the introduction to the present
section.

3 The concept of macrohistory

The only other direct proof that, in quite general a context, the relativistic
one-particle distribution function in phase-space is a Lorentz-scalar, has been
proposed in [8, 5] . We will first review rapidly the basics of this proof and
then show that, in order for it to be fully consistent with the principles of
Einstein’s relativity, one must introduce the new concept of ‘macrohistory’
to replace the usual Galilean concept of ‘macrostate’.

3.1 A manifestly covariant expression for the distribu-

tion function

The basic idea behind the proof proposed in [8, 5] is to find a manifestly co-
variant expression for the distribution function in phase-space, without hav-
ing to introduce the concept of world-line distribution function. To achieve
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this goal, the authors start from the standard, apparently frame-dependent
definition :

f(t, x, p) =
〈

∑

r

δ(x − xr(t)) δ(p − pr(t))
〉

, (40)

where the sum extends to all particles in the system and the outer brack-
ets ‘indicate an ensemble average’. In the relativistic framework, the space
and time degrees of freedom are but coordinates in what is called the four-
dimensional space-time. It is therefore quite natural to introduce in relativis-
tic statistical physics an 8-dimensional ‘extended’ one-particle phase-space,
where a point has typically (t, x, p0, p) as coordinates. In such a phase-space,
p0 is understood as an independent quantity, not necessarily related to p.
Relativistic calculations are usually carried out more easily in this phase-
space than in the traditional, ‘more physical’, 6-dimensional one; in the end,
physical results can be recovered by restricting every equation to the mass-
shell or, more precisely, to the sub-manifold of the mass-shell where p0 > 0.
In this spirit, de Groot, Suttorp, van Leeuwen and van Weert introduce
another function, F , defined over the ‘extended’ 8-dimensional one-particle
phase-space by :

F(t, x, p0, p) = 2θ(p0) δ(p2 − m2c2) f(t, x, p), (41)

and prove that F is actually the ensemble average of a Lorentz-scalar. More
precisely, their basic result is that F can be written :

F(t, x, p) = c
∑

ω∈Ω

wω

∑

i

∫

δ(4) (x − Xiω(si)) δ(4) (p − Piω(si)) dsi, (42)

where the index i labels the particles in the system as well as their trajectories
(Xi(si), Pi(si)) in the extended phase-space, each trajectory being parame-
terized by its proper-time si. The sum over ω is the mathematical expression
for the statistical averaging and wω represents the weight associated to each
element ω in the statistical ensemble Ω.

Since the product of the theta-function by the delta-distribution, as it
appears on the right-hand side of (41) is a Lorentz-scalar, the authors con-
clude that the distribution function f itself is Lorentz-scalar. This conclusion
is indeed warranted, but only if the ensemble averaging procedure in itself
does not change the transformation character (variance) of the quantity to
which it is applied, which is the case if the statistical ensemble Ω and the
coefficients wω are Lorentz-scalars. We will now show that this is not a priori
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the case for ensemble averages defined in the usual, Galilean way because the
notions of macro- or microstate are not themselves covariant; we will there-
fore introduce the new concepts of macro- and microhistories and show with
their help that, contrarily to what might have been expected, the traditional
ensemble average is indeed a covariant operation.

3.2 Relativistic covariant ensembles

In Galilean statistical physics, ensembles are defined via the concept of
macrostate. A macrostate of a system is defined by the values taken by
certain macroscopic quantities or macroscopic fields. The nature and num-
ber of the macroscopic quantities are, to a certain extent, arbitrary, although
some usual or natural choices exist. If, for instance, one wants to study a
perfect gas out of equilibrium, macroscopic quantities often used to define a
macrostate are the particle density field, the velocity field and an arbitrary
‘thermodynamical’ field, such as the temperature field. In some contexts, it
seems useful to extend the number of fields, as is commonly done within the
framework of Extended Thermodynamics theories.

To any macrostate of a given system correspond many systems that are
macroscopically the same, but are different on a microscopic scale. A collec-
tion of systems that differ microscopically, but are identical macroscopically,
is what is called an ensemble.

The essential point to realize is that, in Galilean Physics, the values of
the various macrofields define the macrostate of the system at a given time
in the reference frame where the statistical study is carried out. Similarly,
microstates in Galilean Physics are always states of the system at a given
time in a chosen reference frame. In the Galilean world, this poses no prob-
lem since time is invariant by a change of reference frame. But this is not
the case anymore in the relativistic framework. To render this discussion
more precise, let Aµ...ν be one of the macrofields, the value of which defines
a macrostate of the system under consideration. Classical examples in rela-
tivistic hydrodynamics are the particle current density jµ, the entropy flux
density Sµ and the stress-energy tensor T µν . To begin with, let us choose to
study the system in a given inertial frame R. The macro-state of the system
in R at time t is defined by the values taken by the macrofield Aµ...ν and
all other macrofields on the hypersurface of space-time (t = const.). The
macrostate of the system, at a fixed time t in R, is therefore defined by the
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collection of numbers
Âµ...ν(x) := Aµ...ν(t, x), (43)

The change of the macrostate under a Lorentz-transformation characterized
by the tensor Λα

µ can be investigated by applying Λ directly to (43). One
obtains immediately :

A′α...β(t′, x′) = Λα
µ . . .Λβ

νÂ
µ...ν(x), (44)

where t′ and x
′ are related to t and x by the same Lorentz transformation.

In particular, t′ in (44) depends on both t and x or, equivalently, on t and
x
′. The variable t′ is therefore not constant in (44), but varies with x

′; con-
sequently, (44) does not define a macrostate of the system in R′. In other
words, the concept of macrostate is not Lorentz-invariant; indeed, specify-
ing the macrostate of a system in a given inertial frame does not fix the
macrostate for the same system in other inertial frames. From the preced-
ing discussion, it should be clear that the same conclusion also applies to
microstates. Since the usual ensemble average is an average over all mi-
crostates corresponding to a given macrostate, it is not therefore obvious
that the procedure is Lorentz-invariant. To analyze further the situation, it
is necessary to introduce the new concepts of macro- and micro- histories.

Since the root of the apparent problem lies in the fact that the concept
of state is not Lorentz-invariant, the natural idea is to replace that very con-
cept by another one which is Lorentz-invariant. Let us therefore introduce
the concept of history and define the macrohistory of a system by the values
taken by various macroscopical fields at every point in space-time where the
system exists. In a given inertial frame R, this typically amounts to fixing
the value of any of the retained macroscopical fields at every point x in IR3 for
any value of t. The concept of microhistory will be defined accordingly. It is
clear from the discussion in the preceding paragraph that these new concepts
are Lorentz-invariant, i.e., specifying the macro- or microhistory of a system
in a given inertial frame is sufficient to determine the macro- or micro- his-
tory of the same system in any other inertial frame. If one then defines a
relativistic statistical ensemble Ω as the collection of systems with microhis-
tories ω that correspond —for a sufficiently short period of time in the local

co-moving system— to one and the same macrohistory, the ensemble aver-
aging procedure is, by construction, Lorentz-invariant and the distribution
function defined by (40) is, therefore, indeed, a Lorentz-scalar. Hence, we
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suppose that there exists collections of systems that are microscopically dif-
ferent, but macroscopically identical for some limited amount of time. This
seems not too unrealistic an assumption.

Let us now prove that the covariant ensemble average over histories gives
back the results obtained by the usual average over states. In ordinary statis-
tical mechanics, the macroscopical fields always obey deterministic equations
and one can, in principle, given an inertial reference frame R, reconstruct
the whole macrohistory of the system from its macrostate at an arbitrary
time t0 in R through the evolution equations. On the other hand, the mi-
croscopic degrees of freedom may obey deterministic equations or stochastic
equations. If these equations are deterministic, the covariant average over
all microhistories corresponding to a given macrohistory should coincide with
the usual ensemble average over all the microstates corresponding to the given
macrostate at time t0 in R. Indeed, through the deterministic microscopic
evolution equations, one can then reconstruct the whole microhistories of the
system from its microstates in R at an arbitrary time. In other words, deter-
ministic evolution equations establish a one-to-one correspondence between
the histories and the states of the system at a given time in R. Thus averaging
over histories comes down in such cases to averaging over states. The matter
is more complicated if the microscopic evolution equations are stochastic,
typically involving some random ‘noise’ (for an example of stochastic process
in the relativistic framework, we refer the reader to [9] and [10]). For a given
realization of the noise i.e. ‘freezing’ the randomness, the stochastic evolu-
tion equations act as deterministic ones and it is then possible to establish
a one-to-one correspondence between histories and states. Naturally, this
correspondence depends on the chosen realization. Keeping this realization
fixed for the moment, the average over histories again comes down to an
average over states. To get a full ensemble average, one usually also averages
over the various realizations of the noise. Obviously, this final average does
not change the variance of the quantity to which it is applied. Thus, the total
ensemble average, including the average over the realization of the noise, is
a covariant operation in this case too.

To sum up these results : the notions of macro-and microhistories are
necessary to prove that the usual ensemble-averages over states are indeed
covariant operations. This result is not trivial because, contrary to the con-
cept of history, the notion of state is not a covariant concept.
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4 The concept of world-line distribution func-

tion

As we indicated in the introduction to this article, some authors introduce
ab initio a new object in relativistic kinetic theory, the so-called distribution-
function for the world-lines of the particles and consider it to be the funda-
mental relevant concept for relativistic situations. We would like, in this sec-
tion, to prove that the existence of such a distribution is, somewhat counter-
intuitively, not trivial; we will notably show that the world-line distribution,
as it is usually defined in the literature, exists only because the standard
particle distribution function is a Lorentz-scalar. In other words, to assume
from the start that the world-line distribution function exists comes down to
assuming that the usual one-particle distribution in phase-space is a Lorentz-
scalar.

4.1 Definition of the world-line distribution function

Let Σ be any space-like hypersurface in space-time and dΣµ its normal four-
vector at point M(xµ). Let also d3p be a volume element in momentum
space, centered on a given three-momentum p. The world-line distribution
function fw at point Q = (t, x, p) is usually defined so that the number of
world-lines dNw with momentum in the range (p, d3p) that cross dΣµ in the
direction of its normal is given by :

dNw = fw(Q) pµdΣµ

d3p

p0
. (45)

p0 naturally is the time-component of the four-vector pµ associated to p by
equation (21). Since dNw, pµdΣµ and d3p/p0 are Lorentz-scalars, it follows
from equation (45) that fw, if it exists, is also a Lorentz-scalar. What makes
definition (45) not trivial is that the hyper-surface Σ, aside from being space-
like, is arbitrary. In particular, in any given reference frame, one can choose
to apply equation (45) to an hyper-surface which does not coincide with
the constant-time hyper-surfaces of this frame. This is why dNw is not, in
general, the number of particles present in some infinitesimal volume of the
phase-space at a given time in the chosen reference frame, but a number of
world-lines.

15



4.2 The reason why fw exists

Let Q be any point in the one-particle phase-space, M its projection on the
space-time manifold and R, an arbitrary inertial frame. It is always possible
to find a space-like hyper-surface Σ which contains M and the time-like
normal vector of which, dΣ, has vanishing space-components at M in R :

dΣµ = d3xδ0
µ. (46)

Transcribed in this reference-frame, equation (45) reads :

dW = fw(t, x, p)d3xd3p. (47)

Since the surface element dΣ is, by construction, a constant-time surface-
element in R, the number of world-lines dW is also the number of particles
which, in this frame, occupy at time t the phase-space volume d3xd3p. This
proves that, if it exists, fw acts as (and is) the standard one-particle distri-
bution function in R at point Q.

Since R is arbitrary, this also proves that the definition of fw only makes
sense because the particle-distribution function is frame-independent, i.e.,
because it is a Lorentz-scalar. To phrase it slightly differently, if one has
not yet proven that the one-particle distribution function is a Lorentz-scalar,
assuming that fw exists comes down to assuming that the particle distribu-
tion function is a scalar. On the contrary, if one has proven (as was done in
section (3)) that the particle distribution is a Lorentz-scalar, one can then
introduce the invariant world-line distribution, prove that it exists and use
it as a particularly elegant tool in manifestly covariant calculations. Let
us also note that the very concept of world-line distribution, as opposed to
particle distribution, seems to imply the concept of statistical average over
histories, as opposed to average over states. All this is naturally perfectly
coherent. Indeed, we have just seen that the concept of world-line distribu-
tion function only makes sense because the particle distribution function is
a Lorentz-scalar, and it was proven in section 3 that the most natural and
general way to ensure that the particle distribution is a Lorentz-scalar is pre-
cisely to use covariant statistical ensembles that are actually not ensemble
of states, but ensembles of histories.
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5 Discussion

In this article, we have given a fresh look at the notion of relativistic dis-
tribution function commonly used in relativistic kinetic theory. Let us sum
up our main results. As already assumed by various authors, the standard
Galilean definition for the one-particle distribution function in phase-space
can be imported safely into the special-relativistic realm. It is then possible
to prove that this distribution is a Lorentz-scalar. However, the two direct
proofs that exist in the literature have been found wanting. The first one is
based on the so-called invariance of the volume-element in one-particle phase-
space; we have proven by direct calculation that, contrary to earlier claims
made by various authors, this volume-element is not Lorentz-invariant, and
the whole proof has been shown to rest on a misconception of the prob-
lem. The second proof, due to de Groot and Suttorp (and later on incor-
porated in de Groot’s, van Leeuwen’s and van Weert’s book on relativistic
kinetic theory), starts from the most general definition of the one-particle
distribution-function. We have shown that, to be fully convincing, this proof
needs the introduction of the new manifestly-covariant (relativistic) concepts
of micro- and macrohistories. With these notions, new, covariant statistical
ensembles can be introduced and the one-particle distribution function can
be shown to be indeed a Lorentz-scalar. We have also revisited the ax-
iomatic approach to relativistic kinetic theory, which starts by introducing
the non-Galilean concept of distribution function for the world-lines crossing
an arbitrary space-like hypersurface in space-time. We have shown that in-
troducing this new concept ab initio in the relativistic theory is tantamount
to assuming axiomatically that the usual particle distribution in phase-space
is frame-independent. Since this is a fact which can be proven, as can be
clearly seen from the argument of the present article, it seems to us that
assuming it from scratch is unnecessary. On the other hand, building on the
scalar-nature of the one-particle distribution to construct the distribution
function for world-lines is certainly interesting, since the world-line distribu-
tion function is a most useful tool in manifestly covariant calculations.

This article would not be complete without a mention of another proof
that the relativistic one-particle distribution in phase-space is a Lorentz-
scalar. This proof [10] is actually rather particular because it has been given
in the context of relativistic stochastic processes only, and more precisely
for the distribution function associated to the so-called relativistic Ornstein-
Uhlenbeck process, which is a toy-model of relativistic diffusion. As such,
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this proof makes extensive use of stochastic calculus. How this connects with
the general proof envisaged in this article is not absolutely clear yet and we
hope to shed further light on this question in a forthcoming publication.

As also mentioned in the introduction, this article tackled with the spe-
cial relativistic situation only. The general relativistic case is addressed in
the article companion to the present one; envisaging the problem in an arbi-
trary reference-frame naturally contributes to a deeper understanding of the
simpler, special-relativistic case, where the discussion is restricted to inertial
frames only.
ACKNOWLEDGMENTS : The authors wish to acknowledge fruitful discus-
sions with Cécile Barbachoux.
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