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Abstract. Negative slope coefficient has been recently introduced and
empirically proven a suitable hardness indicator for some well known genetic
programming benchmarks, such as the even parity problem, the binomial-3 and
the artificial ant on the Santa Fe trail. Nevertheless, the original definition of this
measure contains several limitations. This paper points out some of those limita-
tions, presents a new and more relevant definition of the negative slope coefficient
and empirically shows the suitability of this new definition as a hardness measure
for some genetic programming benchmarks, including the multiplexer, the inter-
twined spirals problem and the royal trees.

1 Introduction

What makes a problem easy or hard for Evolutionary Algorithms? A first effort to an-
swer this challenging question has been done by Goldberg and coworkers (e.g., see
[3, 5]) in the field of Genetic Algorithms (GAs). Their approach consisted in construct-
ing functions that should a priori be easy or hard for GAs to solve. These ideas have
been followed by many others (e.g. [12, 4]) and have been the source of many hypothe-
ses as to what makes a problem easy or difficult for GAs. One concept that underlies
many of these approaches is the notion of fitness landscape [15]. A fitness landscape is a
plot where the points in the horizontal subspace represent the different individual geno-
types in a search space and the points in the vertical direction represent their fitness [9].
Individual genotypes are usually placed on the horizontal subspace according to a cer-
tain neighborhood structure. If genotypes can be visualized in two dimensions, the plot
can be seen as a three-dimensional surface, which may contain peaks and valleys. The
task of finding the best solution to the problem is equivalent to finding the highest peak
(for maximization problems). The problem solver is seen as a short-sighted explorer
searching for it. The fitness landscape plot can be helpful to understand the difficulty of
a problem, i.e. the ability of a searcher to find the optimal solution for that problem (see
for instance [17] for a deep analysis). Nevertheless, fitness landscapes are impossible
to be plotted in practice, given the generally huge size of the space of solutions and the
multi-dimentionality and complexity of the possible neighborhood structures. For this
reason, in the last few years researchers have been looking for an algebraic measure
able to capture some of the interesting properties of fitness landscapes. Early attemps
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are represented by [22, 11, 7]. A signicant contribution to this field has been given by
Jones [6] with the introduction of an hardness measure for GAs called fitness distance
correlation (fdc). This measure has been extended to tree-based Genetic Programming
(GP) and proven a suitable hardness indicator in [17, 16, 19, 20, 2]. Nevertheless, these
contributions have also shown that fdc has some flaws, the most important one being
the fact that fdc is not predictive, i.e. the optimal solution (or solutions) must be known
beforehand, which is almost unrealistic in applied search and optimization problems.
Thus, it is important to investigate other approaches based on quantities that can be
measured without any explicit knowledge of the genotype of optimal solutions. Prelim-
inary results of this enquiry can be found in [18], where a new measure called negative
slope coefficient (nsc) has been introduced.

This paper aims at extending and generalizing the study of nsc for tree-based GP.
It is structured as follows: section 2 introduces the concept of fitness cloud on which
nsc is based. Section 3 takes up the original definition of the nsc as it has been pre-
sented in [18] and section 4 points out its main limitations. Section 5 proposes a new
method for calculating the nsc and shows some experimental results pointing out that
this method enables to overcome some drawbacks of the original definition of the nsc.
Finally, section 6 offers our conclusions and hints for future research.

2 Fitness Clouds

Evolvability is a feature that is intuitively related, although not exactly identical, to
problem difficulty. It has been defined as the capability of genetic operators to improve
fitness quality [1]. The most natural way to study evolvability is, probably, to plot the
fitness values of individuals against the fitness values of their neighbors, where a neigh-
bor is obtained by applying one step of a genetic operator to the individual. Such a plot
has been first introduced for binary landscapes by Vérel and coworkers [21] and called
by them fitness cloud. In this paper, the genetic operator used to generate fitness clouds
is standard subtree mutation [8], i.e. mutation obtained by replacing a subtree of the
selected individual with a randomly generated tree.

2.1 Definition

Let Γ = {γ1,γ2, . . . ,γn} be the whole search space of a GP problem and let V (γ j) =
{v j

1,v
j
2, . . . ,v

j
mj } be the set of all the neighbors of individual γ j,∀ j ∈ [1,n]. Now let f be

the fitness function of the problem at hand. The following set of points can be defined:
S = {( f (γ j), f (v j

k)), ∀ j ∈ [1,n], ∀k ∈ [1,m j]}. The graphical representation of S on a
bidimentional plane, or fitness cloud, is the scatterplot of the fitness of all the individuals
belonging to the search space against the fitness of all their neighbors. The main idea is
that the shape of this scatterplot can give an indication of the evolvability of the genetic
operators used and thus some hints about the difficulty of the problem at hand. The
fitness cloud also implicitly gives some insight on the genotype to phenotype map: the
set of genotypes that all have equal fitness is a neutral set. Such a set corresponds to
one abscissa in the fitness/fitness plane; according to this abscissa, a vertical slice from
the cloud represents the set of fitnesses that could be reached from this set of neutrality.
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For a given offspring fitness value f̃ , an horizontal slice represents all the fitnesses from
which one can reach f̃ .

2.2 Sampling Methodology

In general, the sizes of the search space and of the neighborhoods do not allow one to
consider all the possible individuals. Thus, samples are needed. Since selection used
by GP is likely to eliminate bad individuals from the population, importance sampling
techniques must to be used. As in [17, 18], also in this work the well-known Metropolis-
Hastings technique [10] is used to sample the search space and the k-tournament selec-
tion algorithm [8] (with k = 10) is used to sample neighborhoods (see [17] for a detailed
motivation of these choices). Using random samples would assume that the space is rel-
atively uniform, e.g. that the measurement in one region of space (the sampled space)
applies to all regions of space (or at least a large enough percentage of the space). The
choice of important samplings has also been done to limitate this drawback. The termi-
nology of section 2.1 is thus updated: from now on, Γ represents a sample of individuals
obtained with the Metropolis-Hastings technique and, for each γ j belonging to Γ, V (γ j)
is a subset of its neighbors, obtained by the applying tournament selection.

3 Negative Slope Coefficient

The fitness cloud can be of help in determining some characteristics of the fitness land-
scape related to evolvability and problem difficulty. But the mere observation of the
scatterplot is not sufficient to quantify these features. In [17, 18] an algebraic measure
called negative slope coefficient (nsc) has been introduced. It can be calculated as fol-
lows: the abscissas of a scatterplot can be partitioned into k segments {I1, I2, . . . , Ik} of
the same length. From those segments, one can deduce the set {J1,J2, . . . ,Jk}, where
each Ji contains all the ordinates corresponding to the abscissas contained in Ii. Let
M1,M2, . . . ,Mk be the averages of the abscissa values contained inside the segments
I1, I2, . . . , Ik and let N1,N2, . . . ,Nk be the averages of the ordinate values in J1,J2, . . . ,Jk.
Then, the set of segments {S1,S2, . . . ,Sk−1} can be defined, where each Si connects the
point (Mi,Ni) to the point (Mi+1,Ni+1). For each one of these segments Si, the slope
Pi is defined as Pi = (Ni+1 − Ni)/(Mi+1 − Mi). Finally, the negative slope coefficient is
defined as nsc = ∑k−1

i=1 min (0,Pi). The hypothesis proposed in [18] is that ncs should
classify problems in the following way: if nsc= 0, the problem is easy; if nsc< 0 the
problem is difficult and the value of nsc quantifies this difficulty: the smaller its value,
the more difficult the problem. The idea behind this hypothesis is that the presence of
a segment with negative slope indicates a bad evolvability for individuals having fit-
ness values contained in that segment (see [17] for a detailed discussion on this issue).
Results shown in [18], using the previous definition, are encouraging, nevertheless the
technique used to partition the fitness cloud into segments was totally arbitrary: fitness
clouds were partitioned into a certain number of bins of the same size; the number
of segments and their size was chosen in an arbitrary way (10 segments of the same
size in [18]). This may have some undesirable consequences: for instance, segments
containing too few points may be generated (and thus the averages calculated on their
abscissas and ordinates may lack statistical significance). In the next section, we present
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some experiments showing that nsc calculated by partitioning the fitness cloud into a
fixed number of segments can give wrong indications about the difficulty of some GP
problems.

4 Limitations of the Original Definition

The nsc has been tested as a measure of problem hardness on a set of well-known GP
benchmarks, namely the multiplexer problem [8], the intertwined spirals problem [8]
and the royal trees [14]. These benchmarks have been chosen because nsc has never
been tested on them before and because they are problems of different nature and often
showing different behaviors. Below, we briefly describe these three benchmarks (see [8]
and [14] for a more detailed description) and the parameters used in the experiments.

k-Multiplexer. The problem is to design a Boolean function with k inputs and one
output. The first x of the k inputs can be considered as address lines. They describe the
binary representation of an integer number. This integer chooses one of the 2x remaining
inputs. The correct output for the multiplexer is the input on the line specified by the
address lines. The terminals are the k inputs to the function. The non-terminals are
the boolean operators AND, OR, NOT , IF . The raw fitness is calculated by counting
the number of correct outputs returned by the boolean function over all the possible 2k

inputs (fitness cases). Subtracting 2k to raw fitness makes this problem a maximization
one and dividing the result by 2k allows to normalize all fitness values into range [0,1].
Empirical results show that the difficulty of the multiplexer problem increases as the
number of inputs k increases.

Intertwined Spirals. The goal of this problem is to find a program to classify a given
point in the x−y plane as belonging to one of two well defined spirals. These two spirals
are defined by a set of 194 given points. The functions and terminals set used to build
this function are: F = {+,−,∗,//, IFLTE,SIN,COS} and T = {X ,Y,R }, where R
is an ephemeral random floating point constant ranging between −1 and 1 and // is a
protected division returning 1 instead of an error if the denominator is 0. In order to
calculate fitness, individuals are evaluated and mapped into 1 if they return a positive
value and into -1 otherwise. The fitness is calculated by subtracting 194 to the number
of correctly classified points, among the 194 points which define the spirals. In this way,
the problem is transformed into a maximization one and values are normalized into the
range [0,1] by dividing them by 194. Empirical results show that it is difficult for GP to
find a perfect solution to this problem.

Royal Trees. The language used to code individuals is composed by a set of functions
A, B, C, etc. with increasing arity (i.e. arity(A)= 1, arity(B) = 2, and so on) and a single
terminal X (i.e. arity(X) = 0). Royal trees are based on the concept of “perfect tree”,
which is a tree in which all the links are “perfect links”. A link is perfect if it joins a
node of arity n (at level l in the tree) with a node of arity n−1 (at level l −1). The fitness
of each tree is calculated by assigning a bonus to each perfect link and a penalty to each
non-perfect link. The global optimum is the perfect tree having the node with the max-
imum arity as root. In [14], Punch and coworkers have empirically shown that the diffi-
culty of royal trees increases as the maximum arity allowed for the tree nodes increases.
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Performance Measure and GP Parameters. Once a measure of hardness and the way
to compute it have been chosen, the problem remains of finding a means to validate the
prediction of the measure with respect to the problem instance and the algorithm. The
easiest way is to use a performance measure [13]. For the purposes of the present work,
performance is defined as being the proportion of the runs for which the global opti-
mum has been found in less than 500 generations over 100 runs. Even if this definition
is informal and prone to criticism, good or bad performance values correspond to our
intuition of what “easy” or “hard” means in practice. All GP runs executed to calculate
performance values have used the same set of GP parameters used in [17, 18]: gener-
ational GP, population size of 200 individuals, standard GP mutation used as the sole
genetic operator with a rate of 95%, tournament selection of size 10, ramped half-and-
half initialization, maximum depth of individuals equal to 10, elitism (i.e. survival of
the best individual into the newly generated population).

4.1 Experimental Results

Empirical results for the royal trees are not shown here for lack of space. Nevertheless,
they can be found in [17] and they confirm the consistency of the nsc as an hardness
indicator. Results for the multiplexer problem are summarized by figures 1(a) and 1(b)
and by table 1. Figure 1(a) as well as the first row in table 1 concern the 6 multiplexer
problem. For this instance of the problem, performance (p) of GP using only standard
mutation as a genetic operator is equal to 0.58 (which means that a global optimum has
been found in 58 runs over 100 before generation 500). Given that p is larger than 0.5,
this problem can be considered as an “easy” one for GP (even though, being the value
of p so close to 0.5, the term “uncertain” would probably be more appropriate). On the
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Fig. 1. Multiplexer problem, fitness cloud and segments. (a): 6 multiplexer. (b): 11 multiplexer.

Table 1. Multiplexer. Indicators related to scatterplots of figure 1.

scatterplot problem p nsc
Fig. 1(a) 6 multiplexer 0.58 -0.16
Fig. 1(b) 11 multiplexer 0 -0.24
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Fig. 2. Intertwined Spirals Problem. Fitness cloud with segments.

Table 2. Intertwined Spirals Problem. Indicators related to the scatterplot of figure 2.

scatterplot problem p nsc
Fig. 2 intertwined spirals 0 0

other hand, the value of the nsc is equal to -0.16, which means that, according to the
nsc measure, the 6 multiplexer problem should be difficult to solve. Thus, the nsc does
not give the correct indication about the hardness of this problem.

Figure 1(b) and the second row of table 1 concern the 11 multiplexer problem. For
this instance of the problem, no global optimum has been found by GP using mutation
over the 100 runs performed. Thus the problem is clearly difficult and, consistently, nsc
has a negative value.

The intertwined spirals problem is difficult to solve by GP. In fact, no optimum has
been found over 100 runs. On the other hand, as shown by figure 2 and table 2, the nsc
value is equal to zero, which means that, according to the nsc measure, the problem
should be easy. While the lack of reliability of the nsc reported in the case of the 6 mul-
tiplexer problem could eventually be considered as “marginal”, since GP performance
in that case is very close to 0.5 (and thus hardness is very difficult to measure), the
wrong indication on the intertwined spirals problem leaves no room for doubts: the nsc,
as it has been used in [18] and until now in this paper, cannot be used as a general hard-
ness indicator for GP. Thus, the next sections are dedicated to the definition of a new
technique for partitioning fitness clouds into segments, in order to assure a higher sta-
tistical significance to the set of points belonging to each segment. Successively, some
new empirical results are shown, confirming that the new partitioning technique allows
to overcome the nsc drawbacks presented here.

5 Size Driven Bisection

One of the most natural ways to automatically partition a fitness cloud into a set of
segments consists in applying the well-known bisection algorithm: as a first step, the
fitness cloud may be partitioned into two segments, each one containing the same num-
ber of points; then the algorithm may be recursively applied to each one of these two
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segments until at least one of the segments contains a smaller number of points than a
prefixed threshold. This technique has been tested and it has a major drawback: let the
size of a segment be defined as the difference between the rightmost and the leftmost
abscissas of that segment. After a few number of steps, very small bins (i.e. bins with
a very small size) may be generated (see [17], at page 162, for a practical case where
this problem arises). In such cases, if small segments have negative slopes, the nsc may
take very large values (around 106 in the example shown in [17], page 162). This is
clearly unacceptable, even in consideration of the fact that all the points included in-
side that segments give more or less the same information. In other words, a segment
of such a small size is clearly not a significant one. Such a pathologic situation man-
ifests very often if the bisection strategy is applied [17]. Thus, a different strategy is
needed.

In an informal way, one may say that the arbitrary criteria used in [18] and in
section 4 took into account the size of the segments, but not the number of points
they contain, while the bisection algorithm does exactly the opposite. In this section,
a technique which takes into account both the size of the segments and the number of
points they contain, called size driven bisection for brevity, is proposed. The starting
point of this algorithm is the same as for bisection: the fitness cloud is partitioned into
two segments, each of which contains the same number of points. After that, instead
of recursively applying bisection to both these segments, only the segment with larger
size is further partitioned. Partition is done, once again, by bisection, i.e. the segment
is partitioned into two bins, each one containing the same number of points. The algo-
rithm is iterated until one of the two following conditions is satisfied: either a segment
contains a smaller number of points than a prefixed threshold, or a segment has become
smaller than a prefixed minimum size. In this paper, as a first approximation, 50 has
been chosen as a threshold for the number of points belonging to a bin, and the 5% of
the distance between the leftmost and the rightmost points in the fitness cloud has been
chosen as the minimum size of a segment.

5.1 Experimental Results

Empirical results for the multiplexer problem using size driven bisection are summa-
rized by figures 3 and table 3. Figure 3(a) and figure 3(b) as well as the first row in
table 3 concern the 6 multiplexer problem. This time, the value of the nsc is equal to
0 and this value is consistent with the fact that GP performance is > 0.5. Neverthe-
less, figure 3(b) (containing standard deviations of the same points as in figure 3(a))
shows that the slope of some segments is not statistically significant. Our interpretation
of it is that, since the GP performance value is near 0.5, it is difficult to state if the
problem is “easy” or “hard”. We could informally say that it is “moderatedly easy” or
maybe “uncertain” and the standard deviations of some segments seem to confirm this
“uncertainty”.

Figures 3(c) and 3(d) and the second row of table 3 concern the 11 multiplexer
problem. The nsc calculated with the size driven bisection has a negative value and, this
time, standard deviations leave few chances to segment slopes to change. In conclusion,
nsc using size driven bisection seems a reasonable hardness indicator for the multiplexer
problem.
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Fig. 3. Multiplexer problem. (a): 6 multiplexer, fitness cloud and segments. (b): 6 multiplexer,
segments with standard deviations. (c): 11 multiplexer, fitness cloud and segments. (d): 11 multi-
plexer, segments with standard deviations.

Table 3. Multiplexer. Indicators related to scatterplots of figure 3.

scatterplot problem p nsc
Fig. 3(a) and (b) 6 multiplexer 0.58 0
Fig. 3(c) and (d) 11 multiplexer 0 -0.21

Figure 4 shows the scatterplot and segments with their standard deviations for the
intertwined spirals problem. Table 4 shows that the value of the nsc calculated using
size driven bisection is negative. Standard deviations confirm that all the segment slopes
are statistically significant. We conclude that nsc gives reasonable indications on the
hardness of this problem too.

Finally, figures 5(a), 5(b) and 5(c) show the scatterplot and segments for the royal
tree problem in the case where F = {A,B}, F = {A,B,C} F = {A,B,C,D}. In these
cases, performance values (p) confirm that the problem is easy for GP. The first
three rows of table 5 show that nsc is equal to zero in all these cases. Furthermore
(see figures 6(a), 6(b) and 6(c)) standard deviations confirm that all the segment slopes
are statistically significant. On the other hand, if E , F and G nodes are added to the set
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Fig. 4. Intertwined Spirals Problem. (a) : Fitness cloud with segments. (b) : Segments with stan-
dard deviations.

Table 4. Intertwined Spirals. Indicators related to scatterplots of figure 4.

scatterplot problem p nsc
Fig. 4(a) and (b) intertw. spirals 0 -0.41
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Fig. 5. Royal tree problem. Fitness clouds with segments. (a): F = {A,B}. (b): F =
{A,B,C}. (c): F = {A,B,C,D}. (d): F = {A,B,C,D,E}. (e): F = {A,B,C,D,E,F}. (f):
F = {A,B,C,D,E,F,G}. Note the change in the axis scale as the F set increases in size.

of possible function nodes, the problem becomes difficult (since performance is equal
to zero, as shown by the last three rows of table 5). Consistently, the nsc becomes more
and more negative for these instances of the problem. Figures 5(d), 5(e) and 5(f) show
scatterplots and segments for these three instances and figures 6(d), 6(e) and 6(f) show
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Table 5. Royal trees. Some data related to scatterplots of figure 5.

scatterplot root p nsc
Fig. 5(a) B 1 0
Fig. 5(b) C 0.91 0
Fig. 5(c) D 0.72 0
Fig. 5(d) E 0 -0.17
Fig. 5(e) F 0 -0.21
Fig. 5(f) G 0 -0.32
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Fig. 6. Royal tree problem. Segments with standard deviations. (a): F = {A,B}. (b): F =
{A,B,C}. (c): F = {A,B,C,D}. (d): F = {A,B,C,D,E}. (e): F = {A,B,C,D,E,F}. (f): F =
{A,B,C,D,E,F,G}. Note the change in the axis scale as the F set increases in size.

the respective standard deviations. Once again, nsc values correctly indicate the relative
order of GP problem hardness.

6 Conclusions and Future Work

The negative slope coefficient (nsc) is not a reliable measure of problem hardness if
the fitness cloud is partitioned into segments in an arbitrary way. In this paper, a new
way of partitioning fitness clouds, called size driven bisection, has been presented. It
represents a suitable tradeoff between the size of segments and the density of points in
the partitions. The nsc using size driven bisection gave reliable indications about the
hardness of two instances of the multiplexer problem, the intertwined spirals problem
and six instances of the royal trees problem. Furthermore, the nsc using size driven
bisection gave reliable indications on some other typical GP benchmarks (such as the
artificial ant on the Santa Fe trail, the even parity and one particular instance of the
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symbolic regression) and on trap functions (these results have not been shown here
for lack of space. They are presented in [17]). These results encourage us to continue
the study of nsc, with further tests on more “real life” GP problems. This paper leaves
some open problems: first of all, it is based on statistical samplings of the search space
and thus counterexamples can surely be built for this measure. Furthermore, and even
more importantly, no technique has been found yet to normalize nsc values into a given
range, in order to enable comparisons between the difficulties of two or more problems
of different nature. Only the hardness of different instances of the same problem can be
calculated using nsc, as defined here.
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21. S. Vérel, P. Collard, and M. Clergue. Where are bottleneck in nk-fitness landscapes ? In
CEC 2003: IEEE International Congress on Evolutionary Computation. Canberra, Aus-
tralia, pages 273–280. IEEE Press, Piscataway, NJ, 2003.

22. E. D. Weinberger. Correlated and uncorrelated fitness landscapes and how to tell the differ-
ence. Biol. Cybern., 63:325–336, 1990.


	Introduction
	Fitness Clouds
	Definition
	Sampling Methodology

	Negative Slope Coefficient
	Limitations of the Original Definition
	Experimental Results

	Size Driven Bisection
	Experimental Results

	Conclusions and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




