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Abstract. We study a 2D quasi-static discrete crack
anti-plane model of a tectonic plate with long range elas-
tic forces and quenched disorder. The plate is driven
al its border and the load is transfered to all elements
through elastic forces. This model can be considered
as belonging to the class of self-organized models which
may exhibil spontaneous criticality, with four additional

ingredients compared to sandpile models, namely quenched

disorder, boundary driving, long range forces and [ast
time crack rules. In this "crack” model, as in the "dis-
location” version previously studied, we find that the
occurrence of repeated earthquakes organizes the activ-
ity on well-defined fault-like structures. In contrast with
the "dislocation” model, after a transicnt, the time evo-
fution becomes periodic with run-aways ending cach cy-
cle. This stems from the ”crack” stress transfer rule pre-
venting criticality to organize in favor of cyclic behav-
ior. For sufficiently large disorder and weak stress drop,
these large events are preceded by a complex space-
time history of foreshock activity, characterized by a
Gutenberg-Richter power law distribution with univer-
sal exponent B = 14+0.05. This is similar to a power law
distribution of small nucleating droplets before the mu-
cleation of the macroscopic phase in a first-order phase
transition. For large disorder and large stress drop, and
for certain specific initial disorder configurations, the
stress field becomes frustrated in fast time : out-ol
plane deformations (thrust and normal faulting) and/or
a genline dynamics must be introduced to resolve this
[rustration.

1 Introduction

In this paper, we continue our exploration of the hypoth-
esis according to which earthquake and fault characteris-
tics can be understood, at tiine scales of years and above,
only by using a global perspective, treating on the same
level the growth of faults by repeated earthquakes on

onc hand and the localization of earthquakes on [aults
on the other hand. A lot of studies have documented
the self-similar structure of fault patterns (King (1983);
Wu and Akt (1986); Davy et al. (1990); Kagan (1991);
King and Sammis (1992); Barton and Zoback (1992);
Hanks (1992); Scholz et al. (1993)). At short time
scales (typically less than or of the order of a century),
carthquakes occur on these pre-existing set of faults and
one can neglect the evolution of the fault network to fo-
cus on the question of the role of the fault structure in
the observed earthquake phenomenology. On the other
hand, faults are evolving, nucleating, growing, branch-
ing, healing, dying eventually, being screened by others
faults (Andrews (1989)). This evolution occurs as a re-
sult of the accumulation of deformations, accounted for
by ecarthquakes for a significant fraction (varying upon
the location on earth). Therefore, the fault geometry,
which must be introduced to get a correct deseription of
earthquake occurrence, is not an arbitrary fractal, but
results from the accumulation of earthquakes and other
more ductile modes of deformations which are them-
selves determined by the geometry. Qur purpose here
is to explore further the implications of this "hen and
egg” problem, within a simple model.

To tackle this question, we have previously introduced
a 2-D quasi-static "dislocation™ model for the generation
and organization of faults by repeated earthquakes in an
helerogeneons elastic plate driven at its border (Cowie
et al. (1993,1995); Miltenberger et al. (1993); Sornette
et al. {1994a)). The main results are the spontaneous
generation of fractal faull struetures and the existence
of a well-defined Gutenberg-Richter earthquake encrgy
distribution

N(E)E ~ E~U+8)gE,

with B = 0.3 £ 0.05 in 2D describing the earthquake
population. The faults have been found to be glob-
ally optimal structures in the sense that they can be
mapped onto a munimal interface problem, which in 2D
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corresponds to the random directed polymer problem
(Halpin-Healy and Zhang (1995)). More precisely, for
small siress drops, we have shown that a fault minimizes
the sum of the random thresholds of the elements along
it. This global minimization problem is achieved by the
spontaneous organization of the medium, in which af-
ter a long ”learning” transient regime, the deformation
becomes localized on the optimal fault structure. In a
sense, the elastic plate, endowed with its rules of rupture
and stress redistribution, can he viewed as an analog
computer which solves an optimization problem. Con-
cretely, the outcome of this optimization correspondence
is that the faults are self-affine with a roughness expo-
nent which is known exactly and equal to 2/3.

In the present work, we study the "crack” version of
the model : a constant ”dynamical” stress is assumed to
characterize the "fast time” rupture, i.e. the stress on
all broken clements is fixed during a given earthquake
event. In contrast, the previous "dislocation” model
{Cowie et al. {1993,1995); Miltenberger et al. {1993);
Sornette et al. (1994a)) corresponds to imposing a slip
to the ruptured element, allowing it to be rcloaded in
fast time in the succession of ruptures producing a com-
plete earthquake. In the present ”crack” model, an el-
ement thus fails only once in a given earthquake and
stress enhancement occurs at the crack tips, growing,
as usual, as the square root of the length of the evolv-
ing earthquake. The motivation to study this variant
of the initial model is twofolds: 1) there is some debate
in the litterature on the correct model (dislocation or
crack) to use for large earthquakes (Scholz (1982,1994);
Romanowicz and Rundle (1993,1994); Sornette and Sor-
nette (1994)); 2} in the context of self-organization, it is
important to assess the role of local rules in the resulting
large-scale organization (Gabrielov et al. (1994)).

We explore the various regimes as a function of ini-
tial disorder (on the stress thresholds and elastic coef-
ficients) and dynamical stress drop amplitude. As in
the "dislocation” model, we find that the occurrence
of repeated earthquakes organizes the activity on well-
defined fault-like structures. The main difference with
the ”dislocation” model stems from the tendency for
the model to synchronize, i.e. to generate large peri-
odic events, albeit of a complex internal spatio-temporal
structure. We interpret this behavior as resulting from
the physics of coupled relaxation oscillators with thresh-
old (Christensen (1992); Sornette (1994); Sornette et al.
(1995); Corral et al. (1995); Middleton and Tang (1995};
Bottani (1995); Gil and Sornetle (1995)). For suffi-
clently large disorder and weak stress drop, these large
events are preceded by a complex space-time history of
foreshock activity, characterized by a Gutenberg-Richter
distribution with exponent B = 14 0.1 which is univer-
sal in the sense that the exponent is found essentially
the same for all systems explored. For large disorder
and large stress drop, for certain specific initial disorder
configuration, and after a long time, the model does not

have a solution anymore: this corresponds to a situation
where the stress field becomes "frustrated” and the anti-
plane quasi-static crack modelling is no more defined.
This shows that the gquasi-static ”crack” version of the
mode! is not self-consistent and additional types of de-
formations must be allowed to get rid of this frustration.
For instance, out-of-plane deformations (thrust and in-
verse faulting) and/or the introduction of a genuine dy-
namics can resolve this frustration. This breaking of
self-consistency 1s reminiscent of the breaking of unicity
accompanying the appearcnce of mechanical instabili-
ties for instance in elastic-plastic transition (Lubliner
(1990)).

Ref.(Lomnitz-Adler et al. (1992)) has explored a va-
riety of avalanches and epidemic models which have the
same type of stress enhancement transfer at the crack
tips. In noilseless systems, they find, in agreement with
us, periodic behavior and in general large events of the
size of the system.

2 Description of the Pcrack” model

The model is a direct extension to the crack casc of the
dislocation model developed in (Cowie et al. (1993,1995);
Miltenberger et al. (1993); Sornette et al. (1994a)).
We consider an elastic plate embedded in the (0x, Oy)
plane and composed of plaguettes of unit sizes paving
the plane. The boundaries between the plaquettes con-
stitute the elementary fanlt segments. They are tilted at
45 degrees with respect to the Oz axis, ensuring a sym-
metric role for all plaquette borders. A constant velocity
boundary condition in the z direction is applied along
the upper edge while the bottom edge is kept fixed (both
the upper and bottom edges are parallel to Ox). Due
to this externally imposed deformation and the stress
transfer due to elasticity, each plaquette will deform.
Discretizing the mechanical problem, we attribute a sin-
gle vertical displacement w(z,y) aleng the direction 0z
perpendicular to the plate, at the center or node (z,%)
of a plaquette. Each plaquette border is characterized
by an elastic constant ¢ which may vary from element to
element (quenched disorder on the elastic coupling coef-
ficients). Only two components of stress are non-zero in
this antiplane model, namely the stress oy, (z, y) along z
applied on the border/fault between the plaquette cen-
tered on (z,y) and the plaquette centered on (z,y — 1)
given by

oy, y) = glw(z,y) — w(z,y— 1)]

and the stress o..(z,y) along z applied on the border
between the plaquette centered on (z,y) and the pla-
quette centered on (z — 1,y) given by

022 (2,y) = glw(z, y) — wiz - 1,y)}.

Note that these expressions are just the discretized ver-
sion of Hooke’s law for elasticity, expressed for principal



axis along Ox and Oy. For the present 45 degrees tilted
lattice, the formulas are deduced from those above by
the standard rule of transformation under a rigid rota-
tion. The elastic displacement w(zx, y} in the direction z
normal to the lattice plane is solution of the discretized
version of the equilibrium elasticity equation

div (g(.ﬂ, y)graduw(z, y)) =0.

Rupture occurs on a boundary between two plaquettes
when the stress applied on it reaches a threshold o,
which may depend on the position (quenched disorder
on the rupture thresholds). The stress threshold rupture
criterion used in our model can be interpreted as a stan-
dard Mohr-Coulomb criterion as follows. Recall that the
Mohr-Coulomb criterion is believed to apply for rupture
in the brittle crust at depth. It states that slip occurs
when the shear stress on a fault plane reaches a value
equal to the normal stress applied on this fault plane
times a so-called friction coefficient which is a function
of roughness and material properties of the fault. We no-
tice that the non-vanishing stress components ¢,, and
oy: of our antiplane model correspond to pure shear
stresses along Oz applied on the vertical plaquette bor-
ders, interpreted as elementary fault segments. Let us
introduce a constant hydrostatic pressure in the plane
(Ox, Oy) of the tectonic plate. This pressure creates
a stress normal to the fault segment. According to the
Mohr-Coulomb criterion, slip occurs on a given fault
segment if its shear stress (namely either o, or Oys )
reaches a constant equal to the pressure times the coef-
ficient of friction of this fault. This justifies our choice of
the stress threshold rupture criterion used in our model.
The heterogeneity of the thresholds o, then reflects that
of the friction coefficicnts on different fault segments.

When an clement breaks, the elastic strain in the ele-
ment is relaxed but the broken element suffers no change
in its material properties and it can support stress again
in the future. The stress field is assumed to obey the
equation of mechanical equilibrium immediately after
the rupture of an element. The redistribution of elastic
stresses can bring other elemenis to rupture in a domino
effect, creating model earthquakes. What we denom-
Inate as "fast time” is thus the succession of element
ruptures within an event, during which the macroscopic
load at the plate border does not increase ("slow time”
1s quenched during "fast time”). 'This separation into
these two time scales is intended to represent the dif-
ference between the fast dynamical rupture which lasts
minutes at most compared to the tectonic loading which
does not change over this time scale.

In our previous dislocation model, the nature of the
rupture on an element was simply characterized by the
amplitude of the slip, chosen to be proportional to elas-
tic deformation with a constant of proportionality 3.
This amounts to model a ruptured element as equiva-
lent to a dipole (antiplane is scalar) whose strength is

3

fixed until the element breaks again. The total slip oc-
curring on a fault corresponds to the cumulative dipole
amplitude on that fault. A large earthquake in the dislo-
cation model can be viewed as a nonlinear rupture pulse
propagating in and being multiply scattered by the het-
crogeneous medium, with the possibility for an element
to rupture several times in fast time. In the present
"crack” version, the strength of the dipole is not fixed
in "fast time”, but must be reajusted at cach rupiure
event in fast time during a given earthquake such that
the dynamical stress o4y, defined as

Tdyn — (1 - .B)G'c

where o, is the average stress drop, remains constant
and equal to a preassigned value on all rupture elements
in this earthquake. If n clements have ruptured and
a new element is brought to rupture in fast time due
to the stress redistribution induced by these n previous
ruptures, the dipole strengths of the n + 1 elements are
determined from a set. of n+1 equations as follows. Each
dipole exerts a contributlion to the stress on all other el-
ements. The stress on any clement is therefore the sum
of the background stress prior to the earthquake plus
the contribution of all the dipoles created in the event.
These dipoles are then self-consistently determined such
that the stress on all the ruptured elements in fast time
is fixed and equal to the preassigned value. Physically,
this models a situation where the faults remains ”open”
during the whole duration of the earthquake, at the op-
posite of the dislocation model which corresponds to an
instantaneous healing (closing) of the fault after each
rupture.

In the crack model, there is another subtlety that
was not present in the dislocation model. Suppose two
or more elements are brought above their threshold in
fast time due to the stress redistribution. The correct
physics would be to solve the elastodynamics equations
which direct the evolution of thesc unstable elements.
This is however too difficult to implement practically for
an heterogeneous system with many interacting faults.
Our quasi-static approach circumvents this difficulty at
the price that one has to choose, rather arbitrarily, a
rule for the evolution of the unstability. A priori, two
rules can be introduced: 1) one breaks them all simul-
taneously or 2) one ruptures only the element with the
largest ratio (larger than one) of its stress to its thresh-
old. We have checked that these two rules do not make
any significant difference in the dislocation model. In
the crack model, only the second rule has been explored
in details in irreversible models of rupture, whercas the
first rule may lead to un-ending ruptures. QOur simula-
tions have thus been carried out with this second rule.
The elastic equations have been solved using a conjugate
gradient technique with stopping criterion 10—2°,

Most of our study will be carried out in the presence
of quenched disorder in the stress thresholds o,, which
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are drawn once for all from a probability distribution
P, (o) chosen uniform in the interval [1 — %‘1, 1+ 47]
with the value of A between 0.1 and 1.9.

The basic difference between the dislocation and crack
model is that stress enhancement at the fault tip is much
stronger in the latter, with a stress growing as the square
root of the fault length. As a consequence, the nature
of fault and slip organization depends on the system
size L. An earthquake of size I will generale a stress
enhancement at its tip of magnitude equal to Go.VL.
Two cases appear: if Jo.v/L < Ae, the amplitude of
stress enhancement. generated by the dynamical evolu-
tion of the model is smaller than the quenched hetero-
geneity, The latter thus dominates and we expect an
organization similar to that observed m the dislocation
model where stress enhancement is small. On the con-
trary, for Bo.v/L > Ag, sufficicntly large earthquakes
will always create stress enhancements larger than the
pre-existing barriers. Beyond a characteristic nucleation
sizc L™ given by

Bo.NL* ~ Ag,

carthquakes will not be stopped and will always break
through the system (so-called "run-away” events). In
addition, these large earthquakes will tend to smooth
out the stress heterogeneity along the fault due to the
condition of equal dynamical stress drop on the ruptured
elements. These ingredients favor an approximate peri-
odic state characterized by a repetition of large similar
earthquakes (Christensen (1992); Sornette (1994); Sor-
nette et al. (1995); Corral et al. (1995); Middleton and
Tang {1995); Bottani (1995); Gil and Sornette (1995)).
Take for instance 7 = (0.1. Then, the run-away will be
absent for systems sizes smaller than of the order of 100.
For such small stress drops, we have verified in partic-
ular that the fault patterns selected in the dislocation
and the crack models have similar statistical properties
in this regime. For larger stress drops or larger system
sizes, there are twa populations of events : 1) the small
ones similar to thal occurring in the dislocation model
albeit with a different distribution; 2) large earthquakes
of size comparable to the system size.

3 Threshold disorder

Here, we wish to explore the crack regime. Our simu-
lations have thus been carried out on large systems 130
by 130. The influence of the dynamical stress o4y, has
been explored in the range 0 < oyyn < 1 — Az—", since
otherwise unending rupturcs occur (the second inequal-
ity expresses that the dynamical stress must obviously
be smaller than all static stress thresholds).

e Ag = 0.1 (leading to o4y, < 0.95).

For o4yn = 0 (large stress drop), after a short tran-
sient, the dynamics is that of a perfect "characteristic

earthquake” (Schwartz and Coopersmith (1984)): be-
cause of our tilted lattice structure, a well-defined reg-
ular fault, made of two linear strands oricnted at 45
degrees with respect Lo the Oz axis and forming a V,
is activated regularly in a perfect periodic [ashion by
a single great earthquake in which all elements on the
fault break once in fast time with cxactly the same slip.
This regime corresponds to a perfect synchronization
of all the threshold elements constituting the fault. The
(Giutenberg-Richter distribution is a Dirac function. The
same is found for intcrmediate stress drop {04y = 0.4).
For small stress drop (o4, = 0.9), we find again a per-
fect synchronizalion corresponding to the repetition of a
single large identical event. HHowever, the fault on which
this event occurs is now rough, characterized by linear
strands separated by rough portions. Iis specific struc-
ture is however dependent upon the specific realizalion
of the disorder on the thresholds. In sumrnary, a small
disorder favors a very regular organization.

o Ac = 1 (leading to agyn < 0.5). For o4yn = 0, the
behavior is very similar to the previous case Ag = (.1,
except that the fault is now rough all along its length.
For larger dynamical stress ogyn < 0.2 and 0.4, the dy-
namics is still periodic. However, a period contains a
much more complex history than just the succession,
as documented until now, of a quiescent phase followed
by a single great carthquake. Tn contrast, afler a great
earthquake, there is long quiescent phase, followed by
the appearence of a diffuse foreshock activity spread
over the platc. This diffuse activity is made of many
small earthquakes. It accelerates up to the time where
the great earthquake occurs on a fault. This fault is
again well-defined and is finally selected after a long
transient, The distribution of earthquake energies con-
tains two parts: a nice powerlaw distribution

P(E)F ~ g~(+8)

for small earthquakes 0.2 < £ < 20 (in the units where
the clastic coefficients are all equal to 1) with B =
1+ 0.05 and a Dirac peak at the energy of the great
event (around F ~ 4000). Notice the huge separation
of energy scales. This can be rationalized using the nu-
cleation argument oullined above, From the expression
BoI* ~ Ao, we get a nucleation scale L* of the or-
der of 4 elements. The energy being proportional to
the square of the length in crack clasticity, this yields a
characteristic maximum energy scale of 16 not far from
the maximum energy ohserved in the power law distri-
bution. In contrast, the great earthquake has a size of
the order of onc hundred and its release energy is thus
of order 107.

e Ao = 1.9 (leading to ggyn < 0.05). The progressive
organization of the earthquake activity on a localized
fault network is shown in fig.1. This case is similar to
the previous one with the larger o4y,. However, quanti-
tatively, the rupture history during a period separating



Fig.1 : The parameters are Ac = 1.9, o4y = 0.04,
and the constant velocity imposed at the boundary is
V = 10-3. The figure shows two maps of the accumu-
lated slip in fault segment at two different times in a
square system of size L. = 130 in the transient regime.
We represent those elements which have slipped at least
once, the light grey to black scale corresponding to in-
creasing cumulative slips. The two times of observa-
tions correspond respectively to the first 1500 events
(top) and 2000 events (bottom). One observes a rather
diffuse ”damage” at early times and localization of the
deformation at long times.
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the recurrence of two great earthquakes is even more
characterized by the appearence of a multitude of small
earthquakes (see fig.2c). The activity is always local-
ized on a well-defined fault structure (see fig.2a) which
becomes fixed at large times. However, the fault is no
more a linear object, but contains loops defining inter-
nal "micro-plates”. For the largest allowed dynamical
stress drops {say ocayn = 0.04), we observe additional
properties. After a great earthquake, there is, as usual,
a quiescent time, followed by a progressing activalion
of the main fault by small carthquakes (fig.2¢). The
main fault is defined as the locus of the great earth-
quakes (see fig.2a). The activity of small earthquakes
then shifts progressively away from the main fault to
become delocalized in the bulk of the plate. This ac-
tivity accelerates until the great earthquake occurs on
the main fault. Again, we observe a huge separation
of energy scales between the small events distributed
according to a power law distribution for energies be-
tween 1072 and a few 10~! and the great characteristic
earthquake of energy of the order of 1500. This is again
correctly explained by the nucleation argument. The
exponent of the power law distribution for small earth-
quakes is again B = 14 0.05 (see fig.2d)

Before the periodic regime organizes itself (see fig.2b)
with its complex spatio-temporal structure of small earth-
quakes preceding the run-away, we witness a long tran-
sient aperiodic regime. The time duration of this tran-
sient is all the longer, the larger 1s the dynamical stress
Tdyn. FOT 0gyn = 0.04 for instance, the transient is so
long that one can measure with good accuracy the dis-
tribution of earthquake energies in time windows suf-
ficiently large so that the statistics is good, but suffi-
clently small so that the evolution of the organization in
this transient regime is negligible. (Note however that
the transient is nevertheless quite small compared to
that observed in the dislocation model: the crack model
introduces a much stronger coupling via the crack stress
redistribution rule, favoring a faster and stronger orga-
nization). We again obtain a nice power law for small
earthquakes in the transient regime, with the same expo-
nent B. However, the sizes of these "small” earthquakes
in the transient regime are typically one order of mag-
nitude larger than in the asymptotic periodic regime.

In summary, these numerical explorations show that
the asymptotic dynamics is always periodic, with how-
ever a more and more complex sequence of ruptures
within a period, the larger are the disorder Ag and the
dynamical stress o4y, (i.e. the smaller the stress drop).
This can be qualitatively understood as an intermediate
regime between the fully periodic regime, which is char-
acteristic of low disorder and large stress drop, and the
self-organized critical behavior observed for the disloca-
tion model, which is controlled essentially by large dis-
order and small stress drop (Cowie et al. (1993,1995);
Miltenberger et al. (1993); Sornette et al. (1994a)).
We have already underlined the analogy between this

problem and that of a sct of interacting relaxation os-
cillators with threshold. In this analogy, the stress drop
parameter measures the coupling strength between ele-
ments, whereas the amplitude of the disorder Ao quan-
tifies the disorder in the natural frequencies of the in-
dividual elements. The analogy predicts that synchro-
nization, hence regular periodic behavior, will be the
stronger the stronger the coupling and the weaker the
disorder (Christensen (1992); Sornette (1994); Sornette
et al. (1995); Corral et al. (1995); Middleton and Tang
(1995); Bottani (1995); Gil and Sornette (1995)).

Let us present a mean field toy version of the model,
in the spirit of (Mirollo and Strogatz (1990)), which al-
lows one to understand the mechanism underlying the
synchronization process and the appearence of periodic
states. For the purpose of clarity, consider an homoge-
neous system and the situation where the earthquake
cycle 1s constituted of two earthquakes, involving re-
spectively NV, and N, < N; fault elements. This can
be the situation at the end of the transient regime, af-
ter many small events have disappeared. Qur reasoning
carried out below on these two earthquakes can be eas-
ily generalized to a more general situation with more
earthquakes. We should stress that the origin of peri-
odicity found here does not rely on the assumption of
two faults but rather on the fact that the large earth-
quake is an "absorbing” state (see below). The mean
field character of the argument is to assume that, when
an element reaches its threshold o, it redistributes its
stress to all the other N = N; + N3 active elements,
each thus getting a stress increment equal to a%f where
we allow for an arbitrary pesifive coupling strength «.
For simplicity of the argument, suppose also that the
stress of the ruptured element is put te zero. Suppose
that we start reasoning at the time where the stress on
the elements of fault 1 1s o7 > o3, where o5 is the stress
on the elements of fault 2. Earthquake 1 will occur first,
when all V; elements are at their o, in fast time. At
that time, the stress on the elements of fault 2 is

og + 0. — 01,

due to the uniform tectonic loading. Just after event 1,
the stress on the elements of 1 is zero by our rules while
the stress on the fault 2 is

Niaeo,

o3+ 0. — 01+ N

Fault 2 will then reach itself o, at which time the stress

on fault 1 is
Niao,
o) — 09 — .
1 2 ~
After earthquake 2, the stress on fault 2 is zero by defi-

nition while the stress transfer loads fault 1 to the level

(N, — N))oo,
—

01— 02—
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a} Long-time accumulated slip after localization for
the same parameters as for fig.1 but with another dis-
order realization. All the earthquakes occur on this 1D
fault.

b) Time dependence of the total elastic energy stored
in the plate. The periodic behavior established after the
transient up to time 50000 is clearly visible.

¢) Coding of the active fault elements as a function
of time. The position of a given fault element is coded
- by a single index (denoted ”position of broken bonds”
] in the figure) increasing from 1 to L2 = 16900. The
index spans £ = 1 to L at fixed y for each y = 1 to L.
Note the periodic cycle with three phases: i) quiescence

position of broken bonds

0 7, 1 LI il Lt - - . - . -
360000 370000 230000 230000 200600 410000 420000 430000 after the great event, 11) reactivation of the seismic ac-
tine tivity mainly on the main fault and iii) increase of the
(c) foreshocks frequency in the system.

d) Gutenberg-Richter distribution of the number of

events having a given energy. The energy of an event

cunulative runse 1s defined as the difference between the total elastic en-
10000 T - g - " ergy stored in the system before and after the event.

. The crosses, plus and square symbols corresponds to

¥ different times in the dynamics at long times, showing
1000 f i the stability of the distribution. The diamonds corre-
& spond to the distribution of small events in a time win-
& . dow in the third regime close to the run-away in the
foo & x, . 1 periodic regime. In all cases, we observe powerlaw dis-
awe . tribution P(E)dE ~ E~(+5) with a constant exponent
o, . B = 1£0.05. The straight line has slope —2 for compar-

. ] ison. It is interesting to note that the foreshocks repre-
@ s . sented by the diamonds have the same B-vaiue but are
e o m . larger on average, signaling the nucleation of the tun-

01‘001 0_'01 01 g 1 " e away. Th.e great carthquake is not represented on the
relessed slastic energy figure, being out of scale.
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This last result shows that the stress difference, which
was initially oy — o3 has decreased during an earthquake
cycle. The largest earthquake (1 in this example) is an
absorbing state. This argument snmmarized here for
an homogeneous system works also for heterogeneous
systems, if the disorder is not too large ( Bottani (1995)).

4 Flasticity and threshold disorder

We explore in this section the possibility to destroy the
periodic behavior and kill the great earthquake, by in-
troducing disorder also in the elastic cocfficients of the
elements and by varying the nature of the disorder, for
instance by allowing for the existence of very strong and
rigid elements (described by a powerlaw distribution
of thresholds and/or elastic coefficients). This comes
about because, the stronger the disorder, the stronger
will be the barriers to stop the run-away.

With respect to the fault structure and the time his-
tory, the addition of disorder on the clastic coefficient,
when not too large, is tantamount to increasing the
threshold disorder with no elastic disorder: we observe
a periodic behavior, after a transient which is signifi-
cantly larger than previously, all parameters being the
same otherwise. When measurable, the distribution of
small earthquakes is a power law with an cxponent B
always equal to 1 £ 0.05. Fig.3 presents such a simula-
tion with Ae = 1.9, a disorder on the elastic coefficients
defined as for the threshold with a flat distribution of
elastic coefficient and a width equal to Ag = 1 and
Tdyn = 0.04.

For large threshold disorder Ag = 1.9, we find the
novel feature that, in somne systcm realizations, the time
history does not seem to become periodic, however long
we wait. A global stationary regimne seems to emerge
nevertheless, with an elastic encrgy stored in the plate
which fluctuates around a well-defined average. The
fault structure becomes very rough with some overhangs
(this i1s allowed in the scalar anti-plane elastic model
used here but would be unphysical in in-plane stress
or strain models since compressive and extensive stress
would accumulate without limit in the region of the over-
hang, according to a "hook” effect (Sornette (1988)). In
figure 3a, one can see such a configuration in the form of
a fault segment parallel to the Oy axis inside the largest
loop on the upper fault. Furthermore, the run-away
does not exist anymore and is replaced by a conlinuous
distribution of earthquake of all sizes.

We have also explored different disorders, {or instance
a powerlaw distribution of rupture thresholds

P,{o.) ~ O-C—(l+naJ

for o, > 1, with g, = 0.5 and 3. The first case cor-
responds to a very broad distribution (the average is
mathematically divergent) with a significant fraction of
the bonds having a very large threshold. Depending up

the specific realization, we find a similar phenomenology
as hefore. For instance, for o4, = 0, a single great run-
away punctuated the periodic dynamics. However, the
fault becomes very complex, with many branches and
loops. Correlatively, the number of elements rupturing
in the great earthquake is about three times the system
width.

For other disorder realizations with the powerlaw dis-
tribution of rupture thresholds, in presence or absence of
elastic disorder, we have found a completely new effect,
that we identify as a "frustration” which destroys the
self-consistency of the quasi-static crack model. This
also occurs for the previous bounded distribution in the
presence of quenched disorder in the elastic coefficients.
The phenomenon is best illustration by examination of
figure 4. It shows a small part of the stress field dur-
ing an earthquake in fast time in a network with a
power law distribution of thresholds with p, = 0.5 and
ogyn = 0.5. The fault segments which have ruptured
are indicated by an arrow with a thick line. These rup-
tured elements all carry a stress whose absolute value
is ogyn = 0.5. 'The arrows indicate the sign of the
stress: downward (resp. upward) arrows correspond
to positive (tesp. negative) stresses (rccall that all the
stresses are along the Oz axis). Alternatively, one can
interpret the map as a electric current field, within the
usual mechanical-electrical analogy (stress — current,
displacement — voltage, elastic coeflicient — conduc-
tance) which is exact for antiplane elasticily. The stress
carried by cach fault element is indicated on the ar-
row. The rupture threshold for each element is written
on the olher side of the bond. The mechanical equi-
librium translates into the condition that the sum of
stresses carried by the fault segments atlached to the
same node be zero, easily verified in this example. The
self-consistency of the model is obeyed when the me-
chanical equilibrium is such that all stresses are smaller
than the corresponding threshold. When this is not the
case, a rupture occurs relaxing the stress on the rup-
ture element to ogy,. However, there are "frusirated”
situations in which this is not possible. To sec this, ex-
amine the clement carrying a stress equal to 1.b whose
threshold is o, = 1.495. By the definition of the model,
since its stress is larger than its threshold, it must rup-
turc and its stress must thus be lowered to ogyn = 0.5.
When this occurs, the mechanical equilibrium is bro-
ken, because the three other fault elemeunts connected
to the same node have all their stresses imposed to he
equal to the dynamical stress. The model looses its self-
consistency due to an over-determination. In general, it
is straightforward to realize that this ”frustrated” state
cccurs when three fault clements connected to the same
node have ruptured. As a consequence, their stresses is
imposed to be equal to o4y, and from the rule of quasi-
static equilibrium, the stress on the remaining clement
connected to the same node is completely determined.
If it happens that its threshold be less than this stress,
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@ Fig.3 : a) Fault localizatlion obtained at long times for

Ag = 1.9, disorder on the elastic coeflicients Ag = 1,

rate of events Tayn = 0.04, and the constant velocity imposed at the
16003 5

boundary is V = 1073, Note that the lower fault in grey
becomes inactive after the transient and its contribution
to the cumulative slip vanishes at long times.

b) Gutenberg-Richter distribution of the number of
events having a given energy for different time windows
at Increasing times when going from right to left. In
all cases, we observe powerlaw distribution P{E}dE ~
E~(1+B) with a constant exponent B = 1+ 0.05. The
straight line has slope —2 for comparison. For early
times, in the power law presents the same exponent,
the events have a larger size which finally settle to a
100 100 stationary distribution.
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(b)

delts elastic ensray

Fig.4 : Map of a small part of the stress field during
an earthquake in fast time in a network with a power law
distribution of thresholds with g, = 0.5 and CTayn = 0.5,
The fault segments which have ruptured are indicated
by an arrow with a thick line. These ruptured elements
all carry a stress whose absolute value is Tayn = 0.5. The
arrows Indicate the sign of the stress: downward (resp.
upward) arrows correspond to positive (resp. negative)
stresses (recall that all the stresses are along the Oz
axis). The stress carried by each fault element is in-
dicated on the arrow. The rupture threshold for each
element is written on the other side of the bond. A
“frustrated” clement is seen, with a stress equal to 1.5
whose threshold is o, = 1.495.
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the frustration appears and the model collapses.

This effect is reminiscent of the concept of "frustra-
tion” introduced in the physics of general disordered sys-
tems (Toulouse (1977)). In general, frustralion arises in
a system whose interactions compete or conflict in such
a way thal not all constraints on the system can be
simultaneously satisfied. This is what happens in our
model with the conflict between the stress conservation
and the dynamical stress which may produce frustra-
tion. The usual outcome of frustation in the presence of
disorder is the existence of, not a single well-defined sta-
ble equilibrium state, but rather to a very large number
of disordered equilibrium states of equivalent energies
(Mézard et al. {1987)). The number of these minimum
states usually increases exponentially with the number
of degrees of freedom (spins). The energy landscape
is extremely complicated with a hierarchy of barriers
of increasing sizes separating the minimum states. In
other words, in order to go from one minimum state to
another, an energy barrier must be passed. This hier-
archical structure produces novel behaviors (long time
relaxations, breakdown of ergodicity, etc.) and impor-
tant fluctuations. In our meodel, mechanical equilibrium
is not more possible in the presence of frustration, as
we have shown. It iIs tempting to extrapole from this
analogy and suggest that the state of stress chosen by
the plate, in an extended model allowing for a genuine
dynamics, could have a multi-valley structure similar to
_that obtained in spinglasses for instance. This could
be an important underlying ingredient at the origin of
the observed spatlo-temporal complexity. In this spirit,
we have recently proposed that the mechanics of coupled
blocks and especially the coupling between rotations ex-
hibit the frustration property (Sornette et al. (1994b)).
We believe that this is an ubiquitous and key property at
the basis of the complexity observed in fault and earth-
quake organization.

The present crack model must be enriched to get rid
of the overdetermination. The conceptually simplest so-
lution is to introduce a genuine dynamics allowing a
transient breakdown of static equilibrium. For instance,
elastodynamics allow for an unbalance of the stress, cor-
responding to the generation and radiation of elastic
waves. Physically, this describes the fact that the stored
elastic energy is converted into two types of dissipation:
1) frictional heating, that we take into account by our
rupture criterion and 2) elastic wave radiation that we
neglect. A model in which the dissipation is not corn-
pletely converted into friction, i.e.  the stress is not im-
mediately put to its asymptotic dynamical value, would
cure the observed frustration and over-determination.
Another alternative, within quasi-static mechanics, is to
introduce other types of deformations, such as thrust or
normal faulting. Algorithmically, this will lead to allow
a fraction of the stress to be removed by going out of
plane, thereby removing the constraint of zero antiplane
stress at all nodes. However, we still expect frustation

to occur for certain realizations due to the competition
between static mechanical equilibrium and constant dy-
narical stress.

1t is interesting to note that there is a particular value
of the dynamical stress drop for which the frustration
never occurs, namely for ogyn = 0. In this case, the
siress on the fourth element attached to a node, for
which the three other fauit segments have ruptured, is
zero by the law of local static mechanical equilibrium.
This is consistent both with mechanical equilibrium by
definition and also with the dynamical stress drop condi-
tion. Notice that this is the only situation for which the
condition of dynamical stress drop is always compatible
with static mechanical equilibrium. However, the crack
model presents a curicus and probably rather artificial
behavior in this case. Remember that a rupture cycle
is characterized usually by a progressive acceleration of
the rate of small earthquakes priar to the occurrence of
the run-away. Since the run-away spans the whole width
of the lattice, and since the dynamical stress is imposed
on its ruptured elements, this amounts to impose the
total stress within the plate equal to zero. Previous
ruptures on small faults within a cycle have produced
localized slip and stress sources, They cannot remain in
the presence of this global vanishing of the stress within
the platc. As a consequence, we observe in fast time a
cloud of small earthquakes accompanying the run-away,
which are the "ghosts” of all the previous small earth-
quakes. These ”ghosts” present exactly a slip which is
the opposite of the slip that they have develop in the
foreshock phase. In other words, the aftershocks occur-
ring in fast time are the exact symmetric of all the fore-
shocks. The difference is that the foreshocks are spread
in time over the period of the cycle while the aftershocks
”ahosts” are occurring in fast time, just after the run-
away. While the details of this behavior is clearly model
specific, this phenomenon is not without recalling field
observations that foreshocks occur usually years or even
decades before a great event, while the huge majority
of aftershocks are clustered over a few months after the
main event. The present model does not contain how-
ever the necessary ingredients to describe the time de-
lays associated with the coupling with other modes of
creep or ductile deformations, the ductile crust and the
fluid in the crust.

Ref.{Bhagavatula et al. {1994)) have studied the same
crack model and it is instructive to discuss how their re-
sults differs from ours in many aspects. They have only
studied the case o4y, = 0. They have thus not found
the frustration effect discussed above. In addition, they
consider an annealed disorder, i.e. all the threshold of
the fraclures elements are re-set to new random numbers
after each event. As a consequence, they cannot obtain
carthquake localization on well-defined faults but only
observe diffuse earthquakes. Also, this reshuffling of the
disorder prevents the synchronization to a periodic cycle
and the appearence of a run-away. Nevertheless, they



observe that the distribution of small earthquakes is a
powerlaw with B = 0.8 4 0.1, not far from our estimate
and that the distribution presents a peak at large earth-
quakes whose energy scales with the square of the system
size. While they interpret this as a finite size effect, we
rather conclude that these large events are the shadows
of the great run-aways in the presence of annealed noise,
which sizes are given by that of the system. In a sense,
the annealed disorder makes their system function per-
manently in our transient regime. They have only stud-
led disorder on the thresholds by the method of Green
functions, which is not useful practically in the pres-
ence of clastic disorder. The gradient conjugate method
that we have used is slower but more general to tackle
this second case. Finally, they have used infinite system
(Green functions, and have not addressed the question of
the effect of boundaries in finite systems. While in the
statistical physics of critical phenomena, one would like
to get results which are independent of boundaries, in
the present mechanical problem as well as in the general
mechanical case, the existence of well-defined boundary
conditions on the stress or strain fields at the border of
the system is know to control drastically the localization
of the mechanical deformation, as we have been able to
observe.

5 Concluding remarks

Except for special realizations with the strongest dis-
order on rupture thresholds and elastic coefficients, we
have found that the quasi-static crack model of earth-
quake recurrence leads to periodic cycles, characterized
by small foreshocks distributed according to a universal
Gutenberg-Richter law with exponent B = 1 up to a
maximum nucleation size and a large run-away ending
the cycle. This periodic behavior results from the strong
synchronization brought by imposing a constant dynam-
ical stress, corresponding to an attractive or absorptive
state. The other main result is the discovery of a funda-
mental frustration resulting from an overdetermination
of the stress field in the presence of large disorder and
imposed dynamical stress drop. The general solution to
this breakdown of self-consistency is to re-introduce a
genuine dynamics allowing the local breakdown of static
mechanical equilibrium, associated to the radiation of
elastic waves. Our study pinpoints the fundamental role
played by elastodynamics in repetitive crack ruptures,
We thus believe that, in crack models (and not in dislo-
cation models), there is no other way than incorporate
the full elastodynamic equations to get a self-consistent
solution in all situations.
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